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Abstract

A model-based design and tuning procedure is proposed for feedforward controllers, which accounts for model uncertainties in SISO
systems. Proper relationships for the analysis of feedforward–feedback control systems show that tuning the feedforward controller is not
completely independent from the feedback-loop spectral characteristics. Similarly, fine tune of the associated feedback controller requires to
be based on the residual disturbance remaining after the feedforward control action. Consequently, the simultaneous tuning is proposed for
efficiently solving disturbance-rejection problems. Two application examples show that the robust combined tuning gives satisfactory results
for different dynamics and different tuning requirements.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical methods for tuning feedback controllers like the
earliestZiegler and Nichols (1942)and Cohen and Coon
(1953) have been used for decades. Ziegler–Nichols uses
experimental measurements of the ultimate gain and the ul-
timate period to calculate the controller settings based on
a quarter-decay criterion. Cohen–Coon uses the same tun-
ing criterion assuming that a first-order-plus-delay process
model is available.

More recently,Rivera and co-workers (1986)introduced
a PID controller design method based on internal model
control (IMC) that is attractive to industrial users because it
has only one tuning parameter. Later,Chien and Fruehauf
(1990)extended this approach to cover three different im-
plementations of the PID algorithm and a wide range of pro-
cess models. Despite of these and other contributions to the
feedback-tuning problem, the level of performance obtained
can be insufficient when a disturbance strongly affects the
control system.

There are many examples from different engineering
areas where a disturbance input has a strong effect on
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the controlled variable. Mainly, they are cases where the
control variable is slower than the disturbance variable
because of a large time constant or a large time delay.
When this disturbance is measurable, the use of a com-
bined feedforward–feedback control system is advisable,
and in fact, very common in the process industry: it can be
found in distillation columns (Rix, Löwe, & Gelbe, 1997),
power plants (Weng & Ray, 1997), and continuous reactors
among many other examples. The extensive application of
this combined scheme moved some researchers to initiate
investigations in this area.Sternad and Söderström (1988)
consider the design problem using stochastic disturbances;
Morari and Zafiriou (1989)present a feedforward controller
based on IMC parameterization;Söderström (1999)extends
the pervious work to correlated disturbances, and in the last
yearsGrimble (1999)proposes an optimal solution for an
H∞/H2 feedforward stochastic control problem.

The classic feedforward controller design frequently suf-
fers from several inherent weaknesses: (i) it requires the
identification of the disturbance, and a very good model of
the process, something quite difficult for many systems in
the chemical industry; (ii) the changes in the process pa-
rameters cannot be compensated unless a reliable estimation
procedure is incorporated; (iii) it leads to improper transfer
functions, so that important simplifications must be done to
obtain realizable results.
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This work attempts to partially address the first two prob-
lems by proposing a design procedure where process model
uncertainties are included. The third point is analyzed using
internal-model control (IMC) concepts: the philosophy of
the IMC open-loop controller design is used for extending
the classical feedforward controller design, this provides a
rational procedure to obtain a realizable controller transfer
function. Then, the individual feedforward controller and the
combined feedforward–feedback control system are tuned
using perturbed plant models with known uncertainty limits.
The desired closed-loop characteristics for the output and
the manipulated variable are handled through suitable objec-
tive functions where the feedforwardresidual disturbance
plays a key role.

This paper is organized as follows.Section 2gives the
preliminary concepts related to the combined feedforward–
feedback control system and introduces theresidual-dis-
turbanceformula. This section exposes also new expressions
for nominal and robust performance conditions for distur-
bance rejection when using the combined control system,
and sets the bases for successive or simultaneous tuning.
Section 3proposes a sequence of steps heading to optimum
H2 model-based feedforward controller design, mostly fol-
lowing Morari and Zafiriou (1989). A short analysis of few
extraordinary conditions for perfect disturbance rejection is
also presented in this section.Section 4tells how to solve
the combined tuning problem as well as the use of linear
fractional transformation (LFT) to include additional fea-
tures like a weight on the manipulated variable.Section 5
presents two application examples that reveal the ability of
this approach for tuning both the feedforward and the asso-
ciated feedback-loop. Finally, the conclusions are presented
in Section 6.

