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Abstract: In the second stage of this work (part II), a new infinite horizon model predictive controller 
(IHMPC), with learning properties applied to batch processes is presented. When a batch process is 
attempted to be controlled two convergence analyses are necessary: the convergence into a given iteration 
or batch run (intra-run stability) and the convergence from run to run (inter-run stability, considering an 
infinite number of batch runs). As was shown in González et al., 2009, to account for the first one, the 
proposed strategy uses a virtual horizon that matches the traditional idea of infinite receding horizon of 
MPC with the finite duration of the run batch. To account for the second convergence analysis, a learning 
scheme based on the closed-loop paradigm of the IHMPC, is developed. To evaluate the proposed 
controller, a numerical example corresponding to batch reactor is shown, where the learning properties of 
the algorithm can be clearly seen. 

�

1. INTRODUCTION 

A batch process is one that continuously repeats a finite-
duration procedure (run) along the time. This kind of systems 
can be found in several industrial fields (Lee and Lee, 2000; 
Bonvin 2006; Cueli and Bordons, 2008). Because of its 
characteristic, these repetitive processes have two counter 
indexes (some authors call them two time scales): one, of 
finite length, being the time within a run or trail, and the 
other, of infinite length, identifying the number of runs. As a 
consequence of this two different time scales, handling 
repetitive systems requires a control strategy that accounts for 
two different objectives: the first one is an on-line or within-
batch control, which rejects disturbances occurring during a 
given run, and no necessarily remain unmodified for the next 
run. The other, is the run to run control, which reject 
disturbances that remain almost constant from one run to the 
next, and so, the controller can use information from previous 
operations. In this last case, a control scheme with learning 
properties is desired. 
As it was said in the first stage (González et al., 2009), the 
IHMPC proposed in this work is formulated under a closed-
loop paradigm (Rossiter, 2003). The basic idea of a closed-
loop paradigm is to choose a stabilizing control law and 
assume that this law (underlying input sequence) is present 
throughout the predictions. The idea here is to consider an 
underlying control sequence as a manipulated input candidate 
(input reference) for the perfect tracking control, and to 
associate this input reference with the learning vector (i.e. the 
vector that is updated from one batch to the next, to improve 
the performance). If there is no additional information (first 
iteration), the input reference could be a constant value. 
Then, by means of a learning procedure (based on the time 
convergence for each batch), it is ensured that it converges 
iteratively to the perfect tracking control (run to run 
convergence). This is the way the proposed controller 

accounts for the typical characteristics of batch processes, 
i.e., finite time duration and events repetition. 
The paper is organized as follows. In section 2 the basic 
definition and notation are presented. Then, in section 3, it is 
introduced the proposed MPC formulation and some related 
properties. The repetitive learning scheme (main result) is 
presented in section 4. Finally, a succinct illustrative example 
and the conclusion are presented in sections 5 and 6, 
respectively.  

2. PRELIMINARIES  

We assume here the same preliminaries definition considered 
in the part I of the paper, except for the batch index i, which 
will explicitly appear in the formulation in order to identify 
each batch run. So, the quantities u, y, and d will be 
replaced by u

ru
i, yi, and . The output disturbance, , is 

assumed to be known. (it is assumed to remain constant for 
several batch runs). 

riu id id

Here, the nominal model is the same as the one presented in 
the part I of this work (González et al., 2009). 

2.1. Indexes  

To clarify the notation, we define the following indexes: 
“i” is the iteration or run index, where i=0 is the first batch 
run, when any learning procedure is applied. 
“k” is the time into a given batch run. For a given iteration, it 
goes from 0 toTf-1 (that is, Tf time instants). 
“j” is the time for the MPC predictions. For a given batch 
run, and a given time instant into the batch run, it goes from 0 
to Tf-1. 

2.2. Convergence analysis  
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In the next sections, we will consider two convergence 
analyses: 
Intra-run convergence: concerns the decreasing of a 
Lyapunov function (associated to the output error) along the 
run time k, that is, , for 

, in one specific batch. If the control 
algorithm execution goes beyond T

� � �1 1
i r i
k k k kV y y V y y� �� � � �r

�1, , 1fk T� �

f, with , and the 
output reference remains constant at the final reference value 
(

k 	 


f

r r
k Ty y�  for ), then the intra-run convergence 

concerns the convergence of the output to the final value of 
the output reference trajectory (

fT k� � 


f

i
k T

ry y	  as k��). This 

convergence was proved in González et al. (2009). 
Inter-run convergence: concerns the convergence of the 
output trajectory to the complete reference trajectory from 
one batch to the next one, that is, considering the output of a 
given run as a vector of Tf components (yi�yr as i��). 

