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Abstract— This work studies the control of
a batch reactor for the production of penicillin.
For this purpose, it is proposed an initial design
of two control strategies which result simple for
their implementation. These strategies are de-
veloped inside the optimal control framework
applied to non-linear systems. The first one,
based on finite horizon optimal control theory,
minimizes a quadratic cost derived from the
linear approximation of the costates from the
Hamiltonian associated to the system. The re-
sulting suboptimal control is a feedback pro-
portional law.

The second strategy use linear matrix in-
equalities (LMIs) for incorporating restrictions
which were not considered in the value func-
tion of the optimal control problem. The new
restrictions are boundaries for the states and
the manipulated variable. However, the de-
sign of this strategy is restricted to an infi-
nite horizon optimal control problem and, the
proportional-integral (PI) modes resulting have
constant gains. Finally, the goodness of the two
proposed strategies is showed through numeri-
cal simulations.

Keywords— nonlinear processes, optimal
control, linear matrix inequalities, input and
state constraints.

1. INTRODUCTION

The efficient design of simple controllers to implement
in an industrial process has been one of the biggest
challenges in control engineering.

The proportional-integral-derivative (PID) con-
troller, because of its simplicity, remains the most
widely used in the industry. However, other control
techniques have made inroad in the industry, as the
model predictive control (MPC), in order to improve
the performance of the controlled variable. In spite
of many advantages of MPC, some disadvantages as,
the high computational cost, the necessity to dispose
control engineers highly specialized in plant, and the
not good MPC performance with processes with fast

dynamic, i.e. with short sampling time ([12]), among
other, had made of MPC a not very popular technique
in the industry.

The optimal control paradigm based on the Hamil-
tonian formalism gives answer to many industrial con-
trol requirements. When the problem is regular, there
exists an explicit form for the control strategy. For lin-
ear systems, it has shown that this control strategy is
in fact a proportional feedback law u(t) = Kx(t) (see
[13] and [5] for details) with K evaluated from the so-
lution of algebraic Riccati equation (ARE) for infinite
horizon problem or from differential Riccati equation
(DRE) for finite horizon problem.

In general, for nonlinear systems, the resulting con-
trol strategy is not a feedback control law such as
linear case, in contrast, is an open-loop strategy re-
lies depending on non-physical costate of Hamiltonian
system associated to the process (see [6], [7], for in-
stance). However, with adequate mathematical ma-
nipulation, assumptions on nonlinear costates and,
approximations on nonlinear dynamics, this control
strategy could become in a feedback form. Because of
this, the optimality is lost but it is possible to design
robust controller with easy implementation, which also
be able meet certain performance criteria and satisfy
constraints.

This article proposes an initial design for subopti-
mal industrial controllers. The first strategy is based
on nonlinear optimal control with finite horizon time,
where the costates of the system (λ(t)) are approxi-
mated to a linear form.

The Hamiltonian formalism incorporates some re-
strictions and, these are expressed in the functional
cost of the problem. The considered restrictions are
boundaries in the states and the control law inside the
optimization horizon as is detailed in [9]). In addi-
tion, it is possible to impose restrictions at the end
of states. Other kind of restrictions as maximum or
minimum values allowed, both for the states and the
control action, are not considered.

The utilization of the LMI allows adding bound-
aries as restrictions to the optimal control problem,
as is shown by [10]. But, despite considering those re-
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strictions, the disadvantage of this formulation is that
forces the design to be developed as infinite horizon
control problem, where the resulting controller gain
(K) is constant during the operation of the process.

The paper has the following structure: After de In-
troduction, in Section 2, a brief description of the 4-
dimensional chemical process model and its constrains
are presented. Then, in Section 3 the optimal non-
linear control problem is introduced and the explicit
form of the control strategy is shown. Section 4 de-
velops an strategy to generate a suboptimal control
law in finite horizon. In Section 5 the second strat-
egy based on infinite horizon optimal linear control
with LMIs is proposed. For this last case, constrains
are included in the optimization problem. After, the
control strategies are reviewed by means of numerical
simulation. Finally, in Section 6 the conclusions and
perspectives are presented.

