
AADECA 2006 – XXº Congreso Argentino de Control Automático
28  al  30 de Agosto de 2006 - Buenos Aires, Argentina.

OFFSET ELIMINATION USING RECEDING HORIZONT CONTROLLERS:  A 
COMPREHENSIVE ANALYSIS

A. H. GONZALEZ, E.J. ADAM and J.L. MARCHETTI(1)

†Institute of Technological Development for the Chemical Industry (INTEC), CONICET – 
Universidad Nacional del Litoral (UNL).

Güemes 3450, (3000) Santa Fe – Argentina. Tel.: (0342) 455-9175/77 Fax: (0342) 455-0944.  
(alejgon,eadam,jlmarch)@ceride.gov.ar

Abstract:  An offset free control is one that drives the controlled outputs to their desired targets at steady 
state. In the linear model predictive control (MPC) framework, the elimination of steady state offset may 
seem a little  obscure,  since the closed loop optimization  tends to  hide the integral  action.  Theoretically, 
implementing a well posed optimization problem and having unbiased prediction in steady state are sufficient 
conditions to eliminate offset output. However, these basic conditions are not always achieved in practical 
applications.  This paper presents a detailed practical analysis of the existing strategies to eliminate offset 
when linear models with moderated uncertainties are controlled. In addition, these strategies are used for a 
Continuous  Stirred  Tank  Reactor  (CSTR)  control  with  nonlinear  dynamic,  in  order to  evaluate  the 
formulations in a more realistic process.
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1.  INTRODUCTION

Model  predictive  control  (MPC)  refers  to  a  class  of 
control  algorithms that  optimizes  future plant  behavior 
through the use of  an explicit  mathematical  model.  At 
each sample time, the controller input is taken as the first 
element of an open-loop optimal input sequence that is 
computed  by  driving  the  model  predicted  outputs  as 
close as possible to a desired future trajectory. At each 
sample  time,  the  system state  is  estimated  and  a  new 
open-loop optimization is carried out. 
MPC  technology  is  widely-used  in  chemical  process 
industries where it is generally the default technology for 
advanced  process  control  applications.  In  practice, 
modeling error and unmeasured disturbances can lead to 
steady-state  offset  unless  precautions  are  taken  in  the 
control  design.  Elimination  of  steady-state  offset  is 
accomplished  in  two  basic  ways.  The  first  approach 
involves working with models in their velocity form, that 
is,  models  which use  input  changes and  state  changes 
instead of input and state values. These models permit a 
well posed optimization problem since the targets of the 
state increments are always correct (i.e., they are always 
zero)  even  if  the  plant  and  the  model  are  not  equal 
(Pannochia,  2001).  An  uncommon example  of  the 
implementation of  this kind of models to MPC, can be 
seen  in  Rodrigues  and  Odloak  (2003),  and  Odloak 
(2005). In these works, the integral action is achieved by 
using  the  inputs  in  the  incremental  form in  both,  the 
output predictions and the observer.
The  second  method  involves  an  augmented  process 
model  including  a  constant  step  disturbance.  This 
disturbance,  which  is  estimated  from  the  measured 

process  variables,  is  generally  assumed  to  remain 
constant  in  the  future  and  its  effect  on  the  controlled 
variables is  removed by shifting the steady-state target 
for the controller. The most widely-used industrial MPC 
implementations, such as DMC, QDMC, and IDCOM-M 
use a constant output step disturbance model to achieve 
offset-free  control.  However,  while  this  method  has 
proved  to  be  acceptable  for  stable  plants,  it  does  not 
work  for  unstable  systems because  the  observer  poles 
contain  the  unstable  poles  of  the  process  model.  To 
overcome this problem, more general state-space models 
were developed in the  literature (Muske and Badgwell, 
2002;  Pannochia  and  Rawlings,  2003),  that  allow 
considering input, state and output disturbances, and can 
handle unstable plants.
In this paper,  we focus attention on the analysis of the 
main existing strategies to eliminate output  offset,  and 
elucidate  the  critical  point  of  some  algorithms  that, 
contrary to the appearances, cannot lead to an offset free 
MPC. In addition, a comprehensive comparison between 
the performance of the different approaches is performed 
through a few numerical simulations.
The organization of this work is as follows. Section 2 
includes a theoretical framework presentation related to 
three  popular  MPC  formulations.  Then,  section  3 
presents numeric simulations that show the improvement 
reached in the performance with those three techniques. 
Finally, in Section 4, the conclusions are summarized.

