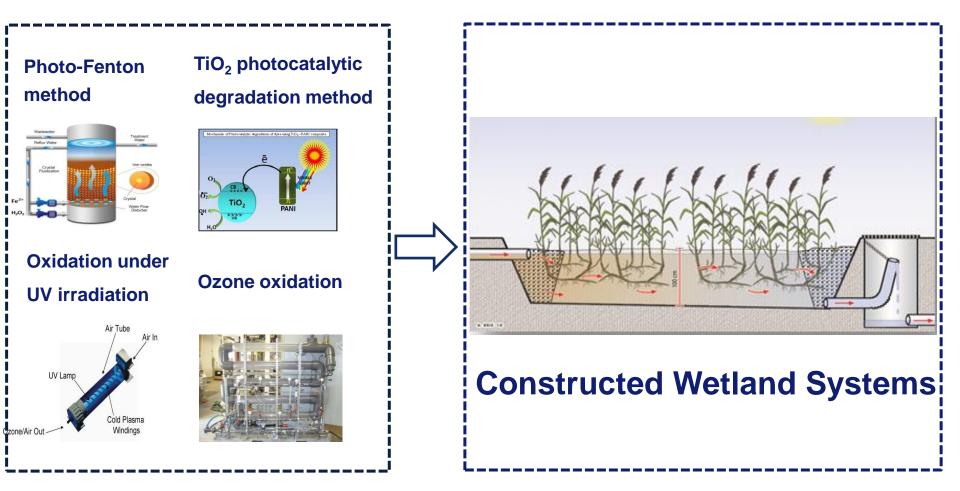

COMPARISON OF THE PESTICIDES TEBUCONAZOLE AND IMAZALIL MITIGATION IN HYDROPONIC MICROCOSMS AND MESOCOSM-SCALE CONSTRUCTED WETLANDS

Tao Lv, Pedro N. Carvalho, Yang Zhang, Carlos A. Arias, Hans Brix

Introduction - Emerging organic contaminants (EOCs)

The relationship between the cumulative number of articles about EOCs treatment in CWs and year published since 1991, SCI-EXPANDED, Web of Science

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands


Introduction - Chlorinated Pesticides

Pesticides	Applications	Toxicity		
Tebuconazole	Agricultural Area: Protect citrus fruits, prevent plant pathogenic fungi	Crop residence limitation of 0.01-5 mg kg ⁻¹ Toxic to non-target organisms due to bio- accumulation at 0.3 µg L ⁻¹		
Imazalil $CI \rightarrow CH_2$	Urban Area: Used as biocide for wood/building protection	Crop residence limitation of 0.01-5 mg kg ⁻¹ Toxic to aquatic vertebrates and invertebrates at 1-160 µg L ⁻¹		

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

Introduction - CWs application

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

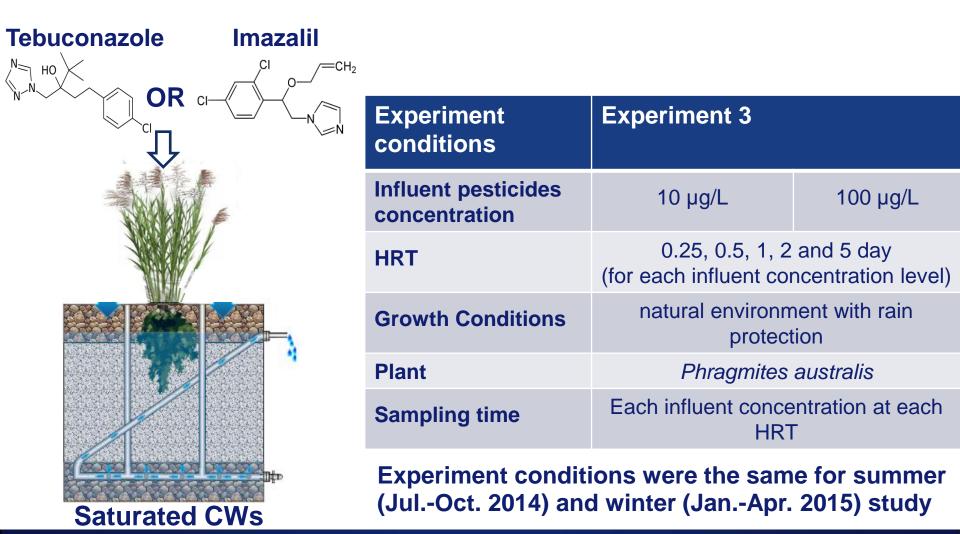
- To compare the pesticides tebuconazole and imazalil mitigation performance and kinetics in hydroponics and mesocosm-scale CWs planted with *Phragmites australis*.
- The effect of CWs designs, seasons and initial/influent pesticide concentrations were taken into account when doing the comparison.