3. BASIC FORMULATION 

For the first proposed MPC formulation we will assume that 
an appropriate input reference is available, and the 
disturbance sequence, , is known. The MPC optimization 
problem associated to batch run i is as follows: 

i
kd

Problem P1)  

�  � � � �
1

0, ,
min ,

f

fi i
k k k T kf

T
i i i i

k k j k k j k k T k
ju u

V e u F x
� � ���

�

� � � � � �
�

� ��
�

�  

subject to: 
, 0, ,i i i r

fk j k jk j k k j ke Cx d y j� �� � � �
� � � � � T , (1) 

1 ,  0, ,i i i
fk j k k j k k j kx Ax Bu j T

� � � � � � �
� � � � ,  (2) 

,  0,1, , 1i
k j ku U j N� � � � � � ,   (3) 

,  0, 1, , 1ri i i
fk jk j k k j ku u u j T�� � � �� � � �� ,  (4) 

0,  , 1, , 1i
fk j ku j N N� � � � � � T �

2

1�

,  (5) 

where 

� �1
1 , 1, , , 2r r

f f f
i i ir

f f fk T T Tu u G y d k T T T�
�� � � � � � � , 

, , 1, , 2
f

r r
f f fk Ty y k T T T� � � � . 

The importance of the i
k j ku � �

 in the MPC algorithm is 
described in González et al. (2009), in the remark 0. 
Remark 1: This problem is the one presented by González et 
al. (2009) in the section 3 (Problem P1), except that now it is 
associated to a particular batch run i. As a result, all the 
properties are the same for both formulations, and they are 
omitted here for brevity. Particularly, the convergence of the 
MPC cost (virtual horizon convergence) can be expressed as: 

� �1 1 1 1 1,
opt opt opt opti i i i

k k k k k kV V e u� � � � � � �� � �� 0

1

  (6) 

4. IHMPC WITH LEARNING PROPERTIES 

In the last section we studied the within-run control problem. 
We assumed that an input reference is available and the 
output disturbance is known. One way is by associating the 

current input reference and disturbance to the last batch ones 
(i.e. the implemented input and the estimated disturbance 
during the last run, beginning with a constant sequence and a 
zero value, respectively). In this way, a dual MPC with 
learning properties accounting for the run-to-run control is 
obtained. Next, we will try to elucidate this point. 
Consider the problem P1 (González et al., 2009) for a given 
batch run i, with the following variation: 

� �

1

1

11
1

1

, 0, , 1
, 1, ,

, , 1, , 2
, , 1, , 2 1

r opt

r r
f f f

f

i i
fk k k

i i
fk k

i i ir
f f fk T T T

i i
f f fk T

u u k T
d d k T
u u G y d k T T T
d d k T T T

�
�
�

��
�

�

� � �
� �

� � � � �
� � � �

�
�

�
�

�
  (7) 

where the disturbance, as well as the states for prediction, are 
observer-based estimates. 
The idea here is to associate the input reference and the 
disturbance corresponding to run i with the actual input and 
disturbance implemented at the run i-1 (See Figure 1). That 
is, 1ri i��u u , and  for i=1,2,…, and 1i i��d d

0 1 1
f f

r r
T TG y G y� �� �� � ��u , � �0 : 0 0� �d . In addition, it 

is possible to define a vector of differences between two 
consecutive implemented input sequences as 1:i i i- ��� u u , 
and it is interesting to notice that this vector is given by 

1
T Topt opt

f f
i ii u u� ���� ��� �

� �� � ��� . 

This means that this difference vector is made of the first 
element of the solution of each optimization problem, for 
k=0,…,Tf-1, used in a receding horizon manner. 

