XII Reunion de Trabajo en Procesamiento de la Informaciony Control, 16 al 18 de octubre de 2007

Adaptive Iterative Learning Control Applied to Nonlinear Batch Reactor

Eduardo J. Adam®

TInstitute of Technological Development for the Chemical Industry (INTEC), CONICET —
Universidad Nacional del Litoral (UNL).
eadam@ceride.gov.ar

Abstract— This work presents an application
example of adaptive iterative learning control (ILC)
applied to nonlinear batch reactor with constrains in
the manipulated variable. The strong nonlinearities
of the plant can lead to a non-monotonic convergence
of the /,-norm of the error, and still worse, a unstable
equilibrium signal e.(f). By numeric simulation this
works shows that with the adaptive ILC is possible to
obtain a better performance in the controlled
variable than with the traditional feedback and, with
the feedback based-ILC.
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I. INTRODUCCION

ILC associates three interesting concepts. Iferative
refers to a process that executes the same setpoint
trajectory over and over again. Learning refers to the
idea that by repeating the same thing, the system should
be able to improve the performance. Finally, control
emphasizes that the result of the learning is used to
control the plant. For this reason, ILC constitutes the
adequate theoretical framework to study new control
alternatives for the batch process due to the repetitive
nature of the operation.

Several authors obtain interesting results when the
ILC scheme is implemented in real processes (Arimoto
et al., 1984; Lee and Lee, 1997; Lee et al., 1999, among
others). However, when the nonlinearities are strong,
ILC can reach unsatisfactory results. For example,
Adam (2006) shows that when feedback based ILC is
implemented to control a batch reactor, the performance
with the controlled variable can be poor, obtaining a
non-monotonic convergence of the /,-norm of the error.
Similar results were showed by Amann (1996), Amann
et al. (1996) and, Owens and Hitonen (2005) who
proposed to include an optimal learning algorithm to
achieve a reduction of the /,-norm of the error at each
trail.

On the other hand, the idea of combining adaptive
control with ILC was presented by several authors
(Chien and Yao, 2004; Tayebi, 2004; among others)
especially with robotics applications, outside of
chemical engineering research. This paper present an

adaptive ILC scheme applied to a batch reactor with
acceptable results where the l-norm of the error is
reduced at each trail and an almost monotonic
convergence is achieved.

The organization of this work is as follows. Section II
included a theoretical framework presentation related to
adaptive ILC scheme here studied. Then, Section III
presents by means of numeric simulations the behavior
of the batch reactor in closed loop when the designer
pretends to apply the adaptive ILC linear theory to a
nonlinear system. Finally, in Section IV the conclusions
are summarized.

II. THEORETICAL FRAMEWORK

A. The Basic Idea of the Adaptive ILC.

The ILC scheme was initially developed as a
feedforward action applied directly to the open-loop
system (Arimoto, 1984; Kurek and Zaremba, 1993;
among others). However, if the system is integrator or
unstable to open loop, or well, it has wrong initial
condition, the ILC scheme to open loop can be
inappropriate. Thus, the feedback-based ILC has been
suggested in the literature as a more adequate structure
(De Roover, 1996; Moon et al. 1998; Doh et al., 1999;
Tayebi and Zaremba, 2003).

In this work, a traditional self-tuning regulator (STR)
is combined with feedback-based ILC and, the basic
idea is shown in Fig. 1.
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Figure 1. Schematic diagram of STR combined with

feedback-based ILC. Here, continuous lines denote the
signals used during the k-th trail, dashed lines denote
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signals will be used in the next iteration and doted lines
belong to STR scheme.

This scheme operates as follows. Consider a plant,
which is operated iteratively with the same setpoint
trajectory over and over again, as a robot or an industrial
batch process. During the k-h trail an input-signal u(f)
is applied to the plant, producing the output signal y.(?).
Both signals are stored in the memory devise. Thus,
two vectors with length T; are available for the next
iteration. If the system of Fig. 1 operates to open loop,
using u(?) in the k+1-th trail it is possible to obtain the
same output again. But, if the k+1 iteration includes
w(t) and ei(r) information then, new u.1(¥) and y.(7)
can be obtained. The importance of the input-signal
modification is to reduce the tracking error as the
iterations are progressively increased. That is, || ew ||
< || e || ¥V k= 0. Thus, the purpose of an ILC
algorithm is to find a unique equilibrium input signal
() which minimizes the tracking error.

Due to the existing strong nonlinearities in the
chemical systems, the ILC scheme by itself cannot lead
to a monotonic decrease of the error (in a great number
of cases). For such reason, an adaptive scheme is added
in order to obtain a stable decreasing error at each trail
as it shows in the next section. The STR scheme here
implemented follows the traditional recommendations
given by classical authors as Isermann (1981), Astrom
and Wittenmark (1989), among others.

