
Infinite Horizon MPC applied to batch processes. Part II

Alejandro H. González1, Eduardo J. Adam1, Darci Odloak2 and Jacinto L. Marchetti1

�
1 Institute of Technological Development for the Chemical Industry (INTEC), CONICET - Universidad Nacional del Litoral.

Santa Fe – Argentina. (alejgon,eadam,jlmarch)@santafe-conicet.gov.ar
2 Department of Chemical Engineering, Polytechnic School, University of São Paulo

São Paulo – SP, Brazil (e-mail: odloak@usp.br)

Abstract: In the second stage of this work (part II), a new infinite horizon model predictive controller
(IHMPC), with learning properties applied to batch processes is presented. When a batch process is
attempted to be controlled two convergence analyses are necessary: the convergence into a given iteration
or batch run (intra-run stability) and the convergence from run to run (inter-run stability, considering an
infinite number of batch runs). As was shown in González et al., 2009, to account for the first one, the
proposed strategy uses a virtual horizon that matches the traditional idea of infinite receding horizon of
MPC with the finite duration of the run batch. To account for the second convergence analysis, a learning
scheme based on the closed-loop paradigm of the IHMPC, is developed. To evaluate the proposed
controller, a numerical example corresponding to batch reactor is shown, where the learning properties of
the algorithm can be clearly seen.

�

1. INTRODUCTION

A batch process is one that continuously repeats a finite-
duration procedure (run) along the time. This kind of systems
can be found in several industrial fields (Lee and Lee, 2000;
Bonvin 2006; Cueli and Bordons, 2008). Because of its
characteristic, these repetitive processes have two counter
indexes (some authors call them two time scales): one, of
finite length, being the time within a run or trail, and the
other, of infinite length, identifying the number of runs. As a
consequence of this two different time scales, handling
repetitive systems requires a control strategy that accounts for
two different objectives: the first one is an on-line or within-
batch control, which rejects disturbances occurring during a
given run, and no necessarily remain unmodified for the next
run. The other, is the run to run control, which reject
disturbances that remain almost constant from one run to the
next, and so, the controller can use information from previous
operations. In this last case, a control scheme with learning
properties is desired.
As it was said in the first stage (González et al., 2009), the
IHMPC proposed in this work is formulated under a closed-
loop paradigm (Rossiter, 2003). The basic idea of a closed-
loop paradigm is to choose a stabilizing control law and
assume that this law (underlying input sequence) is present
throughout the predictions. The idea here is to consider an
underlying control sequence as a manipulated input candidate
(input reference) for the perfect tracking control, and to
associate this input reference with the learning vector (i.e. the
vector that is updated from one batch to the next, to improve
the performance). If there is no additional information (first
iteration), the input reference could be a constant value.
Then, by means of a learning procedure (based on the time
convergence for each batch), it is ensured that it converges
iteratively to the perfect tracking control (run to run
convergence). This is the way the proposed controller

accounts for the typical characteristics of batch processes,
i.e., finite time duration and events repetition.
The paper is organized as follows. In section 2 the basic
definition and notation are presented. Then, in section 3, it is
introduced the proposed MPC formulation and some related
properties. The repetitive learning scheme (main result) is
presented in section 4. Finally, a succinct illustrative example
and the conclusion are presented in sections 5 and 6,
respectively.

2. PRELIMINARIES

We assume here the same preliminaries definition considered
in the part I of the paper, except for the batch index i, which
will explicitly appear in the formulation in order to identify
each batch run. So, the quantities u, y, and d will be
replaced by u

ru
i, yi, and . The output disturbance, , is

assumed to be known. (it is assumed to remain constant for
several batch runs).

riu id id

Here, the nominal model is the same as the one presented in
the part I of this work (González et al., 2009).

2.1. Indexes

To clarify the notation, we define the following indexes:
“i” is the iteration or run index, where i=0 is the first batch
run, when any learning procedure is applied.
“k” is the time into a given batch run. For a given iteration, it
goes from 0 toTf-1 (that is, Tf time instants).
“j” is the time for the MPC predictions. For a given batch
run, and a given time instant into the batch run, it goes from 0
to Tf-1.