2. DESCRIPTION OF MODEL PROCESS

In this section a fed-batch fermentor for penicillin pro-
duction like a case study is considered (see [8] and [1]).
The nonlinear process model is given by the following
equations:

ẋ1(t) = h1x1 − u

(
x1

500x4

)
, x1(0) = 1.5,

ẋ2(t) = h2x1 − 0.01x2 − u

(
x2

500x4

)
, x2(0) = 0,

ẋ3(t) = −
h1x1

0.47
− x1

(
0.029x3

0.0001 + x3

)
− ... (1)

h2
x1

1.2
+

u

x4

(
1 −

x3

500

)
, x3(0) = 0,

ẋ4(t) =
u

500
, x4(0) = 7.

h1 = 0.11

(
x3

0.006x1 + x3

)
,

h2 = 0.0055

(
x3

0.0001 + x3(1 + 10x3)

)
. (2)

y = Cx = x2. (3)

In this model x1, x2, x3 and x4 are the
biomass, penicillin concentration, substrate concentra-
tions (g/L), and the reactor volume (L) respectively.
The output system is the penicillin concentration, i.e.
C =

(
0 1 0 0

)
. The objectives of the optimization

problem are:
(i) To reach in 132 hours (tf = 132 is the time hori-

zon) a final penicillin concentration of 8 g/L, i.e. the
desired output is ȳ = x̄2 = 8. All numerical values like
tf and x̄2 were extracted from [1].

(ii) In addition the nonlinear model includes several
constraints, which must be satisfied during the oper-
ation process. These are upper and lower bounds in
the state variables:

0 � x1 � 40

0 � x3 � 25 (4)

0 � x4 � 10

and an upper and lower bounds on the only control
variable (feed rate of substrate),

0 � u � 50. (5)

3. NONLINEAR OPTIMAL CONTROL SET-
UP

Consider the initialized autonomous nonlinear control
affine system

ẋ = f(x) + g(x)u, x(0) = x0 (6)

with a cost general functional written as

J (T, 0, x0, u(·)) =

T∫
0

L(x(τ), u(τ))dτ + x′(T )Sx(T ) ,

(7)
where a quadratic Lagrangian L and symmetric con-

stant coefficient matrices are given by

L(x, u) = x′Qx + Ru2 , (8)

Q, S ≥ 0, R > 0 , T < ∞ . (9)

The value function V can always be defined for such
problem, namely

V(t, x) � inf
u(·)

J (T, t, x, u(·)), t ∈ [0, T ] (10)

and, if the problem has a unique solution, then this
solution is called the optimal control strategy u∗,

u∗(·) � arg inf
u(·)

J (T, t, x, u(·)). (11)

The optimal control solution for this problem can
be expressed as

u∗(t) = −
1

2
R−1g′(t)λ(t). (12)

where λ is called the costate and λ ∈ R
n, (x, λ) rang-

ing in 2n-dimensional phase-space. The Hamiltonian
H of such problem is defined as,

H(x, λ, u) � L(x, u) + λ′f(x, u). (13)

Since H is assumed regular, then there exists a
unique H-optimal control u0, namely

u0(x, λ) � argmin
u

H(x, λ, u), (14)

and the derivative of H with respect to u vanishes
at (x, λ, u0(x, λ)).
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A regular Hamiltonian explicitly means that the
function u0(x, λ) is known (not only its existence but
also its explicit form) and that it is sufficiently smooth
on its variables. The control-Hamiltonian,

H0(x, λ) � H(x, λ, u0(x, λ)), (15)

gives rise to the Hamiltonian canonical equations
(HCEs) ([13])

ẋ =

(
∂H0

∂λ

)′
; x(0) = x0, (16)

λ̇ = −

(
∂H0

∂x

)′
; λ(T ) = 2Sx(T ), (17)

and then the optimal costate variable λ∗ results in

λ∗(t) =

[
∂V

∂x

]′
(t, x∗(t)). (18)

4. FINITE-HORIZON SUBOPTIMAL CON-
TROL STRATEGY

In the present Section, the first control strategy is de-
vised. In order to convert the control expressed in (12)
to a linear feedback law, the following assumptions are
made:

(i) Costates expressed in Eq. (18) are linear, i.e.

λ � 2P (t)(x(t) − x̄), (19)

where x̄ is the equilibrium state or the desired state.
In the regulation problem x̄ takes the 0 value. On the
contrary, in the change of set-point problem, x̄ may be
different from zero.