2. THEORETICAL FRAMEWORK

As mentioned  before,  two  conditions  are  sufficient  to 
obtain an offset-free  control.  The  first  one  consists  of 
getting an unbiased prediction of the steady state, which 

1 To whom all correspondence should be addressed.  
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is achieved by using integral action in the observer. This 
detail, in spite of its simplicity, is not always evident in 
the MPC formulation since the integral  action is  often 
(incorrectly) attributed to the use of velocity form models 
in the optimization problem. Note that,  if  the observer 
does not reach accurately the stationary states – i.e.,  if 
the observer does not include an integral action – then, 
the predictions are made based on a mistaken stationary 
model. Therefore, the optimization will lead the wrong 
system, not the accurate one, to the set points. As can be 
seen, this behavior produces a steady state error since, in 
general, the inputs that eliminate the wrong-model offset 
are different from the ones that eliminate the offset in the 
true plant.
The  second  condition  obliges  to  design  a  well  posed 
MPC  optimization  problem,  and  can  be  succinctly 
explained as follows (J. A. Rossiter, 2003). Suppose that 
the observer gets unbiased stationary estimations, but the 
optimization problem is not well posed (the steady state 
minimum does  not  correspond to  zero  tracking error). 
Since  the performance  index is  not  set  up so  that  the 
minimum (at steady state) corresponds to zero tracking 
error, then the converse must occur; that is, the optimum 
control  will  unavoidably  cause  offset.  This  is  what 
happens when absolute input values (not the increments) 
are used in the cost function and the desired output is 
different from zero.
In  the  following  paragraphs,  we  describe  standard 
strategies and expose the way each one accomplishes the 
above conditions. 

2.1.  Maciejowski's Velocity Form
Consider the original state space model
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where “x”, “u” and “y” represent the state, the input and 
the  model  output  respectively,  and  A,  B and  C are 
matrices of appropriate dimension.
A typical MPC formulation (that we call Strategy 1) is 
based on the following cost function:
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where “p” and “m” are the prediction and control horizon 
respectively, “ysp“ stands for the output set points, ∆u(k) 
=  u(k) –  u(k –  1) are the input increments, which at the 
same time are the optimization variables, and  Q and  R 
are  positive  definite  weighting  matrices.  This  cost 
function is minimized subject to
umin ≤ u(k+j) ≤ umax ,
∆umin ≤ ∆u(k+j) ≤ ∆umax ,
and  the  successive  states  (predictions)  are  computed 
using the current measured state  x(k) and the following 
velocity model2:

2Note that this augmented model includes an integrating modes.
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The objective function (2) together with velocity models 
like  (3),  produce  a  well  posed  optimization  problem, 
since  the  combination  y =  ysp and  ∆u =  0  is  always 
possible at steady state.
Figure 1 shows an MPC close-loop diagram  in which the 
block  called  “optimizer”  is  the  one  that  performs  the 
minimization  described  above  (Maciejowski  2002). In 
this  diagram,  matrices  γ  and  Ψ  accommodate  the 
prediction equations  taking into  account  model  in  (3). 
Note  that  in  (3),  the input  “u”  represents  itself  a  new 
state,  which  would  not  need  to  be  estimated  by  the 
observer but computed by saving the implemented value. 
This seems to be right, since estimating a variable which 
was implemented one sampling time before,  makes no 
much sense.  However,  as  it  is  shown next,  this  is  the 
reason why this control structure produces output offset.
The  trouble arises because the integral  action must be 
performed explicitly by the observer. Assume that for a 
time k  large enough, the system reaches the steady state. 
At this time, the output predictions will be
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where  ( )ˆ /y k j k+  represents the predicted output,  ˆkx  
represents the estimated state (that remains constant for 
stable observers), and ku  is the steady state input. Note 
that,  since  we  assume  steady  state  conditions,  then 

0ku∆ = .  On the other  hand,  the observer  steady state 
equation is given by3

( )ˆ ˆ ˆauxk k k k k kx Ax Bu L y C Ax Bu = + + − +  ,               (5)

where Laux is the observer gain, and ky  is the (measured) 
output  feedback.  From this  equation,  we can  see  that 
there is not reason for the model output, ( )ˆk kC Ax Bu+ , 

to achieve the plant output, ky . Consequently,

ˆ ˆk k kx Ax Bu≠ + .                 (6)
So, the steady state prediction equation will be given by

( ) ( )ˆ ˆ1/ k k ky k k C Ax Bu y+ = + ≠

M
                (7)