2.2. Convergence analysis

477

In the next sections, we will consider two convergence
analyses:
Intra-run convergence: concerns the decreasing of a
Lyapunov function (associated to the output error) along the
run time k, that is, , for

, in one specific batch. If the control
algorithm execution goes beyond T

� � �1 1
i r i
k k k kV y y V y y� �� � � �r

�1, , 1fk T� �

f, with , and the
output reference remains constant at the final reference value
(

k 	

f

r r
k Ty y� for), then the intra-run convergence

concerns the convergence of the output to the final value of
the output reference trajectory (

fT k� �

f

i
k T

ry y	 as k��). This

convergence was proved in González et al. (2009).
Inter-run convergence: concerns the convergence of the
output trajectory to the complete reference trajectory from
one batch to the next one, that is, considering the output of a
given run as a vector of Tf components (yi�yr as i��).

3. BASIC FORMULATION

For the first proposed MPC formulation we will assume that
an appropriate input reference is available, and the
disturbance sequence, , is known. The MPC optimization
problem associated to batch run i is as follows:

i
kd

Problem P1)

� � � � �
1

0, ,
min ,

f

fi i
k k k T kf

T
i i i i

k k j k k j k k T k
ju u

V e u F x
� � ���

�

� � � � � �
�

� ��
�

�

subject to:
, 0, ,i i i r

fk j k jk j k k j ke Cx d y j� �� � � �
� � � � � T , (1)

1 , 0, ,i i i
fk j k k j k k j kx Ax Bu j T

� � � � � � �
� � � � , (2)

, 0,1, , 1i
k j ku U j N� � � � � � , (3)

, 0, 1, , 1ri i i
fk jk j k k j ku u u j T�� � � �� � � �� , (4)

0, , 1, , 1i
fk j ku j N N� � � � � � T �

2

1�

, (5)

where

� �1
1 , 1, , , 2r r

f f f
i i ir

f f fk T T Tu u G y d k T T T�
�� � � � � � � ,

, , 1, , 2
f

r r
f f fk Ty y k T T T� � � � .

The importance of the i
k j ku � �

 in the MPC algorithm is
described in González et al. (2009), in the remark 0.
Remark 1: This problem is the one presented by González et
al. (2009) in the section 3 (Problem P1), except that now it is
associated to a particular batch run i. As a result, all the
properties are the same for both formulations, and they are
omitted here for brevity. Particularly, the convergence of the
MPC cost (virtual horizon convergence) can be expressed as:

� �1 1 1 1 1,
opt opt opt opti i i i

k k k k k kV V e u� � � � � � �� � �� 0

1

 (6)

4. IHMPC WITH LEARNING PROPERTIES

In the last section we studied the within-run control problem.
We assumed that an input reference is available and the
output disturbance is known. One way is by associating the

current input reference and disturbance to the last batch ones
(i.e. the implemented input and the estimated disturbance
during the last run, beginning with a constant sequence and a
zero value, respectively). In this way, a dual MPC with
learning properties accounting for the run-to-run control is
obtained. Next, we will try to elucidate this point.
Consider the problem P1 (González et al., 2009) for a given
batch run i, with the following variation:

� �

1

1

11
1

1

, 0, , 1
, 1, ,

, , 1, , 2
, , 1, , 2 1

r opt

r r
f f f

f

i i
fk k k

i i
fk k

i i ir
f f fk T T T

i i
f f fk T

u u k T
d d k T
u u G y d k T T T
d d k T T T

�
�
�

��
�

�

� � �
� �

� � � � �
� � � �

�
�

�
�

�
 (7)

where the disturbance, as well as the states for prediction, are
observer-based estimates.
The idea here is to associate the input reference and the
disturbance corresponding to run i with the actual input and
disturbance implemented at the run i-1 (See Figure 1). That
is, 1ri i��u u , and for i=1,2,…, and 1i i��d d

0 1 1
f f

r r
T TG y G y� �� �� � ��u , � �0 : 0 0� �d . In addition, it

is possible to define a vector of differences between two
consecutive implemented input sequences as 1:i i i- ��� u u ,
and it is interesting to notice that this vector is given by

1
T Topt opt

f f
i ii u u� ���� ��� �

� �� � ��� .

