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Abstract: This work studies the control of a fed-batch reactor for the production of
penicillin and the design of suboptimal control strategies which result simple for their
implementation. These strategies are able to (i) generate a suboptimal control that
lead to the batch process towards its desired outputs, (ii) attenuate perturbations and
noises always present in the operation of the process and, (iii) handle constraints upon
the manipulated or control variable u(t). The control strategy always result a linear
feedback, since proper assumptions on the costates of the nonlinear and Hamiltonian
system are made, besides it is shown that this feedback law is a simple PI that actualize
its suboptimal parameters ‘on-line’. Inside this scheme, basically, two strategies are
designed. The former minimizes a quadratic cost plus a final (also quadratic) penalty
on the states in a finite horizon fashion. The latter use linear matrix inequalities
(LMIs) for incorporating constraints which were not considered in the value function
of the first optimal control problem. Finally, the goodness of the proposed strategies
is showed through numerical simulations.

Keywords: nonlinear systems, optimal control, linear matrix inequalities, input

constraints, optimal noise attenuation.

1. INTRODUCTION

Batch processes have received important attention
during the past two decades due to incipient chem-
ical and pharmaceutical products, new polymers,
and recent bio-technological processes.

In a batch processes, the control problem is
usually given as a tracking problem for a time-
variant reference trajectories defined in a finite
interval. Usually, the engineers talk about that a
batch process has three operative stages clearly
different, startup, batch run and, shutdown. While
these three stages are widely studied by the
engineers for each particular batch process, it is
important to remark that in a widely number
of cases, the most industries have managed to
successfully operate these processes, but this
operation is clearly far from optimal. Only with

the experience of operators and engineers and,
the repeated runs can be improved the operation
control and the product quality.

The efficient design of simple control action algo-
rithms to implement a processes into an industrial
environment has been one of the biggest chal-
lenges in control engineering. The proportional-
integral-derivative (PID) controller, because of its
simplicity, remains the most used in the industry.
However, other control techniques have made
inroad in the industry in order to improve the
performance of the controlled variable.

The optimal control paradigm, where the Hamil-
tonian formalism plays a major role, is in active
development and it should give answer to the
many industrial control requirements, for exam-
ple, for handling restrictions on batch processes.
If the optimal control problem is regular, i.e. a
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Figure 1. Two-Degree-of-Freedom Control Design.

unique control u(t) minimizes the cost function
of the problem, then there will exist an explicit
form for the control law. For linear systems, it
has been shown that this control strategy is in
fact a proportional feedback law u(t) = Kz (t) (see
Sontag (1998) for details) where K is calculated
using either the solution of the algebraic or
the differential Riccati equation. However, for
nonlinear systems, the resulting control strategy
is not a feedback control law such as linear case, in
contrast, is an open-loop strategy relies depending
on non-physical costate of Hamiltonian system
associated to the process (see Costanza and
Rivadeneira (2008b), Costanza and Rivadeneira
(2009), for instance).

In this paper, an initial design of control strate-
gies based on the scheme in Fig. 1 adapted
to the optimal control framework is presented.
This scheme integrates feedforward and feedback
characteristics in a technique called ‘two-degree-
of freedom design’, which is preferred when both
the construction of a reference trajectory, and its
tracking or disturbance attenuation are required
(see Murray (2009), Costanza and Rivadeneira
(2008b)).

This article has the following structure: After
de Introduction, in Section 2, a brief description
of the 4-dimensional fed-batch process model
is presented. Then, in Section 3, the optimal
nonlinear control problem is introduced and the
explicit form and relatioships for the states,
costates and control are well explained. Also, the
first strategy is proposed and a suboptimal control
law in finite horizon fashion is generated. The
second strategy based on infinite horizon optimal
linear control with LMIs is designed too. For this
case, constraints are included in the optimization
problem. the control strategies are reviewed by

means of numerical simulations. In Section 4
the tools required to handle perturbations and
noises are introduced. Finally, in Section 5 the
conclusions and perspectives are presented.