B. The Tracking ILC Formulation

The ILC formulation uses an iterative updating
formula and the most common algorithm suggested by
several authors (Arimoto, 1984; Horowitz, 1993; Bien
and Xu; 1998; Tayebi and Zaremba, 2003; among
others) for the control signal is given by,

Vk+] = Q(Vk, + CEk), (1)

where V| = 0, C denotes the controller transfer function
and Q is a linear filter'.

Six postulates were originally formulated by different
authors (Chen and Wen, 1999; Norrlof, 2000; Scholten,
2000, among others) those are:

1. Every iteration ends in a fixed time of duration 7.

2. Plant dynamics are invariant throughout the
iterations.

3. The set-point, r(¢) with ¢ € [0, T}] is given a priori.

4. For each trail the initial states are the same. That
means that x;(0) = x,(0), k € Z*.

5. The plant output y(¢) is observable.

6. There exists a unique input, u.(f), that yields the
desired output, 7(f), with a minimum tracking error
e.(1).

A major issue in ILC is the convergence, and each

type of ILC has its own convergence criterion.

1 In this paper variables in time domain are denoted with small letters and
variables in s-domain are denoted with capital letters.

The tracking error e,(f) is defined as
el(t) =r(t) = yl0) 2)
where the subscript k£ denotes the run number and e,
represents (finite-length) output error trajectory for k-th
trail.
The idea is to find a input trajectory u, that minimizes
the output error,

lecll—» y=minlel 3)

as k — oo, where || || is some vector norm.

Clearly, y is a inferior level to be reached by feedback
based-ILC as k-index is increased.

Definition 1. The feedback based-ILC system is said
to have monotonic convergence if

Vkz0: y<|eaall <|ell . “)

Then, the tracking error e.(f) is an equilibrium signal
reached by the control system if the system has this
error signal for all future trails.

Definition 2. The equilibrium signal e.(t) is said to be
stable if

Y B>0, 3b>0,

|eo( t)—ew(t)H<b =

YV k=0,

e (1)=e..(1)|<B, (5)

where e(?) is the initial tracking error.
Definition 3. An equilibrium signal e.(t) is said to be
asymptotically stable if it is stable and

3b>0,

eo(t)—em(z‘)H<b =
fim e, )=e.(0)]=0. ©)
The definitions presented before can be founded in the
literature (Bien and Xu, 1998; Norrlof 2000).
1) A Simple Iterative Updating Formula.

Now, consider the iterative updating formula (1) and
according to Fig. 1, U, = Vi + CE,. Then,

Vier = QU, . ™)
Adam (2005) shows that,
Eii =S(1 — Q)R + SQE; ®)
and,
Uk+1=%R+SQUk . 9

with § and 7 the sensitivity and complementary
sensitivity functions.

Also, based on Tayebi and Zaremba (2003), Adam
(2005) proofs the following remark for LTI plant
without model uncertainty:

Remark 1. Consider a feedback-based ILC scheme in
Fig. 1 with the updating formula (7) and the plant is a
LTI system without model uncertainty. If there exists
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C(s) such that the nominal stability is satisfied, then by
adopting Q such that || SQ || < 1 the tracking error is
reduced as k is increased and it is bounded for all k €
Z* and converges uniformly to

—i S(1-9)
e (t)=lime(t) = o
c oo k J I_SQ R s (10)
when k — oo in the sense of the L,-norm.
According to Eq. (8), for k — oo,
E.=S5(1-0)R + SQE, (11)
or well,
_S(1-0)
E = 150 R (12)
Similarly and according to Eqgs. (9),
T
U,=pR+SQU., (13)
or well,
U —LR 14
* P(1-5Q) (14)

Based on Egs. (12) and (14) the following remark can
be enunciated (Adam, 2005):

Remark 2. Consider the feedback-based ILC scheme
in Fig. 1 with the updating formula (4) and the plant is a
LTI system without model uncertainty. If there exists
C(s) such that the nominal stability is satisfied, then by
adopting Q = 1 the perfect control can be reached as k —
.

Based on the last remarks the following design
procedure is enunciated:

Design Procedure 1 (Nominal Case):

Step 1: Adopt a controller such that nominal stability
and performance are satisfied.

Set Q =1 or well Q(s) to be low pass filter
such that, Q(w) = 1 V w € [0,w.], and
Ow) - 0V w > w.
frequency.

Step 3: Use the ILC updating formula (1) or (4).