(ii) Only when the control law is calculated, the sys-
tem considered will be a linear approximation of sys-
tem mentioned in (1)-(3) that is,

f(x) ≈ A(t)x(t); g(x) ≈ B(t), (20)

ẋ ≈ A(t)x(t) + B(t)ũ(t), x(0) = x0, (21)

where A and B are the resulting matrices of a stan-
dard linearization of the nonlinear system around a
given trajectory.

Therefore, the optimal control law expressed in Eq.
(12) is turned to a suboptimal control law in feedback
form 1

u ≈ ũ = −R−1B′(t)P (t)(x(t) − x̄) (22)

with P (t) a solution of the differential Riccati equa-
tion (DRE):

Ṗ (t) = PB(t)R−1B(t)P−PA(t)−A(t)′P−Q ; P (T ) = S ,

(23)

1Notice that, in this article, u is the manipulated variable

corresponding to nonlinear problem and ũ is the implemented

linear control law.

where Q = I4×4, R = 3 and S = sI4×4 (s = 20 for
numerical evaluations).

The main difficult here is to solve the Eq. (23). This
could be solved:

(i) Off-line with a backward integration with tf =
132 and s = 20.

(ii) Transforming the boundary-value into a final-
value problem related to the differential Riccati equa-
tion (DRE) as is shown in [13]. The disadvantages of
this approach are that the linearization must be done
around a fixed point, for instance t = 0, and that this
method would be solved only for a pair (tf , s).

(iii) Through the recently discovered partial differ-
ential equations (PDEs) for the initial coestates and fi-
nal estates described by [4] for nonlinear systems and
[5] for linear systems. Here, this implementation is
adopted since it allows keeping in memory P (t) solu-
tions for a range of tf and s. However, the standard
linearization must be made around a fixed point too.
For the case study, A and B read

A =

⎛
⎜⎜⎝

0 0 18.3 0
0 −0.01 82.5 0
0 0 −542.7 0
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
−0.0004

0
1
7
1

500

⎞
⎟⎟⎠ .

(24)
The control law (22) was applied to the system (1)

and in Fig. 1 the evolution of the states for the fi-
nite horizon optimization and control problem are de-
picted. The process has a typical response (see [1]),
but there exits a final error between the desired state
x̄2 = 8 and the real state reached, x2 = 6.47 at
the end of the operation time of the batch reactor. In
other words, this final error is presented due to the
implemented proportional feedback law. The others
states are close to their targets (which are detailed in
[1]).

As it is known, the principal problem with the pro-
portional mode is the final error (i.e., when there exist
an error between the set-point or target and the real
states at the end, see [3]). A common practice for re-
ducing the final error is to include an integral mode
associated to the error between the controlled variable
and the set-point (x̄− x), and to redefine an extended
control problem including a fictitious state. This point
will be studied in the next section.

4. 1. A Suboptimal PI Controller

Following the classical control theory ([11]), to reduce
the error in the output at the end of the operation,
a new fictitious state ξ is added to a linear system
expressed in (20) (but keeping the linearization around
a fixed point) and, an augmented linear system can be
defined as,

(
ẋ

ξ̇

)
=

(
A 0
−C 0

)(
x(t)
ξ(t)

)
+

(
B

0

)
ũ(t) +

(
0
1

)
r(t),

(25)
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Figure 1: States and control trajectories for finite hori-
zon set-up. T = 132 and s = 20

ξ̇ = r(t) − y(t) = r(t) − Cx(t). (26)

For this system and holding the cost function (7),
the resulting PI control law is

ũ = −K̂x̃ = −kp(t)x(t) + ki(t)ξ(t) (27)

where K̂ = R−1 ˜̂
B′P̃ (t) = [K(t) ki(t)], K(t) = kp(t),

x̃ =

(
x(t) − x̄

ξ(t)

)
, with states x(t) coming from the

real process and P̃ (t) a solution of the Eq. (23) with
Q = 2.2I5×5, R = 0.21, s = 0.1 and

Â =

(
A 0
−C 0

)
, B̂ =

(
B

0

)
.

Notice that, the PI control law has time variant
modes as a result of solving a finite-horizon optimal
control problem.

