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ABSTRACT- Several industrial systems work by executing a sequence of similar or 
almost identical finite-time operations, which allows learning from previous runs to 
improve control performance. The operation of batch and semi-batch reactors are typical 
examples of these systems in the chemical industry. In this work, a model predictive 
controller (MPC) based on the concept of shrinking horizon is proposed to deal with 
finite-time operations. In addition, the proposed controller includes a learning mechanism 
leading to improve the performance as the sequence of operations progresses. When a 
control strategy is developed for these systems, two convergence analyses are necessary: 
the convergence of the closed-loop responses during the time-interval the single 
operation lasts and the convergence from operation to operation, i.e., the convergence of 
the learning mechanism that provides high performance when the number of trials 
increases. All these features found with the proposed MPC are illustrated by simulating a 
case study. 
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1. INTRODUCTION  

Repetitive dynamic system can be 
found in several industrial fields such as 
robot manipulation [1], injection molding [2], 
batch processes [3-4] and semiconductor 
processes [5]. The operation of repetitive 
dynamic systems frequently presents two 
well defined control objectives: one 
addresses the final target condition which is 
associated to the product quality; the other 
refers to economic aspects of the operation 
and is mainly defined through a recipe or 
output variable trajectory to be 
accomplished. Because of the repetitive 
characteristic, we analyze these systems 
using two count indexes or time scales: one 

is for the time running within the interval the 
operation lasts, and the other is associated to 
the number of operations in the sequence [6-
7]. Consequently, a control strategy for 
repetitive systems requires accounting for 
two different objectives: the first one is the 
disturbance rejection during a single 
operation in the sequence; this frequently 
implies the tracking of a predetermined 
trajectory. The other one is the control of the 
sequence of operations, which recognizes 
disturbances or model mismatches that 
remain from one operation to the next. The 
important property pursued when designing 
this control system is the ability to use the 
information from previous operations to 
improving the tracking performance as the 
sequence progresses. 
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The paper is organized as follows. In Section 
2 the single operation problem is presented, 
and the shrinking horizon MPC formulation 
is presented. Section 3 describes how the 
sequence of operation problems is accounted 
by the proposed strategy. Then, the learning 
properties of the strategy (to control a 
operation sequence) is illustrated by a 
simulation example in Section 4 and the 
conclusions are presented in Sections 5.  

 

2. THE SINGLE OPERATION 
PROBLEM 

The augmented dynamic model used to 
forecast the output variables is given by: 

1k k kx Ax Bu+ = +      (1) 

1k kd d+ =       (2) 

k k ky Cx d= +      (3) 

where A, B and C are matrices of appropriate 
dimension, x are the standard states and the 
augmented state dk is an estimated 
disturbance included for updating the output 
predictions kCx  and providing offset 
elimination [8-9]. The sub index k stands for 
the real time during a single operation, and 
since every operation is assumed to last Tf  
time instants, it goes from 0 to Tf .  

Let us assume that the objective is to 
follow an output reference trajectory, r

ky , 
and to do that an input reference candidate, 

r
ku , is available. Given that the control 

algorithm is executed along the time-interval 
the operation lasts only, a shrinking output 
horizon is defined as the difference between 
the current time k and the final time Tf, that 
is, ( ) : fH k T k= − . Then, the optimization 
problem to be solved at time k, as part of the 
single operation, is as follows: 

Problem P1  

{ } ( ) ( )1

, , 0
min ,

f
k k k N ks

H

k k j k k j k T k
u u j

V e u F e
⎟ + −1⎟

−

+ ⎟ + ⎟ ⎟
=

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭
∑

subject to: 

, 0, ,r
k j k jk j k k j ke Cx d y j H+ ++ ⎟ + ⎟

= + − = ,   (4) 

1 ,  0, , 1k j k k j k k j kx Ax Bu j H+ + ⎟ + ⎟ + ⎟= + = − ,   (5) 

ˆ , 0, ,kk jd d j H+ = =     ..(6) 

,  0,1, , 1k j ku U j H+ ⎟ ∈ = − ,     (7) 

,  0,1, , 1r
k jk j k k j ku u u j H++ ⎟ + ⎟= + = − ,   (8) 

0,  sk j ku j N+ ⎟ = ≥ ,      (9) 

where ( ) 2 2, : Q Re u e u= +  is the step cost, 

( ) 2 2
:

f f ff f
r

T T TT k T k PP
F e C x d y e

⎟ ⎟
= + − =  is a 

final cost associated to the final targeting 
error, and U = {u : umin ≤ u ≤ umax; 

maxu uΔ ≤ Δ }. In this formulation, Ns is the 
control horizon, which is equal to N most of 
the time but, over the end, it becomes a 
shrinking control horizon given by Ns = 
min(H,N). The matrices Q, R and P are such 
that Q, P>0 and R≥0; the current state and 
disturbance are estimated by an observer, 
then, ˆkk kx x⎟ = , and ˆ

kd  is used as indicated in 
(6). Because this formulation contains some 
new concepts, a few remarks are needed to 
clarify the key points: i) in any single 
operation, Tf  optimization problems must be 
solved (from k=0 to k=Tf-1). Each problem 
gives a sequence of optimal input values 

opt
k j ku + ⎟ , for j=0,…,H-1, but only the first one in 

the sequence, opt
k ku ⎟ , is applied to the system. 

