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Abstract: In the first stage of this work (part I), an infinite horizon model predictive controller (IHMPC) 
using the closed-loop paradigm, was adapted to be applied to batch processes. Batch processes fall into the 
category of finite-duration systems, where the control objective is to track a given output profile (reference 
trajectory) during a finite time period, and so the use of an infinite horizon controller is not intuitive a 
priori. However, based on previous IHMPC results, this work shows that prediction along a fictitious 
horizon beyond the actual final batch time allows good performance and, more important, the stability (in 
the sense of the finite-duration systems) can be guaranteed. Simulation results show the closed-loop 
performance of the proposed strategy when a linear system is controlled. In addition, the proposed 
methodology allows a direct extension to a new MPC with learning properties - i.e. a MPC strategy that 
“learns” from previous batches - which accounts for the second important property required to batch 
processes: the repetitiveness. The way the proposed strategy is extended to the MPC with learning 
properties is presented in a second part of this work (González et al., 2009). 

�

1. INTRODUCTION 

In many approaches attempting to develop a strategy to 
handle batch processes, an optimal control is performed over 
a finite horizon, that is, over a horizon of the same length of 
the batch (Lee and Lee, 1997, 1999, 2000; Cueli and 
Bordons, 2008). The use of this finite horizon is intuitive and 
no other alternative has been explored at this point, since a 
larger – or shorter – horizon would be adding in principle no 
significant information for predictions. However, the use of 
typical MPC for continuous processes has shown that not 
always exact future information is required to achieve 
stability and acceptable performances. An interesting 
example of this properties is the original infinite horizon 
MPC, IHMPC (Gonzalez et al., 2008a), that assumes that the 
closed loop controller acting beyond the control horizon is 
the zero-controller (i.e., the state feedback K=0), which is not 
true even for the unconstrained case. Using this strategy, and 
depending on the reference trajectory form (slope and 
length), it is possible to design an acceptable (and closed loop 
stable) controller taking into account only several time 
instants ahead. 
Now, to adapt the IHMPC controller to batch requirements, a 
virtual output horizon beyond the final batch time is assumed. 
This allows an intuitive comparison between the successive 
optimization costs, and so, it is possible to establish 
asymptotic convergence conditions for the successive costs of 
a given batch (intra-run convergence). The IHMPC, in 
addition, is formulated under a closed-loop paradigm 
(Rossiter, 2003). The basic idea of a closed-loop paradigm is 
to choose a stabilizing control law and assume that this law 
(underlying input sequence) is present throughout the 
predictions. 

The proposed IHMPC considers an underlying (preliminary) 
control sequence as a (deficient) reference candidate for the 
tracking control. Then, by solving on line a constrained 
optimization problem, the input sequence is corrected. 
The paper is organized as follows. In Section 2 the basic 
definition and notation are presented. Then, in Section 3, the 
proposed MPC formulation is introduced and the intra-run 
convergence analysis is discussed. Finally, two succinct 
illustrative examples and the conclusion are presented in 
sections 4 and 5, respectively.  

2. PRELIMINARIES  

We consider that the batch has a length of Tf time instants, 
and the objective is to find an input sequence defined by 
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which derives in an output sequence 
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as close as possible to a output reference trajectory 

1:
T

f

T
r r r

Ty y
T� �� 	 
�y ,    (3) 

On the other hand, it is assumed that there exists an input 
reference sequence (an input candidate) given by 
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where  represents a stationary input value, satisfying 

=G
1f

r
Tu �

1f
r
Tu �

-1( f f
r
T Ty d� ), with G=[C(I-A)-1B]. The output 

disturbance, 

1:
f

T
T T

Td d� �� 	 
�d ,  

is assumed to be known, and its final stationary value is given 
by . The disturbance is assumed to remain constant along 
the run. 

fTd

2.1. Nominal model 
The model used to construct the forecast of the receding 
horizon policy is given by: 

xk+1=Axk+Buk     (5) 

dk+1=dk      (6) 

yk=Cxk+dk     (7) 

where A, B and C are matrices of appropriate dimension, x 
are the states and d is a constant output disturbance 
(González et al., 2008b). 