4.1 New inter-run convergence constraints for batch process 

Now, in order to achieve a run-to-run convergence, we 
replace the original constraint (5) of problem P1 by the 
following one: 

0,  , 1, , 1i
s s fk j ku j N N� � T� � � � � ,  (8) 

where 
Ns= min (H,N).      (9) 
In this way, a new shrinking control horizon Ns is defined, 
i.e., for the last N time steps (k=Tf-N,…,Tf-1) of each run, the 
control horizon is reduced as the time steps k increases. As 
will be shown later, this modification allows the successive 
run costs to be matched. 
Remark 2: The new shrinking control horizon allows the 
cost to be expressed by means of 

� � �
1

0
,

H
i i i i

k k j k k j k k H k
j

V e u F x
�

� � � � � �
�

� �� � � ,   (10) 

regardless of the value of k. 
The next property shows to be useful for the convergence 
proof: 
Property 1: Assuming that a shrinking control horizon is 
used, then, Eq. (6) holds true for the last N MPC costs of a 
given run. Furthermore, the last cost of a given run “i” are 
given by: 

� � � �1 1 1 1 1 1,opt opt opt opt

f f f f f f f
i i i i

T T T T T T TV e u F x� � � � � � � � �� �� , 
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and since current and one steps prediction are coincident with 
the actual values (Remark 4), it follows that: 

� � �1 1 1,opt �f f f f
i i i

T T TV e u F x� � �� �� i
T

�

.    (11) 

Proof. Similar to the proof of theorem 1, in the first stage of 
the work (González et al., 2009), it is possible to define a 
feasible solution to the optimization problem at time k, based 
on the solution at time k-1. Then, showing that the cost 
corresponding to these solutions is not greater than the 
optimal cost at time k-1, inequality (6) holds.  

4.2 Properties of the proposed algorithm 

One interesting point here is to answer what happens if the 
MPC controller receives as input reference trajectory a 
control sequence that, if it is injected to the system, produces 
a null output error. Since the MPC controller does not add the 
input reference to the computed input (as typical correction) 
but to predicted inputs, some care must be taken. Property 2, 
above, assures that for this input reference the MPC cost is 
null. Without lose of generality, we will consider the nominal 
case (no difference between plant and model) for simplicity 
in what follows. 
Definition 1: Let us consider the following perfect control 
input trajectory 

0 1
T T

f

Tperf perfperf
Tu u �� �� � ��u , 

which represents the control sequence that, if is injected into 
the system, produces a null output error trajectory 

�1 0 0T T

f

T Ti ii
Te e� �� �� �� �e . It is assumed at this point 

that the output reference is designed in such a way (smooth 
shape), and the disturbances are such that, the perfect control 
is possible. 
Notice that the perfect control would be physically possible, 
if an infinite number of iterations are performed. 
Property 2: If the MPC cost penalization matrices, Q and R, 
are definite positive (Q>0 and R>0) and perfect control input 
trajectory is a feasible trajectory, then , 
for  k=0,…,T

0
r opti perf i

kV� � �u u
f-1;  where 

� � � �
1

0
,opt opt opt opt

H
i i i i

k k j k k j k k H k
j

V e u F x
�

� � � � � �
�

� �� � . 

Proof. 

� ) Let us assume that , for k=0,…,T0
opti

kV � f-1. Then, the 
optimal predicted output error and input will be given by 

, for j=0,…,T0
opti

k j ke � � � f, and 0
opti

k j ku � � � , for j=0,…,Tf-1, 

respectively. If  and 0
opti

k j ke � � � 0
opti

k j ku � � �  simultaneously, it 

follows that  for k=0,…,T
ri pe

k ku u� rf
f-1, since it is the only 

input sequence that produces null predicted output error 
(otherwise, the optimization will necessarily find an 
equilibrium such that 1 0opti

k ke
� �

�  and 0opti
k ku
�

� , provided 

that Q>0 and R>0 by hypothesis). Consequently, ri perf�u u . 
� ) Let us assume that . Because of the definition 
of the perfect control input, the optimization problem without 

any input correction will produce a sequence of null output 
error predictions given by 

ri pe�u u

1 11 1

1

0
0

0.
ff f

f
f f

i
k k

perfi i ir r
k k kk k k k k k

i i r
k Tk T k k T k

perf perfi rT
k k T k Tk k

e
e Cx y C Ax Bu y

e Cx y

C A x ABu Bu y

�

� �� � � � �

�� � � �

� � ��

�
� �� � � � � �� �

� �
� �� � � � �� �

�

� �

 

Consequently, the optimal sequence of decision variables 
(predicted inputs) will be 0

opti
k j ku � � �  for k=0,…,Tf-1 and 

j=0,…,Tf-1, since no correction is needed to achieve null 

predicted output error. This means that 0
opti

kV � , for 
k=0,…,Tf-1.� 

4.3 Inter-run convergence 

Let us consider the following optimization problem: 
Problem P2) 