( ) ( )1ˆ ˆ/ ,p p
k k ky k p k CA x C I A A Bu y−+ = + + + + ≠L , 

which means that  it  will  not  be  possible  to  drive  the 
outputs to their set points. This is a case in which, despite 
the  optimization  problem  is  well  posed,  the  output 
predictions are not accurate enough.
The natural way to overcome this trouble is by adding 
an integrating mode to the observer. This can be made in 
two different  forms:  by  including  the  complete  model 
(3),  that  is,  estimating the  input  “u”  together  with the 

3Equation (4) is derived from a typical discrete state observer.
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original states; or by adding a disturbance model. Using 
the former of these alternatives, which we call Strategy 2, 
it is easy to see that the steady state observer equation is 
given by
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where  Lu and  Lx form the  observer  gain  matrix4,  and 
again, 0ku∆ = . This equation leads to
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From (10) we see that, if uL  is of full rank, then
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and from (9),
ˆ ˆ ˆk k kx Ax Bu= + .               (12)

Finally, from (11) and (12), equations (7) will produce 
accurate outputs predictions.
It is then clear that the use of “ ( )û k ” instead of “u(k)” 
will  eliminate  the  steady  state  model  mismatch.  In 
addition, we observe that, in general, is  ˆk ku u≠ , which 
means that the additional state is only a fictitious variable 
with no physical meaning.
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Figure  1: A  representative  block  diagram  of  the 
Maciejowski's control structure.

2.2.  Complete Velocity Form
A different strategy to have an offset free controller is by 
using the complete velocity form (Prett et al., 1988 ).
This kind of models considers the increments on both, 
the input and the states, and has the following form:
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4Observe that the observer defined  in (8), in strategy 2, is different 
from the one defined in (5). The input “u”, is now estimated.

( ) ( ) ( )1x k x k x k∆ = − − .
Based  on  this  model,  the  MPC  cost  function  can  be 
written as
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where  0 0
T

sp spy y =  L .  Observe  at  this  point, 
that the steady state output predictions will be

( ) ( ) ( )ˆˆ ˆ/ , 1jy k j k CA k y k j pς+ = = ≤ ≤% %

which  means  that  the  predicted  output  will  remain 
constant  and  equal  to  the  corresponding  observer 
estimation.  Now,  taking  into  account  the  integrating 
mode in (13) it is easy to see that, at steady state, the 
estimated output will reach the measured output, and the 
offset-free  condition  of  this  control  structure  becomes 
evident.  In  order  to  organize  the  numeric  simulation 
section, we call this approach, Strategy 3.

2.3.  Linear Regulator with disturbance sub-model
A general linear regulator structure (Rawlings 2000) is 
shown  in  Fig.  2.  The  MPC  regulator  block  uses  the 
following cost function:
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and  xs and  us represent  the  state  and  input  target 
respectively.  The  ability  of  this  strategy  to  eliminate 
output  offset  depends  exclusively  on  the  target 
calculation  stage.  In  order  to  obtain  unbiased  target 
values, the observer performs the estimations based on 
the following general disturbance model

( )
( )
( )

( )
( )
( )

( )
1 0
1 0 0 0
1 0 0 0

dx k A G x k B
d k I d k u k
p k I p k

+      
      + = +      
      +       

( )
( )
( )
( )

0 p

x k
y k C G d k

p k

 
  =    
  

,

where  d(k)  and  p(k)  represent  the state  and the output 
disturbances respectively, and  Gd and  Gp are the model 
matrices that determine the effects of the disturbances on 
the states and the output.  In this way, the steady state 
observer equation can be written as
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Assuming  now  that  the  system  is  detectable  and 

[Ld
T L p

T ]T  is of full rank, we have

( )ˆˆ ˆd pk k k k ky C Ax Bu G d G p= + + + .
Then, from (15),

ˆˆ ˆ dk k k kx Ax Bu G d= + + ,
which finally implies

ˆ ˆpk k ky Cx G p= + .
This  means that,  if  the  disturbances  d(k)  and  p(k)  are 
taken  into  account  in  the  target  calculation  and  the 
system reaches  a  stationary  value,  then,  the  predicted 
output  will  match  the  plant  output.  Finally,  as  the 
optimization problem that minimizes (14) is well posed – 
i.e., the cost can be zeroed - then, the steady state output 
offset will be eliminated. This strategy (named strategy 4 
in  this  work)  can  handle  both,  input  and  output  set-
points. In the case that the output set-points can not be 
achieved by means of the input set-points, the state and 
input targets are obtained from an optimization problem. 
This problem takes the form:
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where  yt

a  represents the achievable stationary outputs, 
and xs, us are the targets passed to the regulator stage. If 
ysp is achievable, then  yt

a=y sp .  Note that this strategy 
must solve two optimization problems at each sampling 
time “k”.
Finally, some general comments must be made about the 
linear regulator algorithm.
• Note that the regulator stage in Fig. 2 only drives the 

system to the state  and input  targets,  and  does  not 
include  disturbance  sub-models.  This  is  a  way  to 
separate the dynamic and the stationary parts.