3. BASIC FORMULATION 

For the proposed MPC formulation we assume that an 
appropriate input reference ur is available (otherwise, it is 
possible to use a null constant value since the formulation 
works anyway), and the disturbance dk�k as well as the states 
xk�k are estimated. Under these assumptions it is possible to 
formulate the problem P1 as follows: 

Problem P1)  

 � � � � �
1

0, ,
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k k j k k j k k T k
ju u

V e u F x
� � ���

�

� � � � � �
�

� ��
�
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,  0,1, , 1r
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: fT P
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U={u:umin�u�umax}. Matrices Q, R and P are such that Q and 
P>0 and R�0. The stationary state 

f
r
Tx  is such that 

. 1f f
r r r
T T Tx Ax Bu �� �

Remark 0: The decision variables i
k j ku � � , are a correction to 

the input reference sequence  (see Eq. (9)), attempting to 
improve the closed-loop predicted performance. Because of 
constraints (10), 

ri
k ju �

i
k j ku � �  is different from zero only in the first 

N steps and so, the optimization problem P1 has N decision 
variables. The input and output references, and ri

k ju �
r
k jy � , as 

well as the disturbance i
k jd �  are optimization parameters. 

The stationary reference state r

f
i
Tx  is defined as 

� � 1
1

r

f
i
Tx I A Bu� r

f
i
T �� � , which implies r

f f f
i ir

T Ty Cx d� � T . 

Remark 1: In a given batch iteration, Tf optimization 
problems P1 must be solved. Each problem gives an optimal 
input sequence opt

k j ku � � , for j=0,…,Tf – 1, and following the 
receding horizon policy, only the first input of the sequence, 

, is applied to the system.  opt
k ku �

Remark 2: The output or prediction horizon is given in 
principle by a Tf length, and so the predictions go up to k+Tf 
(See Figure 1). However, as will be shown later, the terminal 
cost represents the tail of the predicted output from k+Tf to 
infinity, which means that the complete output horizon is in 
fact infinite. In this context, since all the predicted variables 
beyond Tf are not based on actual variables (given that the 
process ends at Tf), the time interval from Tf to infinity is 
designed as virtual output horizon for predictions. 
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Fig. 1. MPC diagram. 
Remark 3: Notice that with the disturbance assumptions, the 
cost is bounded, since for the model used to compute the 
predictions, the new steady state input and state will 
correspond to (

f f
ir

T Ty d� ). Furthermore, since the model 

output is guided to (
f f

ir
T Ty d� ), the system output will be 

guided to 
f

r
Ty  (assuming that the disturbances remain the 

same). 
Remark 4: As usual in the MPC literature, the nomenclature 
xk+j�k stand for the predicted variable xk+j, estimated at time k. 
In this way, predictions are given by f
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xk+1�k=Axk�k+Buk�k 

xk+2�k=A2xk�k+ABuk�k+Buk+1�k, 

�  

Besides, under the condition that a perfect model is used and 
no unknown disturbance enter the system, it follows that 
xk+1�k+1=xk+1�k=Axk�k+Buk�k; but, in general, xk+j�k+1� xk+j�k 
for j�2. 

3.1 Non-increasing properties of the closed loop cost, for a 
given batch (intra-run convergence) 

The concept of stability for a finite-duration process is 
different from the traditional one since, except for some 
special cases such finite-time escape, boundless of the 
disturbance effect is trivially guaranteed. In Srinivasan and 
Bonvin (2007), the authors define a quantitative concept of 
stability by defining a variability index as the induced norm 
of the variation around a reference (state) trajectory, caused 
by a variation in the initial condition. Here, based on the idea 
of virtual horizon for predictions presented before, we will 
show two controller properties (Theorem 1). 1) The optimal 
IHMPC cost monotonically decreases with time k, and 2) if 
the control algorithm execution goes beyond Tf  with , 
and the output reference remains constant at the final 
reference value (

k ��

f

r r
k Ty y�  for fk T� ) then, the IHMPC cost 

goes to zero as , which implies that k ��
f

i
k Ty y� r  as 

k��. 
Theorem 1 (intra-run convergence) 
Let assume that matrix P is such that 
CTQC-P+ATPA�0.    (11) 
Then, assuming that the disturbance remains constant from 
one batch to the next, and the batch has an infinite hypothetic 
duration (i.e. if k��), the output error converges to zero. 
Proof 
To assure the stability of the closed loop we need to show 
that the optimal cost  is a Lyapunov function. Let opti

kV

1 1 1 1 1: , , ,0,opt opt opt
k k k k N ku u� � � � � � � �

�u � �, 0�

�
 and 

 be the optimal input and state 

sequence that are the solution to problem P1 at time k-1. The 
cost corresponding to these variables are 