2. DESCRIPTION OF MODEL PROCESS

In this section a fed-batch fermentor for penicillin
production like a case study is considered (see
Cuthrell and Biegler (1989) and Banga et al.
(2005)). The nonlinear process model is given
by the following ordinary differential equations
(ODEs):

. T
1’1(t) =h1$1 —Uu <5001x4) s xl(O) = 1,5,

l‘g(t) = hgl’l — 0,0].I’Q —Uu < 2 ) y IQ(O) = 0,

5004
d3(t) = —}éf; - (0,(())(7)(())219—7:—23) - W
haig + o (1= 5p) @ =0,
#a(t) = 555, 7(0) =T,
hy =0,11 <0006i?+x3> ’
hs = 0,0055 <0,0001 +;33(1 T 10x3)) - ®

y=Cx = xs. (3)

In this model x1, z2, z3 and x4 are the biomass,
penicillin concentration, substrate concentration
(g/L), and the reactor volume (L) respectively.
The output system is the penicillin concentration,
ie. C = (O 10 O), in consequence, it is assumed
that this variable is monitored on-line. The
objectives of the optimization problem are:

(i) To reach in 132 hours (t; = 132 is the time
horizon) a final penicillin concentration of 8 g/L,
i.e. the desired output is ysp = 2sp, = 8. These

operative conditions were extracted from Banga
et al. (2005).

(ii) In addition the nonlinear model includes
several constraints, which must be satisfied during
the operation process. Upper and lower bounds in
the state variables are imposed,

0§$1<4O
0<zs <25 (4)
0<2y <10

as well as, in the control variable (feed rate of
substrate),
0

N

u < 50. (5)
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3. FED-BATCH TRAJECTORY
GENERATION

In this section, basically the Hamiltonian formal-
ism for nonlinear process is introduced. Many of
these ideas are well-documented and developed
by Costanza and coworkers (see Costanza and
Rivadeneira (2009, 2008a,b, 2010) for instance).

3.1 Nonlinear Hamiltonian formalism

Consider the initialized autonomous nonlinear
control affine system

& = f(x) + g(x)u, x(0) = zo (6)
with a general cost functional written as
T

kTHEQahﬂKJ):‘/IﬁdTLUUDdT+x%T?Sw@U,

0
(7)
where a quadratic Lagrangian L and symmetric
constant coefficient matrices are given by

L(z,u)='Qu + Ru?, (8)
Q, S>>0, R>0,T<o0. (9)

Now, consider the value function V which can
always be defined for such problem, namely

V(t,z) = Inf 7(Tt,2,u()),t €0,T] (10)

and, if the problem has a unique solution, then
this solution is called the optimal control strategy
u*,

w'() & mginf J(Ttau(). (1)

The optimal control solution for this problem can
be expressed as

()= —5RGOND,  (12)

where X\ is called the costate and A € R",
(z, A) ranging in 2n-dimensional phase-space. The
Hamiltonian H of such problem is defined as,

H(z, M\ u) 2 Lz, u) + N fx,u). (13)

Since H is assumed regular, then there exists a
unique H-optimal control u°, namely

uo(m,)\) £ argmeH(xa)\aU)a (14)

and the derivative of H with respect to u vanishes
at (z, A\, u®(z, \)).

A regular Hamiltonian explicitly means that the
function u°(x, \) is known (not only its existence
but also its explicit form) and that it is sufficiently
smooth on its variables. The control-Hamiltonian,

HO (2, ) & H(z,\,ul(z, N)), (15)
gives rise to the Hamiltonian canonical equations
(HCEs) (Sontag (1998))

I

: oMo\’
A=— | —— | ; MT) =25z(T), 17
(55) s ) =280, am
and then the optimal costate variable A* results
in

2%

A%wz[&J/mx%ﬂ» (18)

3.2 A linear-feedback control law

In the present Section, the necessary assumptions
are devised in order to convert the feedforward
control action expressed in (12) to a linear
feedback law (which will only depend on the real
states of the system). These assumptions read

(i) The costates expressed in Eq. (18) will be
approximately linear, i.e.

A £ 2P(t)(2(t) — wp), (19)

where z,, is the desired state (which is not
necessarily an equilibrium state since this paper
is proposed for fed-batch reactors) normally de-
signed by the process engineer and P(t) is the gain
adaptive matrix of the controller.

(ii) Only when the control action is calculated, the
system considered will be a linear approximation
of the system mentioned in (1)-(3) that is,

&~ A(t)z(t) + BR)a(t), z(0) = zo,  (20)

where A(t)and B(t) are the resulting matrices of
a standard linearization of the nonlinear system
around a given trajectory. For this reason, the
linear problem results in a linear time variant
(LTV) problem. These matrices may be identified
along with the process. Several identification
and observers algorithms are available in the
control theory literature. We will use a standard
linearization of the model process for obtaining
the A(t), B(t) matrices since the scope of this
paper is not the identification system.