• Despite  the augmented model presented above is  a 
general  way  to  describe  disturbances  entering  the 
process, a list of conditions must be accomplished in 
order  to  make  the  model  detectable  (otherwise,  it 
would be no possible to construct an stable observer). 
Muske and Badgwell 2002 describe these conditions 
when  model  (A,B,C)  has  integrating  and  stable 
modes; in our case, however, it  is only necesary to 
know that the total number of augmented disturbance 
states must not exceed the number of outputs.

• The augmented disturbance states are not controllable 
by  the  inputs  u  (Pannocchia  and  Rawlings  2003). 
However, if the augmented system is detectable, they 
are used to remove their influence form the controlled 
variables.
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Fig. 2:  A representative block diagram of the predictive 
control system with linear regulator (Strategy 4).  

3.  NUMERIC SIMULATIONS

In this section, two problems are simulated that show the 
behavior  of  the  previous  formulations.  Note  that  this 
verification  must  be  done  in  the  presence  of  model 
uncertainties,  otherwise  the  offset  problem  does  not 
appear.  First,  a  linear  case  with  gain  uncertainty  is 
simulated to observe the offset elimination when a step 
change  in  the  set  point  and  the  load  variables  are 
introduced.  Then,  a  non-linear  case  -  a  CSTR  with 
significant parametric uncertainty - is tested, where the 
results confirm the expected offset elimination property.

3.1.  Linear Case
Consider a linear plant given by,

Gs= K −9s1
45s218s1

  , (17)
where  K = 1 for the real  plant,  and  K0 = 0.85  for the 
nominal  plant.  In  addition,  an  output  load  variable  is 
included in order to consider set point and load changes.
Figure  4  shows  the  step  response  (time  interval  [50, 
200])  when  the  Strategy  1  and  the  corresponding 
reformulation (Strategy 2) are implemented. Note that in 
the  Maciejowski's  form the  offset  is  not  null  after  the 
transitory response has ended, while the second strategy 
has completely eliminated the error. The responses to the 
load  change  show  a  behavior   consistent  with  the 
previous one.
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Fig.  4: Step  responses  at  set  point  and  load  changes 
when the Strategy 1 and 2 are implemented.

On the other hand, Fig. 5 shows the time response given 
by strategies 2, 3 and 4 to changes in set point and load. 
In the three cases, the offset is completely eliminated.
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Fig.  5: Step  responses  to  set  point  and  load  changes 
when the strategies 2, 3 and 4 are implemented.

The inspection of the results in Fig. 5 tells us that all the 
discussed strategies produce quite reasonable offset free 
responses. In particular, the linear regulator seems to be 
more appropriate  than the other ones when the settling 
time is taken as a critical feature of the desired response. 
Note  that  a  fair  comparison  between  the  analyzed 
treatments  should  involve  an  study  of  the  individual 
tunning procedures,  which is  out  of  the  scope  of  this 
paper. 

3.2.  Non-Linear Case
Consider  a  CSTR  with  a  strong  nonlinear  dynamic 
described in the Appendix 1.  The goal is to control the 
reactor temperature in presence of set-point changes and 
unexpected  disturbances  (feed  temperature,  feed 
concentration, process flow rate,  cooling flow rate and 
inlet  cooling  temperature).  Figure  6  shows the  output 
responses of the strategies 1 and 2 when a step set point 
change  is  introduced.  Clearly,  strategy  1  gives  offset 
while the strategy 2 reaches the new reference signal.
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Fig.  6: Step  responses  to  set  point  changes  when the 
strategies 1 and 2 are implemented.  