1 1 1 1 1: , ,
f
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1
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0

1
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,
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f

f

N
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�
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�
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�

�

�

�

�
 (12) 

Now, let  �1 2 1: , , ,0, ,feas opt opt
k k k k N ku u

� � � � � �
�u � 0�  be a feasible 

solution to problem P1 at time k. Since no new input is 
injected to the system from time k-1 to time k, and no 
unknown disturbance is considered, the predicted state at 
time k, using the feasible input sequence, will be given by 

� � �11 1 1 1 1: , , ,
ff f

feas opt opt opt r
k k k k T k k T kx x Ax Bu �� � � � � � � � � �� �x T�  Then, 

the cost at time k corresponding to the feasible solution feasi
ku  

is as follows: 
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1
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1
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,
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f
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(13) 

Now, subtracting (12) from (13) we have 

� � � �
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1 1 1 1 1 1 1

11 1 1 1

,

,0 ,
f
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 (14) 

and given that , and 1f f f
r r r
T T Tx Ax Bu �� �

f f
r r
k T Ty Cx d� � , for 

k�Tf, and taking into account the definition of the stage and 
terminal costs (  and F), equation (14) can be written as �

� �
2

1 1 1 1 1 1 1
2

2
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,
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T Tk T k k T kQ f

r
T

P

V V e u x x

Cx Cx Ax Bu x
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�

�� �� � � � � �
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�

������  

� �
� �

2

1 1 1 1 1 1, ,
ff T T

opt opt opt r
Tk k k k k T k C QC P A PA

e u x x
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� � � ��  (15) 

Now, since by hypothesis matrix P holds (11) true, then the 
last term of the right hand side of (15) will be negative, and 
so, the difference between the feasible cost at time k and the 
optimal cost at time k-1 can be written as 

� �1 1 1 1 1,feas opt opt opt
k k k k k kV V e u� � � � � � �

� � �� .   (16) 

This means that the optimal cost at time k, which is not 
greater than the feasible one at the same time, satisfy 

� �1 1 1 1 1,opt opt opt opt
k k k k k kV V e u� � � � � � �

0� � � � ,  (17) 

which shows that the cost is not increasing when the time k 
increases. In addition, if time k goes to infinity (which is not 
true in a batch process), the cost goes to zero. Despite the 
batch process ends at a finite time Tf, this result guarantees 
that the system will be stable in the sense of Lyapunov.� 

Remark 5: Notice that 1 1
opt
k ke
� � �

 and 1 1
opt
k ku
�� �

 represent the 
actual error and the implemented input, respectively. In order 
to make clear this fact we write 

� �1 1 1,opt opt
k k k kV V e u� � � 0� � � � .   (18) 

Remark 6: We can propose different strategies to determine 
the terminal penalty form so that (11) holds true. It is useful 
at this point to assume that: 1) a terminal (or local) stabilizing 
controller acts on the (predicted) states from predictions time 
j=Tf on, and 2) the terminal penalty is given by the cost of 
bringing the system from j=Tf to infinite, using the local 
controller (that is why the controller is named IHMPC). 
Notice that despite the batch process ends at a finite time Tf, 
the open loop prediction performed by the MPC algorithm 
can assume that prediction time j goes to infinity. Provided 
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that the system is assumed to be open loop stable, one simple 
choice is a constant local controller given by: 1

r

f
i i

Tk j ku u �� �
�  

for j=Tf+1, Tf+2,... In this case, the terminal penalty has the 
form 

� � 2 2

f ff f T
f

r r
T Tk T k k T k k j k C QCP j T

F x x x x x
�

� � � � � �
�

� � � �� . (19) 