Taking into account the assumptions above, the
optimal control law expressed in Eq. (12) is turned
to a suboptimal control law in feedback form !

umi=—-R B ({t)P(t)(z(t) — zsp) (21)
3.8 The First control strategy: Finite-time horizon
fashion

The subsequent optimization problem is a linear
one with the same cost function (Eq. (7)) but

I Notice that, in this article, u is the manipulated variable
corresponding to nonlinear problem and @ is the calculated
linear control law.
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using the linear dynamics (36). It is well-known
that the solution a that problem is the differential
Riccati equation (DRE):

P(t) = PB(t)R"'B(t)P — PA(t) — A(t)P - Q ;

with a final boundary condition
PT)=2S5, (23)

where @ = Iyx4, R =3 and S = slyx4 (s = 20)
for the case-study.

To solve the DRE may be a really difficult task.
However, this could be done by:

(i) A off-line backward integration with T = 132
and s = 20. But, This option precludes the on-
line implementation of the control law, so it will
be discarded.

(ii) Transforming the boundary-value into a final-
value problem related to the differential Riccati
equation (DRE) as is shown in Sontag (1998).
The disadvantages of this approach are that the
linearization must be done around a fixed point,
for instance t = 0, besides, this method would be
solved only for a pair (T, s).

(iii) Through the recently discovered partial dif-
ferential equations (PDEs) for the initial coes-
tates and final estates described by Costanza
(2008b) for nonlinear systems and Costanza and
Rivadeneira (2008q) for linear systems. Here, this
implementation is adopted since it allows keeping
in memory P(t) solutions for a range of Ty and s.
However, the matrices A and B must be constant,
as a result, the standard linearization must be
made around a fixed point too. An adaptive
scheme can be designed to update the controller
gain as matrices A and B are being updated.

For the case study, A and B are initially calculated
at t =0, , namely

—0,0004
0 0 183 0 0
|0 —001 825 0 B 1
A=1lo o —sa270| B~ 7
0 0 0 0 1
500

(24)

The control law (21) was applied to the system (1)
and in Fig. 2 the evolution of the states for the
finite horizon optimization and control problem
are depicted. The batch process has a typical
response (see Banga et al. (2005)), but there exits
a final error between the desired state x,,, = 8
and the real state reached, xo = 6,47 at the
end of the operation time of the batch reactor.
In other words, this final error is presented due to
the implemented proportional feedback law. The
others states are close to their targets (which are
detailed in Banga et al. (2005)).
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Figure 2. States and control trajectories for finite
horizon set-up. 7' = 132 and s = 20

A Suboptimal PI Controller Following the clas-
sical control theory (Ogatta (1997))2, to reduce
the error in the output at the end of the operation,
a new fictitious state £ is added to a linear system
expressed in (20) (but keeping the linearization
around a fixed point) and, an augmented linear
system can be defined as,

()= (&) (@)~ (F) o= ()0

(25)

E=r(t) —y(t) =r(t) - Ca(t).  (26)

For this system and holding the cost function (7),
a PI control law can be written as,

U= —K& = —ky(t)x(t) + ki (1)E(t) (27)
where K = RIB'P(t) = [K(t) ki(t)], K(t) =
kp(t), & = (sc(t) . xs”), with states z(t) coming

from the real process and P(t) a solution of the
Eq. (22) with

(4 =)

and for this case-study @ = 2,2I545, R = 0,21,
s = 0,1. Notice that, the PI control law has
time variant modes as a result of solving a finite-
horizon optimal control problem.

Figure 3 shows that the control system severely
reduce the final error at the end of the batch oper-
ation. The new control law is calculated through
Eq. (27) and, the state value z at the end of
the operation is 8,02, that is approximately 0.25 %
over the target, which is tolerable. However, state
1 is almost in its saturation level and state x4 is
over its upper bound.

2 Some interesting results in this topic are presented by
Gonzdlez et al. (2008) and Maeder et al. (2009)
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Figure 3. States and control trajectories for PI
control law.

3.4 The second strategy: Infinite-time horizon

Input and State Constraints via LMI  For under-
standing this point, a brief introduction to LMI
and some optimization problems based on LMI is
done. For more details, it is suggested to see two
interesting contributions Boyd et al. (1994) and
Khotare et al. (1996).

A linear matrix inequality or LMI is a matrix of
the form

.F(W)éf0+Z7Tifi>0

=1

(28)

where 7 € R™ and m; are the optimization vari-
ables, and the positive and symmetric matrices
Fi = F, € R™™ ¢ = 1,..,m, are given. The
LMI (28) is a convex constraint on m, i.e., the set
{7 | F(m) > 0} is convex. In particular, linear and
quadratic inequalities, matrix norm inequalities,
and constraints that arise in control problems,
such as Riccati Eq. (28) and control and state
bounds, can be all cast in the form of an LMI.