Step 2:

with w,. a cut-off

C. The Implemented Adaptive Scheme

In this work it is proposed to combine an on-line
parameter identification of the plant with feedback-
based ILC strategy. The classical literature presents two
schemes clearly different to implement adaptive control,
one of these is i) the Model reference adaptive control
(MRAC) and the other one is ii) the self-tuning
regulator (STR). In this work, due to the necessity to
obtain on-line process data for the implementation of
the ILC, it took advantage of these data to implement a
STR scheme. Thus, for this reason, a direct adaptive
control was implemented.

Notice that, in the block diagram of Fig. 1 it is
possible to distinguish three blocks related to: i) data
acquisition and parameters estimation of the plant, ii)
adaptation mechanism for the controller design and iii)
the controller with autotuning parameters.

As for the identification, the algorithms used for the
on-line parameter estimation are the extreme
importance. Here, it is considered that the system is
perfectly deterministic and there are no disturbances and
noises.

Now, consider the model,

yk) + ay(k=1) + -+ + ay(k-n) = bu(k—d-1)

+ by(k—d-2) + -+ + bu(k—d-n) , 15)
it is possible to write in a vectorial form,
W =¢'k)o (16)
where,
@'(k) = [-(k=1), p(k=2), -+, yk=n), u(k—d-1), -+,
u(k—d-n)] , (17)
and,
0=la,ay, " ,a, b1, by -, by (18)
Then, 2n parameters must be found, and in

consequence, 2n data of u(k) and y(k) are necessary.
Thus, a linear equation system can be written where a;
and b; are unknown parameters. That is,

yk)y=@'(k) o ,
yk+1) = @'(k+1) 0

y(k+N-1) = "(k+N-1) 0, (19)

or well,

Yi=YV.0 , (20)

where N = 2n, ¥, = [@"(k) , @"(k+1), .-+, @ (k+N-
DI and Y = [y(k), y(k+1), -+, y(k+N-1)]" .
Then, the solution of Eq. (20) is given by,

9 = Y,k_l Yk (21)

Finally, based on the estimated parameters, it is
possible to tune the controller parameters following a
criterion for controller design. In this work, IMC
criterion was implemented following the Morari and
Zafiriou (1989) recommendations.

III. ADAPTIVE FEEDBACK BASED-ILC
APPLIED TO BATCH REACTOR

In this section, the non-linear batch reactor control
with strong parametric uncertainty is studied by means
of numeric simulation using adaptive feedback based-
ILC presented in previous section.
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A. Non-Linear Batch Reactor

Consider a batch reactor with a nonlinear dynamic
where an exothermic and irreversible second order
chemical reaction A — B takes place. It is assumed that
the reactor has a cooling jacket whose temperature can
be directly manipulated. The goal is to control the
reactor temperature by means of inlet coolant
temperature. Furthermore, the manipulated variable has
minimum and maximum constrains. That is, T < T, <
Tonass Temin = -10, Tonae = 20 and, T, is written in deviation
variable.

In order to clarify the understanding of this work, the
dynamic equations and the nominal values of the batch
reactor are included in this section. For a more detail
and explanation it is suggested to see Adam (2006).

The reactor dynamic is modeled by the following
equations:

dc,
— 2 =— ke 2 22
d e (22)
ar AH .- , UA
dr Mcp ke est - Mcp T-To) (23)

Also, it must be noted that the reaction rate kinetic is
74 = kes® with k = kee”®" and the nominal batch reactor
values are summarized in Table 1.

Table 1. Nominal batch reactor values.

parameter nomenclature  value
feed concentration Cae 0.9 mol m**
feed temperature T. 298.16 K
inlet coolant T. 298.16 K
temperature

UA/Mcp 0.0288 1 min™!
reaction rate constant ko 4.7 10" I mol's™
activation energy E/R 13550 K™

AH/Mcp -5.79 K I mol

Adam (2006) computed the transfer function

parameters using a Matlab optimization toolbox based
on a multiparametric optimization algorithm and
nominal values resulted to be K = 1, T = 1.4370. Also,
the author shows that the transfer function structure of
the batch reactor changes according to operation point,
demonstrating the nonlinearities of the system.

B. The Adaptive PI Implemented

For the particular problem described in previous
section, Adam (2006) implemented a PI controller with
fixed parameters tuned by Morari and Zafiriou (1989)
recommendations.  Thus, the controller parameters
result to be,

Kr=TI(KA) ,
=T,

(24)
(25)

where K, and T; denote the proportional gain and the
integral action time respectively and, A is the IMC filter
time constant.