Figure 7 shows time responses of the strategies 1 and 2 
when load step changes (10% in Qi

0 and 10% in Ti
0) are 

introduced. Again, the strategy 1 gives offset whereas the 
strategy 2 completely rejects the load changes.
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Fig.  7: Time responses  using strategies 1 and 2 when 
load step changes (10% in  Qi

0 and 10% in  Ti
0) are 

introduced.
Figure 8 shows the time responses reached for strategies 
2,  3  and  4.  Clearly,  the  three  strategies  eliminate  the 
output offset when a set point change is introduced. The 
same result is verified when a load change (10% in Qi

0 ) 
is introduced into the CSTR (Figs. 9).
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Fig. 8: Step response of the strategies 2, 3 and 4.
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In  this  example  it  is  not  posible  to  use  both  kind  of 
disturbances  ( )d k  and  ( )p k  simultaneusly when strategy 
4  is  implemented,  since  there  is  only  one  output. 
Following the detectability conditions, the choice  1pG =  

and  [ ]dG =  shows to be appropiate to achieve the main 
objective of  eliminating output offset.  Note  that,  since 
the MPC regulator does not use the augmented model (it 
is only used by the observer and the target calculation), 
the  output  performance  is  not  strongly  dependent  of 
matrices Gp  and Gd .

4. CONCLUSIONS

Based  on  the  results  obtained  from  running  different 
simulation  examples,  it  is  possible  to  conclude  the 
following:

(i) an adequate reformulation of the Maciejowski's 
velocity-form  model  can  lead  to  a  free  offset  time 
response.

(ii)  offset  free  MPC  controllers  are  not  always 
simple  to  design,  particularly  when  velocity-form 
models  (strategy  2)  are  used  to  predict  the  output 
behavior.  In  this  case,  the  augmented  state  must  be 
estimated,  despite  it  represents  a  variable  that  can  be 
measured.

(iii)  the  resulting  controller  yields  offset-free 
responses  only in  case  that  the  prediction  is  unbiased 
(which implies the use of  an observer  with integrating 
mode) and the optimization problem is well posed. These 
are important features to be considered when designing a 
MPC controller.

5.  APPENDIX

A1. Non Linear Reactor Model
Consider the CSTR where an exothermic and irreversible 
chemical  reaction  is  carried  out.  The  reactive  A 
generates the product B while the reactor content is being 
cooled  by  an  appropriate  coolant  fluid.  Here,  it  is 
assumed that the reactor dynamic involves the following 
four  states:  volume,  reactive  concentration,  reactor 
temperature and cooling temperature inside the jacket.  
The  reactor  dynamic  is  modeled  by  the  following 
equations:

dV
dt  = qi – qo   , (18)

d Vc A
dt

 = qi cAi – qo cA – Vr    , (19)

c p
d V T 

dt = qi ρ cp Ti – qo ρ cp To + 

(–∆H)VrA – UA(T – Tco)   .
(20)

c pc
d V c T c

dt
 = qci ρc cpc Tci – qco ρc cpc Tco

+ UA(T – Tco)
(21)

Furthermore, it must be noted that
i. the reactor volume must be evaluated as  V =  ATh , 

where AT is the transversal section of the tank and it 
is considered constant, 

ii. the heat transfer section A results,  A = 2πrTh where 
rT is the tank radius.  

iii. The nonlinear model is completed with the kinetic 
reaction rate rA = kcA where k = k0e-E/RT,

iv. the product flow rate is defined as q s= h /Rh , where 
the  super  index  ^  indicates  this  is  a  deviation 
variable referenced to an steady-state value and Rh is 
the hydraulic resistance of the valve. 

The  nominal  values  of  model  parameters  and  main 
variables are presented in Table 1.  They are based on 
data given by Aris and Amundson (1958).  

Table 1.  Nominal CSTR Parameter Values.  

Parameter Nomenclature Value
feed concentration CAe 0.5 mol m-3

reactor concentration CA mol m-3

process flow rate qe 0.0200 m3 s-1

feed temperature Te 690 K
inlet coolant

temperature
Tc 298 K

coolant flow rate qci 0.014 m3 s-1

CSTR volume V 1 m3

CSTR level h 1.27 m
heat-transfer term U 10.57 Kcal m-2s-1K-1

reaction rate constant k -1.08 10+16s-1

activation energy E/R 2.2645 10+4K-1

heat of reaction ∆H -9885 Kcal Kmol-1

liquid density ρ 60 Kg m-3

specific heat cp 1 Kcal Kg-1K-1

A simple test was applied to determine the parameters of 
a  linear  transfer  function  between  the  controlled 
temperature and coolant flow rate. This test consisted of 
introducing  a  step  change  in  the  flow  rate  qci (the 
manipulated variable) equal to 10% of initial value  and 
then the reactor temperature response was registered vs. 
time. The parameters of the transfer function relating the 
reactor  temperature  and  the  coolant  flow  rate  were 
computed  using  a  multi  parametric  optimization 
algorithm from a toolbox of Matlab. This procedure gave 
the  following  result:  a  second  order  transfer  function 
with parameters K = -2253.52, T1 = 3.97 and T2 = 12.59. 
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