One important advantage with the LMI is that the
problem with multiple constrains can be expressed
with multiple LMIs that is, F*(7),..., F*(7) > 0
and then these LMIs can be written as a single
LMI given by

diag (F*(r), ..., F"(m)) > 0. (29)
In this paper, the following control problems will
be treated as a single LMI optimization problem:

1. If a infinite horizon is considered, it is
well known that when the control weighting
matrix R in the cost functional is positive
definite and the state weighting matrix Q
is nonnegative definite, the LQR problem is
well posed and can be solved via the classic
algebraic Riccati equation (ARE) (see Sontag

(1998) for more details). This latter can be
written as a constraint (desiguladad),

IMA + ATl +Q —TIBR™'B'II >0, (30)

with II > 0 solution of the last inequality
and it is defined as II € RrTixntl 4
symmetric matrix.

Since R > 0, and using Eq. (?7), the
algebraic Riccati inequality can be written
as a LMI,

FI) = (HA +§$+Q H;) >0 (31)

2. Physical limitations inherent in process equip-
ment invariably impose hard constraints
on the manipulated variable wu(t). These
constraints are incorporated to system (1)
as a LMI optimization problem. Considering
that the linear system (20) (when wu(t) is
a stabilizing control law) is inside of an
invariant ellipsoid as is shown in Khotare et
al. (1996), a LMI for input constraint can be
incorporated.

Remark. The following LMI

2 H—1
F2I) = (“mé&“ Bk ) > 0. (32)

R'BTI I
is equivalent to
[u()lly < Umax, t>0. (33)
Proof. See Cappelletti and Adam (2008),

Using the property (29), it is possible to write only
one LMI as

HA+ATI+QIB 0 0
B'TI R 0 0
H = A
F) 0 0 wul,~vI NBR™
0 0 R'BI I
(34)

Thus, the optimization problem is solved by tradi-
tional numerical methods (Boyd et al. (1994)) and
implemented with standard software as Matlab.
The LMI F(II), for the studied case was solved
using Matlab where @Q = 5l545, R = 1, and
Umax — 7,3.

~v value is a constant which should ensure the
system remains inside the designed ellipsoid. How-
ever, doing this involves a complex optimization
problem further. For practical purposes, this ~y
value can be determined at trial and error. For
the dissipative system to open loop, the adopted
initial value was v = ||x(0)||§ as suggested in
Cappelletti and Adam (2008).

Although, the initial restriction on the manipulat-
ed variable u described by Eq. (5) is 50, for the
optimization problem is imposed the value of 7,3,

>0
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Figure 4. States and control trajectories for P41
control law.

since it seeks to ensure that both states (especially
the level of the reactor) and the manipulated
variable do not exceed the restrictions imposed.
However, Fig. 3 shows that the state z4(t) is
above the constraint and, as the dynamics are
directly related to the manipulated variable u,
then, to help the convergence of the optimization
algorithm is limited to x4(t) by changing the
saturation value of u. Nevertheless, this does not
affect the control law too much, since the different
simulations carried out showed that it tends to
take lower values.

Regarding the typical behaviors of the fed-batch
processes (Banga et al. (2005)), at this point,
it is possible to improve the strategy devised if
the linear system given by Eq. (25) is taken as
an observer of the nonlinear process, i.e. if the
linear system is seen as a time-variant system.
Therefore, an update of the Riccati gain (K)
could be made at each sampling time. In some
way a K(t) would be available to send to the
system. To identify the system we will use some
well-known method described in the literature.
In particular for the batch model considered, it
will be performed by the standard linearization
evaluated at each sampling time.

The improved strategy for the infinite horizon
devised above was simulated, and in Fig. 4 the
results were depicted. The reader can notice that
the objectives fixed for the problem are satisfied,
i.e., the output x5 is close to desired value and
the manipulated variable satisfies the constraint.
Likewise, other states do not exceed maximum
levels set in the problem.

4. ON-LINE COMPENSATION OF
PERTURBED TRAJECTORIES
4.1 Feedback compensation.

The state solution z(-) coming from the linearized
system integration and the identification stage

provides a desired state-trajectory, but at some
time t the states z(t) of the real system may
differ from x(t) due to perturbations in the
signals. To cancel the effect of these perturbations
a corrected control u(-) may be necessary. To
construct the control deviation U, we assume that
these differences are relatively small, then the
deviation variables

X(t) 2 a(t)—a*(t), Ut) £ ut)—u*(t), t € [0, 7]

(35)
must approximately follow a linear dynamics (see
Sontag (1998) for details)

X(t) = @(t) — 2% () = fz(t),u(t)) — f(z"(t)
~ fo(@® (1), u ()X (t) + fulz™ (1), u* (1)
= A(W)X(t) + BHU () .