This means that this difference vector is made of the first
element of the solution of each optimization problem, for
k=0,…,Tf-1, used in a receding horizon manner.

4.1 New inter-run convergence constraints for batch process

Now, in order to achieve a run-to-run convergence, we
replace the original constraint (5) of problem P1 by the
following one:

0, , 1, , 1i
s s fk j ku j N N� � T� � � � � , (8)

where
Ns= min (H,N). (9)
In this way, a new shrinking control horizon Ns is defined,
i.e., for the last N time steps (k=Tf-N,…,Tf-1) of each run, the
control horizon is reduced as the time steps k increases. As
will be shown later, this modification allows the successive
run costs to be matched.
Remark 2: The new shrinking control horizon allows the
cost to be expressed by means of

� � �
1

0
,

H
i i i i

k k j k k j k k H k
j

V e u F x
�

� � � � � �
�

� �� � � , (10)

regardless of the value of k.
The next property shows to be useful for the convergence
proof:
Property 1: Assuming that a shrinking control horizon is
used, then, Eq. (6) holds true for the last N MPC costs of a
given run. Furthermore, the last cost of a given run “i” are
given by:

� � � �1 1 1 1 1 1,opt opt opt opt

f f f f f f f
i i i i

T T T T T T TV e u F x� � � � � � � � �� �� ,

478

and since current and one steps prediction are coincident with
the actual values (Remark 4), it follows that:

� � �1 1 1,opt �f f f f
i i i

T T TV e u F x� � �� �� i
T

�

. (11)

Proof. Similar to the proof of theorem 1, in the first stage of
the work (González et al., 2009), it is possible to define a
feasible solution to the optimization problem at time k, based
on the solution at time k-1. Then, showing that the cost
corresponding to these solutions is not greater than the
optimal cost at time k-1, inequality (6) holds.

4.2 Properties of the proposed algorithm

One interesting point here is to answer what happens if the
MPC controller receives as input reference trajectory a
control sequence that, if it is injected to the system, produces
a null output error. Since the MPC controller does not add the
input reference to the computed input (as typical correction)
but to predicted inputs, some care must be taken. Property 2,
above, assures that for this input reference the MPC cost is
null. Without lose of generality, we will consider the nominal
case (no difference between plant and model) for simplicity
in what follows.
Definition 1: Let us consider the following perfect control
input trajectory

0 1
T T

f

Tperf perfperf
Tu u �� �� � ��u ,

which represents the control sequence that, if is injected into
the system, produces a null output error trajectory

�1 0 0T T

f

T Ti ii
Te e� �� �� �� �e . It is assumed at this point

that the output reference is designed in such a way (smooth
shape), and the disturbances are such that, the perfect control
is possible.
Notice that the perfect control would be physically possible,
if an infinite number of iterations are performed.
Property 2: If the MPC cost penalization matrices, Q and R,
are definite positive (Q>0 and R>0) and perfect control input
trajectory is a feasible trajectory, then ,
for k=0,…,T

0
r opti perf i

kV� � �u u
f-1; where

� � � �
1

0
,opt opt opt opt

H
i i i i

k k j k k j k k H k
j

V e u F x
�

� � � � � �
�

� �� � .

Proof.