Notice this is not an application of the typical 
receding horizon policy since the end point 
remains fix during every single operation. ii) 
The decision variables k j ku + ⎟  are corrections, 
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to the open-loop reference sequence r

k ju +  (see 
Eq. (8)), for improving the closed-loop 
performance. Notice that because of 
constraint (9), k j ku + ⎟  is different from zero 
only in the first Ns steps and therefore, 
Problem P1 has Ns decision variables.  

Theorem 1 (single-operation cost 
boundeness): Using the control law resulting 
from the successive solutions to Problem P1 
on the system (1)-(3), the obtained cost 
function is decreasing, that is, 

( )1 1 1, 0k k k kV V e u− − −− + ≤A , for 1 ≤ k ≤ Tf-1. 

Proof. 

Let { }1 1 1 2 1: , , ,0, ,0
s

opt opt opt
k k k k N ku u− − ⎟ − + − ⎟ −

=u " "  be 

the optimal solution of Problem P1 at time k-
1. At this time instant H = Tf –k+1 and the 
cost function can be written as  

( ) ( )1

1 1 1 1 1 1
0

,
f

H
opt opt opt

k k j k k j k T k
j

V e u F e
−

− + − ⎟ − + − ⎟ − ⎟ −
=

= +∑ A (10) 

Assume the input resultant from the first 
solution, 1 1 1 1 1

optr
k k k k ku u u− ⎟ − − − ⎟ −

= +  is 
implemented, and shift the remaining 
solution values to compose a feasible 
solution { }1 2 1, , ,0, ,0,0

s

feas opt opt
k k k k N ku u

⎟ − + − ⎟ −
=u " "  

to Problem P1 at time k. If there are no 
unknown disturbances, the cost at time k 
corresponding to the feasible solution feas

ku  is 
as follows: 

( ) ( )1

1 1 1
0

,
f

H
feas opt opt opt

k k j k k j k T k
j

V e u F e
−

+ ⎟ − + ⎟ − ⎟ −
=

= +∑ A , (11) 

where now H = Tf – k. Subtracting (10) from 
(11), we have 

( )1 1 1 1 1, .feas opt opt
k k k k k kV V e u− − ⎟ − − ⎟ −

− = −A   (12) 

Notice this equality determines the “natural” 
decreasing rate of the cost function due to a 

one-step shorter horizon H. However, the 
actual solution of Problem P1 at time k, 

{ }1: , , ,0, ,0
s

opt opt opt
k k k k N ku u

⎟ + −⎟
=u " "  should be 

better than simply using the remaining of the 
feasible solution obtained at k-1. Then, if no 
new disturbance appears in the interval [k-
1,k], the optimal cost at time k, should be 
lower or at least equal to the one obtained 
with the feasible solution. In other words, 

( )1 1 1 1 1,feas opt opt
k kk k k k kV V V e u− − ⎟ − − ⎟ −
≤ = − A .  (13) 

This is because opt
ku provides one more 

degree of freedom than feas
ku (the first null 

value in feas
ku is substituted by 1s

opt
k N ku
+ − ⎟

 in 
opt
ku ). Finally, notice that 1 1

opt
k ke
− ⎟ −

 and 1 1
opt
k ku
− ⎟ −

 
represent actual already known values. Thus, 
we may write 

( )1 1 1, 0 1 fk k k kV V e u k T− − −− + ≤ ≤ ≤A  (14) 

This shows that, if the output error is 
different from zero, the cost function with 
finite horizon decreases more than what is 
due by simply reducing the distance from k 
to Tf  in one sampling time interval. Though 
this result ensures bounded behavior and 
supports the stability issue, it does not imply 
a definite assessment about closed loop 
performance [8]. 