= 3
S
—~
o~
~—

The control deviation U may then be designed,
either in a finite-horizon context (typically with
the same duration Ty < oo of the original
problem), or in an asymptotic tracking fashion as
it was shown in the previous sections.

4.2 Noise in I/0 signals. Optimal compensation.

Disturbances will be reinterpreted as signal noises
in this subsection. In other words, the linear
system given by (36) will model the deviation
system, but since x(¢) is now a stochastic process,
an estimation of Z will be needed. In short,
the dynamics of the deviation & from output
measurements y will be

§J=Ct+ro=y—Ca", (38)
where, as usual, 7y and 7y are stochastic differ-
entials of Brownian motions (i.e. the r; may be
considered as zero-mean Gaussian white noises)

with covariance matrices o1 and o9 respectively.
For the batch reactor proposed, C = (0 1 0 0).

According to Eqns. ( 36, 19), the stochastic
deviation process will be rewritten as

& = A@®)E(t) + 1, (39)

with

A(t) 2 A(t) — W(t)P(t). (40)

In this context, a Kalman-Bucy filter for the
approximated model is optimal, and can be im-
plemented through (see Costanza and Rivadeneira
(2010), Sontag (1998))

(1) = AW +G(1)[—C3); #(0) = E(wo) = o ,
(41)
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Figure 5. Optimal 2DOF control strategy applied
to the penicillin fed-batch reactor.

where the notation & is also used for the estima-
tion of the stochastic deviation for simplicity, and
where G(t) £ TI(t)C'05 !, and TI(t) is the solution
to another Riccati-type ODE, namely,

TI(t) = AT+ TTA(t) — TIC'Cy *CTI 4 Cy; (42)
with a initial value

Pi(0) = Cov(xg) (43)

A A
where Oy £ 010}, Cy = 03.

The entire 2DOF strategy was applied to fed-
batch process and the requirements imposed are:
i) to keep the process close to its set-point; ii)
to satisfy the restrictions on the manipulated
variable, which is reflected in the fourth state (the
reactor volume) and which should not exceed the
value of 10; iii) to mitigate the process noise.

The covariances of the white noise were taken
as 01 = Iyx4 which directly affects to the
process and, oo = ,1l4x4 which has an effect
on the controlled output. Figure 5 illustrates
the application of the control strategy, which
successfully meets conditions imposed on the
system.

5. CONCLUSIONS

In this paper a complete control scheme has been
developed and illustrated. This scheme integrates
characteristics of feedback control that allows
both the generation of the trajectory to be
followed by the batch process to achieve their
desired final states or outputs and, to mitigate
noise disturbances inherent to the process. This
control scheme has been called by traditional
control theory as a control of two-degrees-of-
freedom.

The innovation in this paper is that besides allow-
ing incorporating restrictions on the manipulated

variable in the design of the control system, all
tools developed to design the degrees of freedom
come from modern optimal control theory, based
on the Hamiltonian formalism, which clearly sets
out the relationship between state, co-state and
control law.

It is important to remark that the entire pro-
posed scheme is implemented on-line, where the
controller parameters are updated on-line. This
is because the resulting controller is based on
the simplifications made of co-state on the sys-
tem and, in consequence, a simple PI industrial
controller can be online tuned. Thus, the two
resulting strategies for tuning PI controllers are
able to generate suboptimal trajectories such that,
in the second case, different constraints can be
satisfied.

Also, it is significant to comment that the
first strategy was developed using finite horizon
optimal control theory with the restrictions that
supports the definition of the objective function.
Since the control action written in co-state terms
and, assuming linearity in the co-states, the
resulting control law has time-varying gains. On
the other hand, the second strategy is presented
under infinite horizon optimal control framework
and allows the inclusion of new constraints by
means of LMI as for example, maximum and
minimum constraints in the states and control
variable. Maintaining the linearity in the co-
states, it is possible to find a suboptimal PI
feedback law, but with feedback gains constant. In
this point it is remarkable that the simplifications
needed to generate the linear control law produces
a losing optimality. The counterpart of this, it
is that the reduction in the complexity of the
mathematical problem treatment leads to less
computational effort.

Finally, the numerical results show a good per-
formance in the controlled variables with the PI
control strategies, and especially, in the second
strategy where a constraint for the reactor volume
is satisfied. In general, all variables have a
good performance inside the operation time fixed
for the batch reactor inclusive when noises are
present.
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