�) Let us assume that , for k=0,…,T0
opti

kV � f-1. Then, the
optimal predicted output error and input will be given by

, for j=0,…,T0
opti

k j ke � � � f, and 0
opti

k j ku � � � , for j=0,…,Tf-1,

respectively. If and 0
opti

k j ke � � � 0
opti

k j ku � � � simultaneously, it

follows that for k=0,…,T
ri pe

k ku u� rf
f-1, since it is the only

input sequence that produces null predicted output error
(otherwise, the optimization will necessarily find an
equilibrium such that 1 0opti

k ke
� �

� and 0opti
k ku
�

� , provided

that Q>0 and R>0 by hypothesis). Consequently, ri perf�u u .
�) Let us assume that . Because of the definition
of the perfect control input, the optimization problem without

any input correction will produce a sequence of null output
error predictions given by

ri pe�u u

1 11 1

1

0
0

0.
ff f

f
f f

i
k k

perfi i ir r
k k kk k k k k k

i i r
k Tk T k k T k

perf perfi rT
k k T k Tk k

e
e Cx y C Ax Bu y

e Cx y

C A x ABu Bu y

�

� �� � � � �

�� � � �

� � ��

�
� �� � � � � �� �

� �
� �� � � � �� �

�

� �

Consequently, the optimal sequence of decision variables
(predicted inputs) will be 0

opti
k j ku � � � for k=0,…,Tf-1 and

j=0,…,Tf-1, since no correction is needed to achieve null

predicted output error. This means that 0
opti

kV � , for
k=0,…,Tf-1.�

4.3 Inter-run convergence

Let us consider the following optimization problem:
Problem P2)

� , ,
min

i i
k k k T kf

i
k

u u
V

� � ���
�

subject to:
(1)-(4), (7)-(9).
When we say that the algorithm converges from run to run it
means that both, the output error trajectory ei and the input
difference between two consecutive implemented inputs,
�i=ui-ui-1, converges to zero as . Following an Iterative
Learning Control nomenclature, this means that the
implemented input, u

i 	

i, converges to the perfect control input
uperf for a sufficiently large number of iterations.
To show this convergence, we will define a cost associated to
each run, which penalizes the output error. As it was said, Tf
MPC optimization problems are solved at each run i, that is,
from k=0 to k=Tf -1. So, a candidate to describe the run cost
is as follows:

1

0
:

f
opt

T
i

i k
k

J V
�

�
� � , (12)

where represents the optimal cost of the on-line MPC
optimization problem at time k, corresponding to the run i.
Notice that this MPC cost, once the optimization problem P2
is solved and an optimal input sequence is obtained, is a
function of only

opti
kV

� �opt opti i r
k kk k k ke y y

� �
ie� � � .

Therefore, it makes sense using (12) to define a batch cost,
since it represents a (finite) sum of positive penalizations of
the current output error, that is to say, a positive function of
ei. However, since the new batch index is made of outputs
predictions rather than of actual errors, some cares must be
taken into consideration. Firstly, as occurs with usual
indexes, we should demonstrate that null output error vectors
produce null costs (which is not trivial because of
predictions). Secondly, we should demonstrate that the
perfect control input corresponds to a null cost.
Property 3: If the MPC cost penalization matrices, Q and R,
are definite positive (Q>0 and R>0) and perfect control input

rf

479

trajectory is a feasible trajectory, cost (12), which is an
implicit function of ei, is such that, . 0 0i

iJ� � �e
Proof.

�) Let us assume that ei=0. This means that 0
opti

k ke � � , for
k=0,…,Tf. Now, assume that the input reference vector is
different from the perfect control input, , and
consider the output error predictions necessary to compute
the MPC cost :

ri pe�u u rf

i
kV

1 1�1 1

0
r

i
k k
i i r i i i r

k k kk k k k k k k k

e
e Cx y C Ax Bu Bu y

�

�� � � � � �

�
� �� � � � � � !� ��

Since is not an element of the perfect control input, then

. Consequently, (assuming that

CB is invertible) the input

ri
ku

1 0
ri i r

k kk kC Ax Bu y ��
� �� � � !� �

*i
k ku � necessary to make 1 0

opti
k ke � � � ,

will be given by:
� � � �* 1

1
ri ir

k kk k k ku CB y C Ax Bu�
�� �

� �� � �� �
i ,

which is a non null value. However, the optimization will
necessary find an equilibrium solution such that 1 0opti

k ke
� �

�

and *opti i
k k k ku u
�

�
�

�

rf

, since Q>0 and R>0 by hypothesis. This

implies that1 , contradicting the initial
assumption of null output error.