Now, considering the transfer function of the reactor
indicated in the previous section then, the Eq. (15) has
two parameters to estimate, that is, @; and b;. In

consequence, the vectors ¢'(k), ¥ ,and 6 result to be,

@"(k) = [-y(k-1), —u(k-1)] , (26)
Y. =[@"(k), @"(k+1)] , (27)

and
0 =[ai, bi]" (28)

Finally, based on a; and b, it is possible to calculate K
and 7 by means of the following expressions,

K=b/1-a) , 29

and
T=-T/lna (30)

where T is the sample time.
Thus, the following procedure was implemented:
Design Procedure 2:

Step 1. Using sample data, compute ¢"(k) and ¥

according to Eqgs. (26) and (27).

Compute 6 with (21) and, a, and b, with Eq.

(28).

Step 3. Compute K and T by means of (29) and (30).

Step 4. Finally, compute the controller parameters K,
and 7; according to Eqgs. (24) and (25).

Step 2.

C. Numeric Simulations

The batch reactor has operation sequence divided in
three stages, start-up, run and shutdown. The controlled
temperature inside the reactor is monitored during these
three stages and, the adaptive feedback based-ILC
scheme was implemented by means of the combination
of the design procedures 1 and 2.

Figure 2 shows the controlled temperature
performance obtained by a traditional feedback and it is
compared with the one obtained by means of adaptive
feedback-based ILC implementation. For the numeric
simulations, according to the previous section, a PI
controller was tuned by IMC parameterization (Morari
and Zafiriou, 1989). It is possible to distinguish that the
controlled temperature can follow the reference with a
good exactitude when the adaptive feedback based-ILC
is implemented. Furthermore, the reader can note that
there is not strong difference as k is increased.
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Figure 2. Controlled temperature inside the batch reactor
when traditional feedback and adaptive feedback based-
ILC are implemented.

Figure 3 shows the dynamic errors obtained with the
three cases presented in the Fig. 2. Clearly, the dynamic
error is considerably smaller when the adaptive
feedback based-ILC is implemented.
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Figure 3. Dynamic errors for the cases studied in Fig. 2.

From a practical point of view, the error is practically
zero in almost all the time interval, excepting a small
interval associated to the reaction starting time. Neither
the traditional feedback control nor the adaptive
feedback based-ILC can reject that disturbance due to
the saturation of the manipulated variable.  This
phenomenon is showed in Fig. 4. Notice that when the
reaction begins both control schemes try to correct the
increase of temperature in the reactor, but quickly the
manipulated variable is saturated and as consequence,
the peak of temperature observed cannot be avoided.
On the other hand, outside of the time interval of the
manipulated variable saturation, the correction of
adaptive feedback based-ILC is better than the

traditional feedback by a better use of the manipulated
variable.
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Figure 4. Temperature reaction response and manipulated

variable for the traditional feedback and adaptive feedback
based-ILC during the second iteration.

Figure 5 compares the l,-norm?® ratio between dynamic
errors obtained with the ILC schemes and the traditional
feedback as a function of the iteration index k. Two ILC
schemes were used, 1) a feedback based-ILC
implemented with PI controller with fixed parameter
(Adam, 2006) and, 2) a feedback based-ILC
implemented with an adaptive PI controller according to
the Section III.B. Here || e ||, denotes the ,-norm of
the error obtained with the k-iteration while, || e |20
denotes the I, -norm of the error obtained with the
traditional feedback with PI controller with fixed
parameter.
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Figure 5. Ratio between || e ||,x and || e ||0.

Notice that, the feedback based-ILC scheme with PI
controller with fixed parameter does not have a

2 The L,-norm refers to the Euclidean norm defined in the traditional
form.
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monotonic convergence of the || e |[,. On the contrary,
when the adaptive feedback based-ILC is implemented
an almost monotonic convergence of the | e |, is
reached. Only in few points, the requirement || e ||, <
| e |l. ¥ k = 0 is not fulfilled but a stable decreasing
error is reached. Nevertheless, the maximum possible
performance and the equilibrium signal are next to be
achieved with few iterations.

Finally, notice that, the tracking equilibrium error does
not indeed tend to zero as k— oo and, it is associated to
manipulated variable saturation during a small time
interval.

IV. CONCLUSIONS

Based on the results from different numeric
simulations, it is possible to conclude that with the
adaptive feedback-based ILC implemented in this
reactor, the control system can reach the maximum
possible performance (in practical terms) with few
iterations. On the contrary, if the feedback-based ILC is
implemented alone, a stable equilibrium signal with a
monotonic terminal convergence will be little probable,
especially if the non-linearities of the system are
considerably strong.

The methodology of combining the STR scheme with
feedback-based ILC has showed to be an attractive
alternative for chemical engineering problems, at first,
with good results.
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