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

Hydroponic microcosm CWs - Exp. 1 & 2

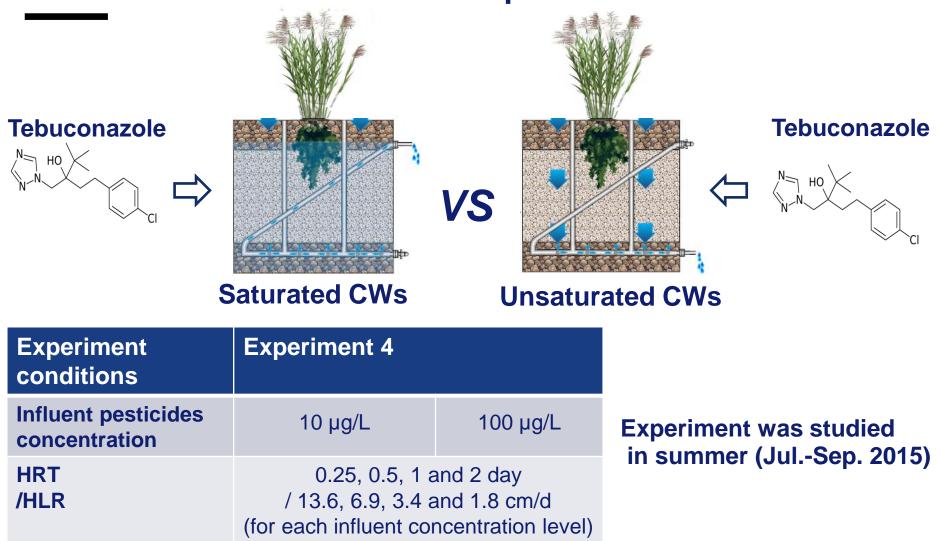
	Т0	T0.5	T1	T2	T5	T10	T15	T20	T24		
Unplanted control (mix of IMZ and TBZ)	0	0	0	0	0	0	0	0	0		
Tebuconazole treated group	0 0 0	000	0 0 0	0 0 0	0 0 0	000	0 0 0	0 0 0	0 0 0	 Plant control (without pesticides, only plant) O 	
Imazalil treated group	0 0 0										

hydroponic medium


Schematic diagram of the setup for experiment 1 and 2

Experiment conditions	Experiment 1	Experiment 2			
Initial spiked concentration	10 µg/L	10 mg/L			
Growth Conditions	Growth Chamber				
Solution volume	500 mL				
Plant	Phragmites australis				
Incubation time	24 days				

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands


Mesocosm-scale CWs – Exp. 3

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

Mesocosm-scale CWs - Exp. 4

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

Calculation - removal efficiency

Evapotranspiration of the systems were considerated, so the removal rates were calculated based on mass balance,

Removal (%) =
$$\frac{C_i \times Vi - C \times V}{C_i \times Vi} \times 100$$

where, C_i and C are the pesticides influent/initial and effluent/final concentrations (μ g/L or mg/L) respectively; V_i and V are the influent/initial and effluent/final sample volume (mL), respectively.

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

Kinetics

 The volume-based first order kinetics removal rate constant (for hydroponic microcosms and saturated mesocosm CWs comparision)
 k = - ln (C / C_i) / t

where k is the volume-based first order reaction rate constant (d⁻¹); for hydroponc microcosms C_i and C are the pesticides concentrations (μ g/L or mg/L) at time zero and time t (d), respectively; for saturated mesocosm CWs C_i and C are the pesticides influent and effluent concentrations (μ g/L) under HRT of t (d), respectively.

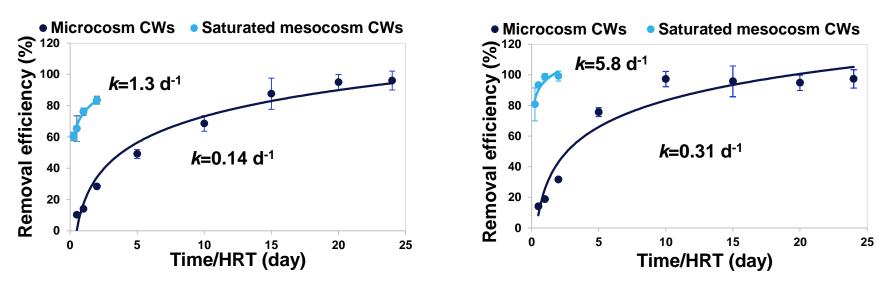
• The area-based first order kinetics removal rate constant

(for unsaturated and saturated mesocosm CWs comparision)

 $k_v = -q * \ln (C / C_i)$

where k_v is the area-based first order reaction rate constant (cm d⁻¹), C_i and C are the pesticides influent and effluent concentrations (µg/L) under HLR of q (cm d⁻¹), respectively.