1 1 1 0opt opti i
k k k ke e
� � � � �

�

From this reasoning for subsequent output errors, it follows
that the only possible input reference to achieve ei=0 will be
the perfect control input (). If this is the case, it
follows that , for k=0,…,T

ri peu = u
0opti

kV � f (Property 2), and so,
Ji=0.
�) let us assume that Ji=0. Then, , which implies
that , for k=0,…,T

0opti
kV �

0opti
k j ke
� �

� f and for j=0,…,Tf. Particularly,

, for k=0,…,T0opti
k ke
�

� f, which implies ei=0.�

Corollary 1
If the MPC cost penalization matrices, Q and R, are definite
positive, then 0ri perf

iJ� � �u u . Otherwise,
0ri perf

iJ� � �u u .
Proof
It follows from Property 2 and Property 3.�
Now, we establish the run to run convergence with the
following theorem.
Theorem 1
For the system (5)-(7) of González et al., 2009, by using the
control law derived from the on-line execution of problem P2
in a receding horizon manner, together with the learning
updating (7), and assuming that a feasible perfect control
input trajectory there exists, the output error trajectory ei
converges to zero as . In addition, �i 	
 i converges to zero

1 1 1

i i
k k k ke e� � � � ��

i 	

1 Note that for the nominal case is .

as , which means that the reference trajectory
converges to u

riu
perf.

Proof
See Appendix A.
Remark 3: In most real systems a perfect control input
trajectory is not possible to reach (which represents a system
limitation rather than a controller limitation). In this case, the
costs will converge to a non-null finite value as

,and then, since the operation cost J

opti
kV

i 	
 i is decreasing (see
Appendix A), it will converge to the smallest possible value.
Remark 4: In the same way that the intra-run convergence
can be extended to determine a variability index in order to
establish a quantitative concept of stability (" -stability,), for
finite-run systems (Remark 9 of González et al., 2009); the
inter-run convergence can be extended to establish stability
conditions similar to the ones presented in Srinivasan and
Bonvin, 2007.

yr

y
s

N
H

k k+N T
f 2T

f

u
s

ur

u

y

Prediction Horizon

Virtual Horizon

0 k+T
f

Fig. 1. MPC diagram corresponding to each batch.

5. ILUSTRATIVE EXAMPLE

In order to evaluate the proposed controller performance we
assume a true and nominal process given by (Lee and Lee
1997, 2000) G(s)=1/15s2+8s+1 and G(s)=0.8/12s2+7s+1,
respectively. The sampling time adopted to develop the
discrete state space model is T=1 and the final batch time is
given by Tf=90T. The proposed strategy achieves a good
control performance in the first two or three iterations, with a
rather reduced control horizon. The controller parameters are
as follows: Q=1500, R=0.05, N=5. Fig. 2 shows the output
response together with the output reference, and the inputs ui
and iu , for the first and third iteration. At the first iteration,
since the input reference is a constant value (1 0r

f
i
Tu � �), ui

and iu are the same, and the output performance is quite
poor (mainly because of the model mismatch). At the third
iteration, however, given that a disturbance state is estimated
from the previous run, the output response and the output
reference are undistinguishable. As expected, the batch error
is reduced drastically from run 1 to run 3, while the MPC
cost is decreasing (as was established in Theorem 1) for each
run (Fig. 3). Notice that the MPC cost is normalized taking

480

into account the maximal value (), where
 and . This shows that the MPC cost

J

max/i i
kV V

1 6max 1 10V # $ 1max 286.5V #

i decrease from one run to the next, as was stated in
Theorem 2. Finally, Fig. 4 shows the normalized norm of the
error corresponding to each run.

Fig. 2. Output and input responses.

Fig. 3. Error and MPC cost.

Fig. 4. Norm of the iteration error.