Figure 2 shows that the control system severely re-
duce the final error. The new control law is calculated
through Eq. (27) and, the state value x2 at the end
of the operation is 8.02, that is approximately 0.25%
over the target, which is tolerable. However, state x1

is almost in its saturation level and state x4 is out of
its upper bound.

5. INFINITE-HORIZON SUBOPTIMAL
CONTROL STRATEGY

At this point, the main challenge is to design a con-
troller such that an acceptable final error can be
reached, and the constraints imposed to the batch re-
actor can be satisfied. Thus, because of the acceptable
results obtained in previous section, a PI controller is
designed by solving the ARE (as it is shown in clas-
sical text books, [11], among others) but, in order to
include the restrictions in the design, the asymptotic

Figure 2: States and control trajectories for PI control
law.

stability condition and the constraint in the manipu-
lated variable are written as two LMIs.

5. 1. Input and State Constraints via LMI

For understanding this point, a brief introduction to
LMI and some optimization problems based on LMI is
done. For more details, it is suggested to see [2] and
[10].

A linear matrix inequality or LMI is a matrix of the
form

F(π) � F0 +

m∑
i=1

πiFi > 0 (28)

where π ∈ R
m and πi are the optimization variables,

and the positive and symmetric matrices Fi = F ′i
∈ R

m×m, i = 1, ..., m, are given. The LMI (28) is
a convex constraint on π, i.e., the set {π | F(π) > 0}
is convex. In particular, linear and quadratic inequal-
ities, matrix norm inequalities, and constraints that
arise in control problems, such as Riccati Eq. (28)
and control and state bounds, can be all cast in the
form of an LMI.

One important advantage with the LMI is that the
problem with multiple constrains can be expressed
with multiple LMIs F1(π), ...,Fn(π) > 0 and then
these LMI can be written as a single LMI given by

diag
(
F1(π), ...,Fn(π)

)
> 0. (29)

A common procedure to convert convex nonlinear
(matrix norm, quadratic, etc.) inequalities to a LMI
form is through the well-know Schur complements.
The basic idea is as follows

(
Z(π) D(π)
D′(π) W (π)

)
> 0 (30)

where Z(π) = Z ′(π) and W (π) = W ′(π), and D(π)
depend affinely on π, is equivalent to
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W (π) > 0, Z(π) − D(π)W (π)−1D′(π) > 0 (31)

or

Z(π) > 0, W (π) − D′(π)Z(π)−1D(π) > 0 (32)

i.e., the set of nonlinear inequalities (31 or 32) can be
represented as the LMI (30). The main observation in
this LMI-based optimization problem is that the LMI
is tractable, in other words, the optimization problem
can be solved easily with low computational effort.

In this paper, the following control problems will be
treated as a single LMI optimization problem:

1. If a infinite horizon is considered, it is well known
that when the control weighting matrix R in the
cost functional is positive definite and the state
weighting matrix Q is nonnegative definite, the
LQR problem is well posed and can be solved via
the classical algebraic Riccati equation (ARE)
(see [13] for more details). When constraints are
included, the optimization problem becomes

ΠÂ + Â′Π + Q − ΠB̂R−1B̂′Π > 0, (33)

with Π > 0 solution of the last inequality and it
is defined as Π ∈ R

n+1×n+1 a symmetric matrix.

Since R > 0, and using Eq. (31), the algebraic
Riccati inequality on LMI form can be written
as,

F1(Π) =

(
ΠÂ + Â′Π + Q ΠB̂

B̂′Π R

)
> 0 (34)

2. Physical limitations inherent in process equip-
ment invariably impose hard constraints on the
manipulated variable u(t). These constraints are
incorporated to control problem (1) as a LMI op-
timization problem. Considering that the linear
system (21) (when u(t) is a stabilizing control
law) is inside of an invariant ellipsoid as is shown
in [10], a LMI for input constraint can be incor-
porated.