� , ,
min

i i
k k k T kf

i
k

u u
V

� � ���
�

 

subject to: 
(1)-(4), (7)-(9). 
When we say that the algorithm converges from run to run it 
means that both, the output error trajectory ei and the input 
difference between two consecutive implemented inputs, 
�i=ui-ui-1, converges to zero as . Following an Iterative 
Learning Control nomenclature, this means that the 
implemented input, u

i 	 


i, converges to the perfect control input 
uperf for a sufficiently large number of iterations. 
To show this convergence, we will define a cost associated to 
each run, which penalizes the output error. As it was said, Tf 
MPC optimization problems are solved at each run i, that is, 
from k=0 to k=Tf -1. So, a candidate to describe the run cost 
is as follows: 

1

0
:

f
opt

T
i

i k
k

J V
�

�
� � ,     (12) 

where  represents the optimal cost of the on-line MPC 
optimization problem at time k, corresponding to the run i. 
Notice that this MPC cost, once the optimization problem P2 
is solved and an optimal input sequence is obtained, is a 
function of only 

opti
kV

� �opt opti i r
k kk k k ke y y

� �
ie� � � . 

Therefore, it makes sense using (12) to define a batch cost, 
since it represents a (finite) sum of positive penalizations of 
the current output error, that is to say, a positive function of 
ei. However, since the new batch index is made of outputs 
predictions rather than of actual errors, some cares must be 
taken into consideration. Firstly, as occurs with usual 
indexes, we should demonstrate that null output error vectors 
produce null costs (which is not trivial because of 
predictions). Secondly, we should demonstrate that the 
perfect control input corresponds to a null cost. 
Property 3: If the MPC cost penalization matrices, Q and R, 
are definite positive (Q>0 and R>0) and perfect control input 

rf
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trajectory is a feasible trajectory, cost (12), which is an 
implicit function of ei, is such that, . 0 0i

iJ� � �e
Proof. 

� ) Let us assume that ei=0. This means that 0
opti

k ke � � , for 
k=0,…,Tf. Now, assume that the input reference vector is 
different from the perfect control input, , and 
consider the output error predictions necessary to compute 
the MPC cost : 

ri pe�u u rf

i
kV

1 1�1 1

0
r

i
k k
i i r i i i r

k k kk k k k k k k k

e
e Cx y C Ax Bu Bu y

�

�� � � � � �

�
� �� � � � � � !� ��

 

Since  is not an element of the perfect control input, then 

. Consequently, (assuming that 

CB is invertible) the input 

ri
ku

1 0
ri i r

k kk kC Ax Bu y ��
� �� � � !� �

*i
k ku �  necessary to make 1 0

opti
k ke � � � , 

will be given by: 
� � � �* 1

1
ri ir

k kk k k ku CB y C Ax Bu�
�� �

� �� � �� �
i , 

which is a non null value. However, the optimization will 
necessary find an equilibrium solution such that 1 0opti

k ke
� �

�  

and *opti i
k k k ku u
�

�
�

�

rf

, since Q>0 and R>0 by hypothesis. This 

implies that1 , contradicting the initial 
assumption of null output error. 

1 1 1 0opt opti i
k k k ke e
� � � � �

�

From this reasoning for subsequent output errors, it follows 
that the only possible input reference to achieve ei=0 will be 
the perfect control input ( ). If this is the case, it 
follows that , for k=0,…,T

ri peu = u
0opti

kV � f  (Property 2), and so, 
Ji=0. 
� ) let us assume that Ji=0. Then, , which implies 
that , for k=0,…,T

0opti
kV �

0opti
k j ke
� �

� f  and for j=0,…,Tf. Particularly, 

, for k=0,…,T0opti
k ke
�

� f, which implies ei=0.� 

Corollary 1 
If the MPC cost penalization matrices, Q and R, are definite 
positive, then 0ri perf

iJ� � �u u . Otherwise, 
0ri perf

iJ� � �u u . 
Proof 
It follows from Property 2 and Property 3.� 
Now, we establish the run to run convergence with the 
following theorem.  
Theorem 1 
For the system (5)-(7) of González et al., 2009, by using the 
control law derived from the on-line execution of problem P2 
in a receding horizon manner, together with the learning 
updating (7), and assuming that a feasible perfect control 
input trajectory there exists, the output error trajectory ei 
converges to zero as . In addition, �i 	 
 i converges to zero 

                                                 
1 1 1

i i
k k k ke e� � � � ��

i 	 


1 Note that for the nominal case is . 

as , which means that the reference trajectory  
converges to u

riu
perf. 