 

3. SEQUENCE OF OPERATION 
PROBLEM 

The systematic repetition of single similar 
operations motivates the use of previous 
experiences to improve the control 
performance such to obtain a closer tracking 
of economic trajectories and to reach with 
more accuracy the desired target over the 
end. These performance improvements are 
the main reason for extending the above 
control strategy such to include learning 
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capabilities. This learning capability can be 
developed by creating memory reservoirs for 
the inputs injected to both the actual process 
and the model, and for the correspondent 
output mismatch. For instance, these memory 
reservoirs can be incorporated into Problem 
P1 through the following additional 
constraints: 

1 , 0, , 1ir i
k j k ju u j H−
+ += = −"       (15) 

1 , 0, , 1i i
k j k jd d j H−
+ += = −"    (16) 

where 1i
k jd −
+  represents the model mismatch or 

disturbance found during the operation i-1. 
The first constraint updates the input 
reference for operation i with the last optimal 
control sequence executed in operation i-1 
(i.e. 1ir i−=u u , for i =1,2,… ). The second 
constraint updates the disturbance profile for 
operation i with the last estimated sequence 
in operation i-1 (i.e. 1i i−=d d , for i=1,2,…, 
with an initial value given by 

[ ]0 : 0 0= …d ). 

The learning capacity is achieved by two 
reasons: one is the successive update of the 
input sequence taken as reference; the other 
is the update of the systematic model 
disturbance d appearing along the operating 
trajectory. As the number of operations 
progresses, both, the input and the 
disturbance sequences evolve to stable 
profiles. The input sequence changes from 
iteration to iteration because the control 
horizon in Problem P1 is much shorter than 
the prediction horizon (mostly due to 
computational limitations) and a single 
optimization does not suffice to reach the 
final complete optimal input profile. On the 
other hand, the disturbance sequence changes 
as a consequence of the input profile 
evolution and provides information about the 
system future behavior. For instance, once 
the disturbance sequence accumulates 
knowledge about the difference between 

plant and model for every sampling instant of 
the desired trajectory, better output forecast 
are made because the predictive algorithm 
anticipates these differences. This is an 
unusual feature for feedback control systems 
(since traditional designs require realizable 
conditions) and it is the reason that explains 
the algorithmic capacity of reaching 
extraordinary performances. 

However, notice that the disturbance update 
in (16) is not an online update but an 
operation to operation one. This is equivalent 
to ignore changes due to unmeasured 
variables and to delay model mismatch 
adjustments until the next operation. To 
overcome this problem, an additional 
correction to account for “current” 
disturbances is proposed, this is given by 

1ˆ , 0, ,i i i
k j k kd d d j H−
+Δ = − = "  where ˆ i

kd  is 
estimated by the observer. This correction 
modifies the disturbance constraint in (6), as 
follows:   

1 1 1ˆ , 0,.., 1i i i i i i
k j k j k j k j k kd d d d d d j H− − −
+ + + += + Δ = + − = −

 

Based on the later formulation, it is possible 
to establish the following theorem: 

Theorem 2: Let us assume that no 
disturbance enter the system. For the system 
(1)-(3), by using the control law derived from 
the on-line execution of problem P1 in a 
receding horizon manner, together with the 
learning updating (15) and (16), and 
assuming that a feasible perfect control input 
trajectory there exists (i.e., a control 
trajectory for which the output trajectory is 
the output reference trajectory), then the 
output error trajectory converges to zero as 
i →∞ . 

Proof. 

The proof of this theorem is similar to the 
one shown in [10]. 
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Remark: In real systems a perfect control 
input trajectory is not possible to reach, 
mainly for the case of abrupt references 
trajectories. In these cases, the costs of the 
proposed MPC controller converge to a non-
null finite value as i →∞ . Furthermore, if an 

operation cost is defined as 
1

0
:

f
opt

T
i

i k
k

J V
−

=
= ∑ , 

then, this cost will be decreasing and it will 
converge to the smallest possible value 
taking into account the input constraints.  

Given that the impossibility to reach perfect 
control is exclusively related to the input 
and/or states limits (which should be 
consistent with the control problem 
constraints), the proposed strategy will find 
the best approximation to the perfect control, 
which constitutes an important advantage of 
the method. 

 

  4. APPLICATION EXAMPLE 

In order to evaluate the performance of the 
proposed controller we choose a simple 2nd 
order SISO system. The true and nominal 
processes are represented by 
G(s)=1/15s2+8s+1 and G(s)=0.8/12s2+7s+1, 
respectively [3]. The sampling time adopted 
to develop the discrete state space model is 
T=1 and the final batch time is given by Tf = 
90T. The idea is to show that the proposed 
strategy achieves a good control performance 
in the first two or three operations, with a 
rather reduced control horizon. The 
controller parameters are as follows: 
Q=1500, R=0.05, N=5. Figure 1 shows the 
output response together with the output 
reference, and the inputs ui and iu , for the 
first and third operations. At the first 
operation, since the input reference is a 
constant value (us=0), ui and iu  are the 
same, and the output performance is quite 
poor (mainly because of the model 
mismatch). At the third operation, however, 
given that a disturbance state is estimated 

from the previous run, the output response 
and the output reference are 
undistinguishable.  