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands


<u>Results - System design effect</u>

microcosm CWs VS saturated mesocosm CWs

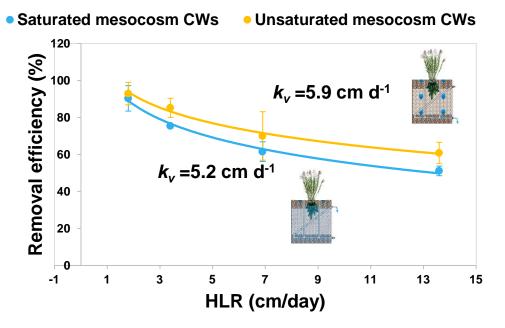
10 µg/L initial/influent concentration level under summer (growth chamber) condition

Tebuconazole

Imazalil

1. High final tebuconazole (>85%) and imazalil removal (>98%) were observed in both systems

2. *k values* in mesocosm CWs were significantly higher than that in microcosm CWs for both tebuconazole and imazalil.



Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

<u>Results - System design effect</u>

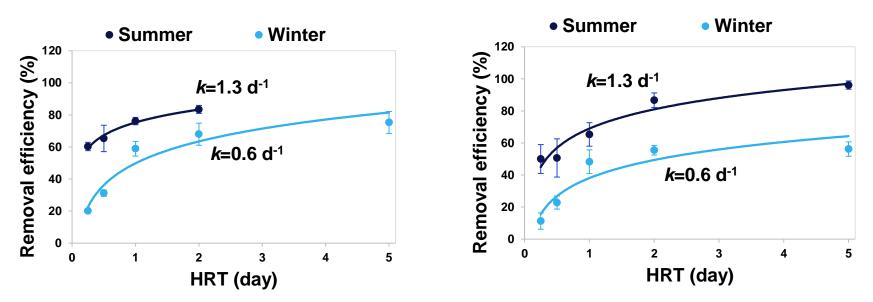
unsaturated mesocosm CWs VS saturated mesocosm CWs 10 µg/L influent concentration level in summer

Tebuconazole

1. High tebuconazole removal (>93%) were achieved under HLR of 1.8 cm/d for both CWs.

2. k_v for unsaturated CWs was higher than saturated CWs (not significant).

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands


Results - season effect

Summer VS Winter (Saturated mesocosm CWs)

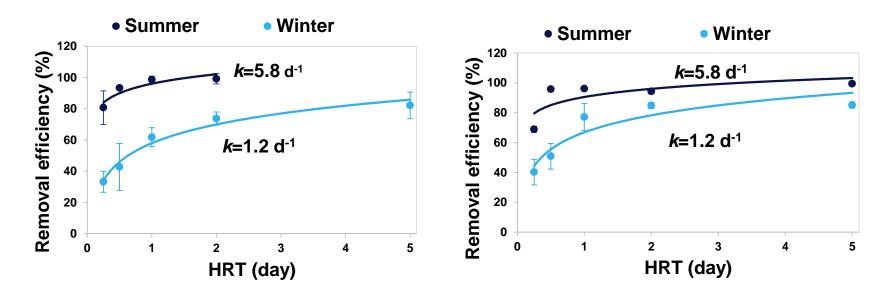
influent tebuconazole of 10 µg/L

influent tebuconazole of 100 µg/L

1. Tebuconazole removal efficiencies were significantly higher in summer.

1. *k* values of tebuconazole were significantly higher in summer.

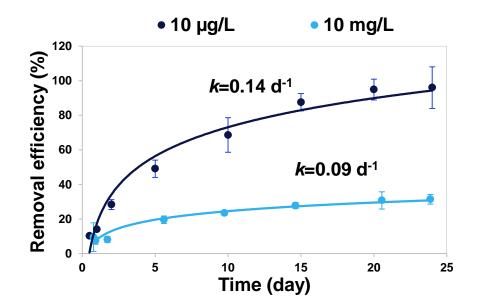
Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands


Results - season effect

Summer VS Winter (Saturated mesocosm CWs)

influent imazalil of 10 $\mu\text{g/L}$

influent imazalil of 100 µg/L



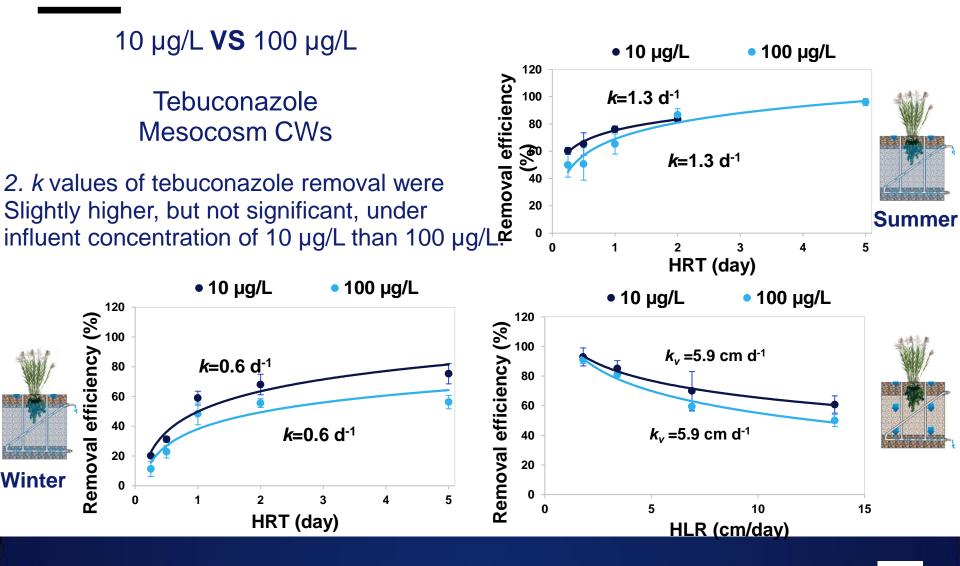
1. Imazalil removal efficiencies and k values were significantly higher in summer.

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

Results - Influent/Initial concentration effect

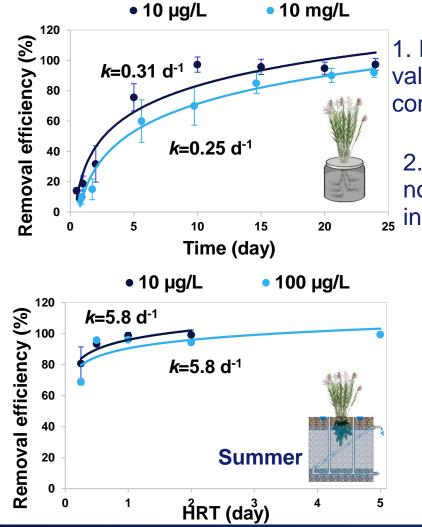
10 µg/L **VS** 10 mg/L

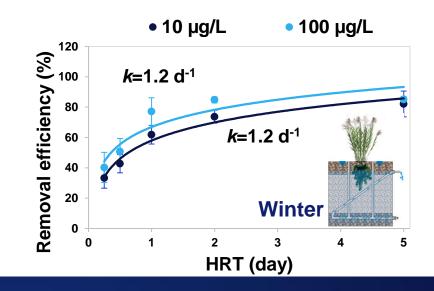
Tebuconazole Hydroponic microcosm CWs



1. *k* values of tebuconazole removal were significantly higher under initial concentration of $10 \mu g/L$ than 10 mg/L.

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands


Results - Influent/Initial concentration effect


Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

<u>Results – Influent/Initial concentration effect</u>

1. Imazalil removal in Hydroponic microcosm CWs, k values is significantly higher under 10 μ g/L initial concentrations.

 Imazalil removal in mesocosm CWs, k values are not significantly different under 10 μg/L and 100 μg/L
 influent concentrations.

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

Conclusions

- *Phragmites australis* planted microcosm CWs and mesocosm CWs showed high removal (>90%) of the pesticides.
- Mesocosm CWs presented significantly higher pesticides removal rate than that in hydroponic microcosm CWs.
- Tebuconazole removal efficiencies and removal rate s were higher, but not significant, in unsaturated than saturated mesocosm CWs.
- Removal efficiencies and removal rate constants of the pesticides observed in the mesocosms were significantly higher In summer than that in winter.
- Initial/influent pesticides concentrations had generally negative influence on the pesticides removal rate constants in microcosm CWs, but not in mesocosm CWs.

Comparison of the pesticides tebuconazole and imazalil mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

Comparison of the pesticides imazalil and tebuconazole mitigation in hydroponic microcosms and mesocosm-scale constructed wetlands

III PAN-AMERICAN CONFERENCE

16-19 MAY. 2016 **22**