6. CONCLUSIONS

In this paper a different formulation of a stable IHMPC with
learning properties applied to batch processes is presented.
For the case in which the process parameters remain
unmodified for several batch runs, the formulation allows a
repetitive learning algorithm, which updates the control
variable sequence to achieve nominal perfect control
performance. Two extension of the present work can be
considered. The easier one is the extension to linear-time-
variant (LTV) models, which would allow representing the
non-linear behavior of the batch processes better. A second
extension is to consider the robust case (e.g. by incorporating
multi model uncertainty into the MPC formulation). These
two issues will be studied in future works.

APPENDIX A.

Proof of Theorem 1
The idea here is to show that for k=0,…,T1opt opti i

k kV V �� f-1,
and so, Ji�Ji-1. First, let us consider the case in which the
sequence of Tf optimization problems P2 “do nothing” at a
given run i. That is, we will consider the case in which

� �1 0 0
T Topt opt

f f

T
Ti i iu u��� � ���� �

� �� � !� �
� �� ,

for a given run i. So, for the nominal case, the total actual
input will be given by

1 1 1 1 1
1

T TT T opt opt

f f f

TT
i i i i i iu u u u� � � � �

� � �� ��� � ���� �
� �� �� � � !� � � �

� �u u .

and the run cost corresponding to this (fictitious) input
sequence will be given by

1
:

fT
i

i k
k

J V
�

� �� � ,

where

� � � �

� � � �

01 1
1 1

1
0
1

1 1

0

, ,0

,0 .

s
opt opt opt

s

N H
i i i i i

k k j k j k j k j k j k j k H k H
j j N

H
i i
k j k H

j

V e u e F x

e F x

�� �
� �
� � � � � � � � � � � � �

� �
�

� �
� �

�

% &
' �� � �
' �
()

� �

� �

�

��	�

� � �

�

1�

i

Since the input reference, , that uses each optimization

problems is given by , then the resulting output

error will be given by for j=0,…,H. In other

words, the open loop output error predictions made by the
MPC optimization at each time k, for a given run i, will be
the actual (implemented) output error of the past run i-1. Here
it must be noticed that

ri
k ju �

1r opti i
k j k j k ju u �
� � � �=

1opti
k jk j k je e �
�� � �

�

1i
k je �
� refers to the actual error of the

system, that is, the error produced by the implemented input
1 1

1 1

opti i
k j k j k ju u� �
� �

(A1)

1� � � � �� . Moreover, because of the proposed inter
run convergence constraint, the implemented input will be

1
1

r
f

i
Tu �

� , for j�H.

Let now consider the optimal MPC costs corresponding to
k=0,…,Tf-1, of a given run i-1. From the recursive use of (6)
we have

481

� �

� �

1 1 1
1 0 0 0

1 1 1
1 2 2

,

,

opt opt

opt opt

f f f f

i i i i

i i i i
T T T T

V e u V

V e u V

� � �

� � � �
� � �

� �

� �

�

�
�

1

1
2

�

�

.

Then, adding the second term of the left hand side of each
inequality to both sides of the next one, and rearranging the
terms, we can write

� � � �1 1 1 1 1
1 2 2 0 0 0, ,
opt opt

f f f

i i i i i i
T T TV e u e u V� � � � �

� � �� � � �� � � 1� . (A2)

From (11), the cost , which is the cost at the end of the

run i-1, will be given by,

1
1
opt

f

i
TV �

�

� � �1 1 1
1 1 1,
opt

f f f

i i i
T T TV e u F x� � �

� � �� �� �1
f

i
T
� . (A3)

Therefore, by substituting (A3) in (A2), we have

� � � � � �
� �

1 1 1 1 1
1 1 2 2

1 1 1
0 0 0

, ,

,

f f f f f

opt

i i i i i
T T T T T

i i i

F x e u e u

e u V

� � � � �
� � � �

� � �

� � �

� �

� � �

�
 (A4)

Now, the pseudo cost (A1) at time k=0, , can be written as 0
iV�

� � � �
� � � �

1
1 1

0
0

1 1
1 1 1 1

0

,0

,

f

f

f

f

T
i i i

j T
j

T
i i i i
j j jT

j j

V e F x

e u F x u

�
� �

�
� �

� � � �

� �

� �

� � �

�

� �

� �

�
0

fT , (A5)

and from the comparison of the left hand side of inequality
(A4) with (A5), it follows that

1
1

0 0
0

fopt
T

i i i
j

j
V V u

�
�

�

� � �� 1� .