Proof 
See Appendix A. 
Remark 3: In most real systems a perfect control input 
trajectory is not possible to reach (which represents a system 
limitation rather than a controller limitation). In this case, the 
costs  will converge to a non-null finite value as 

,and then, since the operation cost J

opti
kV

i 	 
 i is decreasing (see 
Appendix A), it will converge to the smallest possible value. 
Remark 4: In the same way that the intra-run convergence 
can be extended to determine a variability index in order to 
establish a quantitative concept of stability ( " -stability,), for 
finite-run systems (Remark 9 of González et al., 2009); the 
inter-run convergence can be extended to establish stability 
conditions similar to the ones presented in Srinivasan and 
Bonvin, 2007. 

yr

y
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N
H

k k+N T
f 2T

f

u
s
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u
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Prediction Horizon

Virtual Horizon

0 k+T
f  

Fig. 1. MPC diagram corresponding to each batch. 
 

5. ILUSTRATIVE EXAMPLE 

In order to evaluate the proposed controller performance we 
assume a true and nominal process given by (Lee and Lee 
1997, 2000) G(s)=1/15s2+8s+1 and G(s)=0.8/12s2+7s+1, 
respectively. The sampling time adopted to develop the 
discrete state space model is T=1 and the final batch time is 
given by Tf=90T. The proposed strategy achieves a good 
control performance in the first two or three iterations, with a 
rather reduced control horizon. The controller parameters are 
as follows: Q=1500, R=0.05, N=5. Fig. 2 shows the output 
response together with the output reference, and the inputs ui 
and iu , for the first and third iteration. At the first iteration, 
since the input reference is a constant value ( 1 0r

f
i
Tu � � ), ui 

and iu  are the same, and the output performance is quite 
poor (mainly because of the model mismatch). At the third 
iteration, however, given that a disturbance state is estimated 
from the previous run, the output response and the output 
reference are undistinguishable. As expected, the batch error 
is reduced drastically from run 1 to run 3, while the MPC 
cost is decreasing (as was established in Theorem 1) for each 
run (Fig. 3). Notice that the MPC cost is normalized taking 
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into account the maximal value ( ), where 
 and . This shows that the MPC cost 

J

max/i i
kV V

1 6max 1 10V # $ 1max 286.5V #

i decrease from one run to the next, as was stated in 
Theorem 2. Finally, Fig. 4 shows the normalized norm of the 
error corresponding to each run. 

 

 

 
Fig. 2. Output and input responses. 

 
Fig. 3. Error and MPC cost. 

 

Fig. 4. Norm of the iteration error. 

6. CONCLUSIONS 

In this paper a different formulation of a stable IHMPC with 
learning properties applied to batch processes is presented. 
For the case in which the process parameters remain 
unmodified for several batch runs, the formulation allows a 
repetitive learning algorithm, which updates the control 
variable sequence to achieve nominal perfect control 
performance. Two extension of the present work can be 
considered. The easier one is the extension to linear-time-
variant (LTV) models, which would allow representing the 
non-linear behavior of the batch processes better. A second 
extension is to consider the robust case (e.g. by incorporating 
multi model uncertainty into the MPC formulation). These 
two issues will be studied in future works. 

APPENDIX A. 

Proof of Theorem 1 
The idea here is to show that  for k=0,…,T1opt opti i

k kV V �� f-1, 
and so, Ji�Ji-1. First, let us consider the case in which the 
sequence of Tf optimization problems P2 “do nothing” at a 
given run i. That is, we will consider the case in which 

� �1 0 0
T Topt opt

f f

T
Ti i iu u��� � ���� �

� �� � !� �
� �� , 

for a given run i. So, for the nominal case, the total actual 
input will be given by 

1 1 1 1 1
1

T TT T opt opt

f f f

TT
i i i i i iu u u u� � � � �

� � �� ��� � ���� �
� �� �� � �  !� � � �

� �u u . 

and the run cost corresponding to this (fictitious) input 
sequence will be given by 

1
:

fT
i

i k
k

J V
�

� �� � , 

where 

� � � �

� � � �

01 1
1 1

1
0
1

1 1

0

, ,0

,0 .

s
opt opt opt

s

N H
i i i i i

k k j k j k j k j k j k j k H k H
j j N

H
i i
k j k H

j

V e u e F x

e F x

�� �
� �
� � � � � � � � � � � � �

� �
�

� �
� �

�

% &
' �� � �
' �
( )