So, since 1k j k k j kx Ax� � � � �� k j kBu � �� k j kAx � �� 1f

r
TBu �� , for 

j=Tf, Tf+1,..., and , it follows that 1f f
r r r
T T Tx Ax Bu �� �

f

1 f
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Tk j kx x� � � � � f
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jT T j
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�
� � , 

and 
1

T jT T j T

j
A PA A C QCA P C QC

�

�
� � �� . With this choice, 

inequality (16) becomes equality, and  is a Lyapunov 
function of the closed loop. 

opt
kV

Remark 7: Using the terminal penalty definition (19), the 
output horizon length of the proposed formulation becomes 
infinity. So, the virtual output horizon for predictions, that is, 
the horizon containing the predictions beyond the final time 
Tf, becomes infinity. 
Remark 8: Now, let us define a horizon H being the distance 
between the current time k and the final time Tf (that is, 
H:=Tf-k). Therefore, 
a) For k=0,…,Tf-N-1 (that is, H>N), and taking into account 
(19), the MPC optimization problem predictions can be 
divided into two periods of time. The first one is the time 
period 0�j�H, where in general 1f

r
Tk j ku u �� � �  and 

f

r
Tk j k
ry y� � � ; and the second one is the time period H�j<�, 

where  and 1f

r
Tk j ku u �� � �

f

r
Tk j k
ry y� � � . As a result, the MPC 

cost at time k can be written as 
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where it must be noticed that 0i
k j ku � � �  for j=N,…,H-1. 

b) For k= Tf-N,…,Tf-1 (that is, H�N), cost (20) becomes 

� � �
1 2

1

0
,

period period
N

k k j k k j k k N k
j

V e u F x
�

� � � � � �
�

� ��
��������� �����
� � .  (21) 

Remark 9: In Theorem 1 we state some convergence results 
of the Lyapunov function defined by the IHMPC strategy. In 
addition, these concepts can be extended to determine a 
variability index in order to establish a quantitative concept 
of stability ( � -stability), as it was highlighted by Srinivasan 
and Bonvin, 2007. To make this extension, the MPC stability 
conditions (rather than convergence conditions) must be 

defined following the stability results of (Scokaert et al., 
1997). An extension of this remark can be seen in the 
Appendix A. 

4. ILUSTRATIVE EXAMPLE 

Example 1. In order to evaluate the proposed controller 
performance, we consider first a linear system (Lee and Lee, 
1997) given by G(s)=1/15s2+8s+1. The MPC parameters 
were tuned as Q = 1500 , R = 0.5 and T = 1.  Figure 2 shows 
the obtained performance in the controlled variable where the 
difference with the reference is undistinguished. Given that 
the problem assumes that no information about the input 
reference is available, the input sequence u and u  are equals. 

 
Fig. 2. Reference, output response according to the input variables u

and u . 
 
The MPC cost function is showed in Fig. 3. According to the 
proof of Theorem 1 (nominal case), this cost function is 
monotonically decreasing. 
 

 

(20)

Fig. 3. Normalized MPC cost function.  Here, the normalized cost 
function is obtained as Vk / Vk

max . 
 
Example 2.  Consider now a nonlinear-batch reactor where 
an exothermic and irreversible chemical reaction takes place, 
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(Lee and Lee, 1997). The idea is to control the reactor 
temperature by manipulating the inlet coolant temperature. 
Furthermore, the manipulated variable has minimum and 
maximum constrains given by: Tcmin � Tc � Tcmax, where 
Tcmin = -25ºC, Tcmax = 25ºC and, Tc is written in deviation 
variable. In addition, to show how the MPC controller works, 
it is assumed that a previous information about the cooling 
jacked temperature (u = Tc) is available. 
Here the proposed MPC was implemented and the MPC 
parameters were tuned as, Q = 1000 , R =5 and T = 1 min. 
The nominal linear model used for predictions is the same 
proposed by Adam (2007).   
Figure 4 shows both the reference and the temperature of the 
batch reactor are expressed in deviation variable. 
Furthermore, the manipulated variable and the correction 
made by the MPC, u  are shown. 