Repeating now this reasoning for k=1,…,Tf-1 we conclude
that

1
1 1 , 0, ,

fopt
T

i i i
k k j f

j k
V V u k T

�
� �

�

� � ��� � 1� .

Therefore, from the definition of the run cost iJ� we have2

1 1
1

1
0

f fT T
i

i i j
k j k

J J u
� �

�
�

� �

� � � �� . (A6)

The MPC costs is such that , since the solution i
kV�

opti
kV V� � ik

0i
k j ku � � � , for j=0,…,H is a feasible solution for problem P2

at each time k. This implies that
Ji� iJ� . (A7)
From (A6) and (A7) we have

1 1
1

1
0

f fT T
i

i i i j
k j k

J J J u
� �

�
�

� �

� � � � �� , (A8)

which means that the run costs are strictly decreasing if at
least one of the optimization problems corresponding to the

2 Notice that, if the run i implements the manipulated variable

1i i i
j j ju u u� �� �

run i-1 find a solution 1 0i
k j ku �
� � � . As a result, two options

arise:

I) Let us assume that . Then, by Corollary 1, J
ri pe�u u rf

i�0
and following the reasoning used in the proof of Property 3,

0i
ju � , for some 1�j�Tf. Then, according to (A8),

1 1

1 1
0

f fT T
i

i i i
k j k

jJ J J u
� �

� �
� �

� � � � �� , with 0i
ju � for some

1�j�Tf-1.

The sequence Ji will stop decreasing only if
1

0
0

fT
i
j

j
u

�

�

�� . In

addition, if
1

0
0

fT
i
j

j
u

�

�

�� , then , which implies that

J

ri pe�u u rf

i =0. Therefore: lim 0ii
J

	

� , which, by Property 3 implies

that lim 0i

i	

�e .

Notice that the last limit implies that lim 0i

i	

�� , and

consequently, . lim
ri pe

i	

�u u rf

rfII) Let us assume that . Then, by Corollary 1, J
ri pe�u u i=0,

and according to (A8), . Consequently,
by Property 3, e

1 1 0i i iJ J J� �� � ��
i=0. �

REFERENCES

Cueli J. R. and C. Bordons (2008). Iterative nonlinear model
predictive control. Stability, robustness and applications.
Control Engineering Practice, 16, 1023-1034.

González A. H., D. Odloak and O. A. Sotomayor (2008).
Stable IHMPC for unstable systems. IFAC 2008.

González A. H., E. J. Adam, D. O. Odloak and J. L.
Marchetti, “Infinite horizon MPC applied to batch
processes. Part I”, Reunión de Procesamiento de la
Información y Control, (RPIC XIII), Rosario, Santa Fe –
Argentina. (2009).

Lee, K. S. and J. H. Lee (1997). Model predictive control for
nonlinear batch processes with asymptotically perfect
tracking. Computer chemical Engng, 24, 873-879.

Lee J. H., K. S. Lee and W. C. Kim (2000).Model-based
iterative learning control with a quadratic criterion for
time-varying linear systems. Automatica, 36, 641-657.

Rossiter J.A. (2003). Model-Based Predictive Control. CRC
Press.

Srinivasan B. and D. Bonvin (2007). Controllability and
stability of repetitive batch processes. Journal of Process
Control, 17, 285-295.

1 , j=0,1,…,Tf-1, and 1 0i
ju � � for some j; then, according to

(A6) 1i iJ J ��� . Unnaturally, to have found a non null optimal solution in the
run i-1 is sufficient to have a strictly smaller cost for the run i.

482