� �

� �

�

��	�

� � �

�

1�

i

Since the input reference, , that uses each optimization 

problems is given by , then the resulting output 

error will be given by  for j=0,…,H. In other 

words, the open loop output error predictions made by the 
MPC optimization at each time k, for a given run i, will be 
the actual (implemented) output error of the past run i-1. Here 
it must be noticed that 

ri
k ju �

1r opti i
k j k j k ju u �
� � � �=

1opti
k jk j k je e �
�� � �

�

1i
k je �
�  refers to the actual error of the 

system, that is, the error produced by the implemented input 
1 1

1 1

opti i
k j k j k ju u� �
� �

(A1)

1� � � � ��  . Moreover, because of the proposed inter 
run convergence constraint, the implemented input will be 

1
1

r
f

i
Tu �

� , for j�H. 

Let now consider the optimal MPC costs corresponding to 
k=0,…,Tf-1, of a given run i-1. From the recursive use of (6) 
we have 

     
481



 
 

 

� �

� �

1 1 1
1 0 0 0

1 1 1
1 2 2

,

,

opt opt

opt opt

f f f f

i i i i
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Then, adding the second term of the left hand side of each 
inequality to both sides of the next one, and rearranging the 
terms, we can write 

� � � �1 1 1 1 1
1 2 2 0 0 0, ,
opt opt

f f f

i i i i i i
T T TV e u e u V� � � � �

� � �� � � �� � � 1� .  (A2) 

From (11), the cost , which is the cost at the end of the 

run i-1, will be given by, 

1
1
opt

f

i
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�

� � �1 1 1
1 1 1,
opt

f f f

i i i
T T TV e u F x� � �
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f

i
T
� .    (A3) 

Therefore, by substituting (A3) in (A2), we have 
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Now, the pseudo cost (A1) at time k=0, , can be written as 0
iV�
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� � � �

1
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and from the comparison of the left hand side of inequality 
(A4) with (A5), it follows that  

1
1

0 0
0

fopt
T

i i i
j

j
V V u

�
�

�

� � �� 1� .     

Repeating now this reasoning for k=1,…,Tf-1 we conclude 
that 

1
1 1 , 0, ,

fopt
T

i i i
k k j f

j k
V V u k T

�
� �

�

� � ��� � 1� . 

Therefore, from the definition of the run cost iJ�  we have2

1 1
1

1
0

f fT T
i

i i j
k j k

J J u
� �

�
�

� �

� � � �� .     (A6) 

The MPC costs  is such that , since the solution i
kV�

opti
kV V� � ik

0i
k j ku � � � , for j=0,…,H is a feasible solution for problem P2 

at each time k. This implies that 
Ji� iJ� .       (A7) 
From (A6) and (A7) we have 

1 1
1

1
0

f fT T
i

i i i j
k j k

J J J u
� �

�
�

� �

� � � � �� ,    (A8) 

which means that the run costs are strictly decreasing if at 
least one of the optimization problems corresponding to the 

                                                 
2 Notice that, if the run i implements the manipulated variable 

1i i i
j j ju u u� �� �

run i-1 find a solution 1 0i
k j ku �
� � � . As a result, two options 

arise: 

I) Let us assume that . Then, by Corollary 1, J
ri pe�u u rf

i�0 
and following the reasoning used in the proof of Property 3, 

0i
ju � , for some 1�j�Tf. Then, according to (A8), 

1 1

1 1
0

f fT T
i

i i i
k j k

jJ J J u
� �

� �
� �

� � � � �� , with 0i
ju �  for some 

1�j�Tf-1. 

The sequence Ji will stop decreasing only if 
1

0
0

fT
i
j

j
u

�

�

�� . In 

addition, if 
1

0
0

fT
i
j

j
u

�

�

�� , then , which implies that 

J

ri pe�u u rf

i =0. Therefore: lim 0ii
J

	

� , which, by Property 3 implies 

that lim 0i

i	

�e . 

Notice that the last limit implies that lim 0i

i	

�� , and 

consequently, . lim
ri pe

i	

�u u rf

rfII) Let us assume that . Then, by Corollary 1, J
ri pe�u u i=0, 

and according to (A8), . Consequently, 
by Property 3, e

1 1 0i i iJ J J� �� � ��
i=0. � 
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1 , j=0,1,…,Tf-1, and 1 0i
ju � �  for some j; then, according to 

(A6) 1i iJ J ��� . Unnaturally, to have found a non null optimal solution in the 
run i-1 is sufficient to have a strictly smaller cost for the run i. 
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