As expected, the batch error is reduced 
drastically from operation 1 to operation 3, 
while the MPC cost is decreasing for each 
run (Figure 2). Notice that the MPC cost is 
normalized taking into account the maximal 
value ( max/i i

kV V ), where 1 6max 1 10V ≈ ⋅  and 
1
max 286.5V ≈ . This shows that the MPC 

output error decrease from one run to the 
next, as was stated in Theorem 2. Finally, 
Figure 3 shows the normalized norm of the 
error corresponding to each operation, 

1

0
:

f
opt

T
i

i k
k

J V
−

=
= ∑ .  

Notice that to achieve an acceptable tracking 
both, the input values and the input 
increments are quite aggressive. If realistic 
input constraints are considered, they would 
become active when the performance tends 
to perfect control condition. This is why it is 
usually impossible to achieve a perfect 
control in real systems. In this example no 
input constraints were considered in order to 
show the operation-to-operation convergence 
to perfect control. The rigorous convergence 
analysis was not included in this report due 
to space limitations. 
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Figure 1 – Output and input responses. 
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Figure 2 – Error and Normalized MPC cost. 

 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5
Iteration

N
or

m
 o

f t
he

 E
rr

or

 

Figure 3 – Normalized norm of the iteration 
error. 

5. CONCLUSIONS 

A model predictive controller with learning 
properties to be applied to repetitive dynamic 
systems is presented. The proposed strategy 
integrates in a single MPC formulation the 
single operation and the sequence of 
operations control. Two memory reservoirs 
are used to construct the learning procedure: 
an open-loop control trajectory and a model 
mismatch history accumulated as disturbance 
information. The analysis of the finite-time 
control problem shows not only the 
decreasing property of the cost function but 
also that the achievable performance can 
increase as the operation approaches to the 
final running time. Besides, a convergence 
analysis for the sequence of operations shows 
that, unless system limitations arise, the 
proposed learning scheme is capable to reach 
perfect tracking performance. 

 

6. REFERENCES 

[1] TAN, K.K.; HUANG, S. N.; LEE, T. H.; 
TAY, A. Disturbance compensation 
incorporated in predictive control system 
using a repetitive learning approach. System 
and Control Letters, v. 56, p. 75-82, 2007. 
[2] YAO, K.; GAO, F.; ALLGOWER, F. 
Barrel temperature control during operation 
transition in injection molding. Control 
Engineering Practice, v. 16, No. 11, p. 1259-
1264, 2008.  
[3] LEE, K.S.; LEE, J.H. Convergence of 
constrained model predictive control for 
batch processes. IEEE Trans A.C., v. 45,  p. 
1928-1932, 2000. 
[4] BONVIN, D.; SRINIVASAN, B.; 
HUNKELER, D. Control and optimization of 
bath processes – improvement of process 
operation in the production of specialty 
chemicals. IEEE Trans. Control Syst. Mag. 
V. 26, No.6, p. 34-45, 2006. 
[5] MOYNE, J.E.; del CASTILLO, E.; 
HURWITZ, A.M. Run to run control in 

ISSN 2178-3659 5678



 
semiconductor manufacturing. CRC Press, 
Boca Raton, Florida, 2001. 
[6] SRINIVASAN, B.; BONVIN, D. 
Controllability and stability of repetitive 
batch processes. Journal of Process Control, 
v. 17 p. 285-295, 2007. 
[7] LEE, K.S.; LEE, J.H. Model predictive 
control technique combined with iterative 
learning for batch processes. AIChE Journal, 
v. 45, p. 2175-2187, 1999. 
[8] MUSKE, K.R.; BADGWELL, T.M. 
Disturbance modeling for offset free linear 
model predictive control. Journal of Process 
Control, v. 12, p. 617–632, 2002. 
[9] GONZALEZ, A.H.; ADAM, E.J.; 
MARCHETTI, J.L. Conditions for offset 
elimination in receding horizon controllers: a 
tutorial analysis. Chemical Engineering and 
Processing, v. 47, p. 2184-2194, 2008. 
[10] GONZALEZ, A.H.; ADAM, E.J.; 
MARCHETTI, J.L. Infinite horizon MPC 
applied to batch process. XIIIº Reunión de 
Trabajo en Procesamiento de la Información 
y Control (RPIC), Rosario, Argentina, 2009. 

ISSN 2178-3659 5679