Notice that, 1) the cooling jacked temperature reaches the 
maximum value and as a consequence the input constraints 
becomes active in the time interval from 41 minutes to 46 
minutes; 2) similarly, when the cooling jacked temperature 
reaches the minimum value, the other constraint becomes 
active in the time interval from 72 minutes to 73 minutes; 3) 
the performance is quite satisfactory in spite of the problem is 
considerably nonlinear and, 4) given that it is assumed that a 
previous information about the cooling jacked temperature is 
available, the correction u  is somewhat smaller than u (Fig. 
4).  
 

0
2
4
6
8

10

0 10 20 30 40 50 60 70 80 90

-20
-10

0
10
20

0 10 20 30 40 50 60 70 80 90

-10
-5
0
5

10

0 10 20 30 40 50 60 70 80 90

Time (min.)

r,
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Batch Reactor Temperature 

Reference Temperature 

Cooling Jacket Temperature 

 
Fig. 4. Temperature reference and controlled temperature of 
the batch reactor. Also, the cooling jacked temperature (u) 
and the correction ( u ) are showed. 

5. CONCLUSIONS 

In this paper a different formulation of a stable IHMPC for 
batch processes is presented. The main idea is to consider a 
virtual infinite horizon for predictions, in order to guarantee 
that the cost decreases from a given instant to the next one. 
For the case in which the process parameters substantially 
change from one batch to the next (there is not an exact 
repetition), simulation examples show that the controller 
achieves the expected performance. More important, for the 

case in which the system parameters remain unmodified for 
several batch runs, the formulation can be straightforwardly 
extended to an MPC with learning properties, which updates 
the underling control of the closed-loop paradigm to achieve 
nominal perfect control performance. This property is 
developed in the second part of this work (González et al., 
2009). 

APPENDIX A 

In Theorem 1 we state some convergence results of the 
Lyapunov function defined by the IHMPC strategy. Now, 
these concepts are extended to determine a variability index 
in order to establish a quantitative concept of stability ( � -
stability). First, we will recall the following exponential 
stability results. 
Theorem 2 (Scokaert et al., 1997): 
Let assume for simplicity that a state reference, r

kx , is 
provided, such that , 0, ,r r

fk j k jy Cx j T� �� � � , and no 
disturbance is present . If there exist constants ax, au, bu, cx, cu 
and dx such that 

� � 2 2, x uQ Rx x u x u c x c u� �� � � � � � � � �� �   (A1) 

,
opti

u kk j ku b x� � �  for j=0,…,Tf-1   (A2) 

x uAx Bu a x a u� � �     (A3) 

� � xF x d x ��      (A4) 
then 

� �
opti

k k k kx V x x� �� � � � � � ,   (A5) 

� �
opti

k k kV x x �� �� �     (A6) 

with 
1

0

N

x u u xi N
i

c N c b d
�

� �

�

� ��� � �  � � � � � ! �
" #

� , 

1j x j ua a� ub � � � �  and 0 x u ua a b � � � . 

Proof. The proof of this theorem can be found in Scokaert et 
al., 1997. 
Condition (A1) is easy to determine in terms of the 
eigenvalues of matrices Q and R. Condition (A2), which are 
related to the Lipschitz continuity of the input, holds true 
under certain regularity conditions of the optimization 
problem. 
Now, we define the following variability index, similar to the 
one presented in Srinivasan and Bonvin (2007): 

0

1

0

0
max

f
opt

optopti

T
i

k
k

V iV

V

V

�

�

�$

� �
! �
! �% � ! �
! �! �
" #

�
. 

With the last definition, the concept of � -stability for finite-
duration systems is as follows. 
Definition (Srinivasan and Bonvin, 2007): The closed-loop 
system obtained with the proposed IHMPC controller is intra-
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trial � -stable around the state trajectory r
kx  if there exists 

0$ &  such that V% �� . 

Now, the following result can be stated. 

Theorem 3 (quantitative � -stability) 

Let assume for simplicity that a state reference, r
kx , is 

provided, such that , 0, ,r r
fk j k jy Cx j T� �� � � , and no 

disturbance is present. If there exist constants ax, au, bu, cx, cu 
and dx as in Theorem 3, then, the closed-loop system obtained 
with system(5)-(7) and the proposed IHMPC controller law is 
intra-trial � -stable around the state trajectory r

kx , with 
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Proof. from the recursive use of (17), together with (A1), 
(A5) and (A6), we have 
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