Remark. The following LMI

F2(Π) =

(
u2

maxγI ΠB̂R−1

R−1B̂′Π I

)
> 0. (35)

is equivalent to

‖u(t)‖2 < umax, t ≥ 0. (36)

Proof. Consider that,

max
t≥0

‖u(t)‖2
2 = max

t≥0

∥∥∥R−1B̂Πx(t)
∥∥∥2

2

≤ λ2
max(R

−1B̂′ΠΠB̂R−1) (37)

= υ(R−1B′ΠΠBR−1) < u2
max

with γ = 1
υ

a real positive constant that satisfies
x′(t)Πx(t) < γ (see [2] and [10] for instance) for
any t time. Then, the Eq. (35) can be written.
�

Using the property (29), it is possible to write only
one LMI as

F(Π) =

⎛
⎜⎜⎝

ΠÂ + Â′Π + Q ΠB 0 0

B̂′Π R 0 0

0 0 u2
maxγI ΠB̂R−1

0 0 R−1B̂′Π I

⎞
⎟⎟⎠ > 0

(38)
Thus, the optimization problem is solved by tradi-

tional numerical methods ([2]) and implemented with
standard software as Matlab or Octave. The LMI
F(Π), for the studied case was solved using Matlab
where Q = 5I5×5, R = 1, and umax = 7.3.

γ value is a constant which should ensure the system
remains inside the designed ellipsoid. However, doing
this involves a complex optimization problem further.
For practical purposes, this γ value can be determined
at trial and error. For the dissipative system to open
loop, the adopted initial value was υ = ‖x(0)‖

2
2 as

suggested in [3].
Although, the initial restriction on the manipulated

variable u described by Eq. (5) is 50, for the optimiza-
tion problem is imposed the value of 7.3, since it seeks
to ensure that both states (especially the level of the
reactor) and the manipulated variable do not exceed
the restrictions imposed. However, Fig. 2 shows that
the state x4(t) is above the constraint and, as the dy-
namics are directly related to the manipulated variable
u, then, to help the convergence of the optimization
algorithm is limited to x4(t) by changing the satura-
tion value of u. Nevertheless, this does not affect the
control law too much, since the different simulations
carried out showed that it tends to take lower values.

Regarding the typical behaviors of the fed-batch
processes ([1]), at this point, it is possible to improve
the strategy devised if the linear system given by Eq.
(25) is taken as an observer of the nonlinear process,
i.e. if the linear system is seen as a time-variant sys-
tem. Therefore, an update of the Riccati gain (K̂)
could be made at each sampling time. In some way a
K̂(t) would be available to send to the system. The
procedure to implement this strategy is:

i) To identity the system using some well known
method. In this paper it will be performed by the stan-
dard linearization evaluated at each sampling time.

ii) To calculate at t = 0 the first LMI using the
matrices Â(0) and B̂(0) and the initial data x̂(0), u(0).
For computing these matrices, the initial control may
be taken as the equilibrium control at t = 0.

iii) The first calculation of the LMI provide us the
first Riccati matrix. The K̂ control gain could be com-
puted.
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Figure 3: States and control trajectories for P+I con-
trol law.

iv) To run in parallel the process and the control
system. At each sampling time the LMI should be
updated using the matrices Â(t) and B̂(t).

The improved strategy for the infinite horizon de-
vised above was implemented, and in Fig. 3 the results
were depicted. The reader can notice that the objec-
tives fixed for the problem are satisfied, i.e., the output
x2 is close to desired value and the manipulated vari-
able satisfies the constraint. Likewise, other states do
not exceed maximum levels set in the problem.

6. CONCLUSIONS

It was presented two strategies for tuning PI con-
trollers, which are able to generate suboptimal tra-
jectories such that, in the second case, different con-
straints are satisfied. Both strategies were developed
under the optimal control theory framework. The first
one was developed using finite horizon optimal control
theory with the restrictions that supports the defini-
tion of the objective function. Since the control ac-
tion written in co-state terms and, assuming linearity
in the co-states, the resulting control law has time-
varying gains. The second strategy is presented un-
der infinite horizon optimal control framework and al-
lows the inclusion of new restrictions as for example,
maximum and minimum constraints in the states and
control variable. Maintaining the linearity in the co-
states, it is possible to find a PI feedback law, but with
feedback gains constant. The numerical results show
a good performance in the controlled variables with
the PI control strategies, and especially, in the second
strategy where a constraint for the reactor volume is
satisfied. In general, all variables have a good perfor-
mance inside the operation time fixed for the batch
reactor.
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ciones flexibles. In XXI Congreso Argentino
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