2. Properties of the feedforward–feedback control

2.1. Basic relationships

Fig. 1 shows an sketch of the combined control system
whereK(s) is the feedback controller,Cf (s) is the feedfor-
ward controller,Gd(s) stands for the transfer function be-
tween the outputy(s) and the exogenous disturbanced(s),
and Gp(s) is the transfer function between the output and
the manipulated variableu(s). From this representation, it is

Fig. 1. Feedforward–feedback control system.

clear thatGd(s) and Gp(s) are linear time invariants (LTI)
models representing the real plant.

The objective for the feedforward controller is basically to
generate anticipated corrective actions to compensate mea-
sured input disturbances. Standard textbooks likeSeborg,
Edgar, and Mellichamp (1989)andStephanopoulos (1984)
indicate that a controllerCf (s) connected as shown inFig. 1,
is capable of achieving such goal.

When the feedforward controller is implemented alone,
the disturbance effect on the output variable is written as

y(s) = [Gd(s)− Cf (s)Gp(s)]d(s) (1)

but in case that a feedback-loop is also used, the correct
expression is

y(s) = Gd(s)− Cf (s)Gp(s)

1 +Gp(s)K(s)
d(s) (2)

Thus, the ideal feedforward controller that yieldsy(s) = 0
even ifd(s) �= 0, is

Cf (s) = Gd(s)

Gp(s)
. (3)

However, the expression (3) might result in an improper or
unstable transfer function. When this happens,Cf (s) should
be chosen such to minimize the effect of the disturbance on
the controlled variable. From inspection ofEq. (2), Morari
and Zafiriou (1989)point out that the optimal selection de-
pends on the feedback controller and the disturbance char-
acteristics. They also propose anH2 optimal feedforward
controller design under the theoretical framework supporting
the IMC parameterization. Though the proposal accounts for
realizability and instability, there are no suggestions about a
convenient approach for synthesizing the feedforward con-
troller when there is information about model uncertainties.

2.2. Internal stability

Let us assume inputsd(t) and r(t) are bounded signals,
i.e., d(t), r(t) ∈ L2[0,∞), whereL2[0,∞) stands for any
continuous signals on [0,∞) that have finite 2-norm (Green
& Limebeer, 1995).

Definition 1. (Perfect disturbance rejection). Feedforward
control allows perfect disturbance rejection when the con-
trolled variable does not change as a consequence of any
bounded input disturbance, i.e.,

y(t) = 0, ∀ t ≥ 0 ford(t) ∈ L2[0,∞) and r(t) = 0

(4)

wherey(t) is defined as a deviation from the steady-state
value.

Recognizing thatRH∞ is the real rational subspace of
H∞ consisting of all proper and rational stable transfer func-
tions (Zhou & Doyle, 1998), a convenient remark rises from
the above definition andEqs. (1)–(3).
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Fig. 2. Internal stability of the feedforward–feedback control system.

Remark 1. (Perfect disturbances rejection). Let us assume
there is no mismatch between the actual plant and the LTI
nominal models. Let us assume also that the disturbanced(t)
is bounded. Then, perfect disturbance rejection is achieved
using feedforward controller (3) if this controller belongs to
the subspaceRH∞.

The above statements emphasize the fact that feedforward
control allows the possibility of perfect disturbance rejec-
tion, something that is not possible using feedback control
(Morari & Zafiriou, 1989). Since this property causes the
feedforward control to be an interesting control strategy, this
work objective is to analyze its strength under realistic cases
where model uncertainties are present.

Fig. 2 shows a rearranged sketch of the block diagram
in Fig. 1, which serves to analyze the internal stability of
the combined feedforward–feedback control system. In this
figure, two disturbances affecting the feedback-loop—d1 and
d2—are identified as internally generated signals. Recalling
the definitions of sensitivity function,S := 1/(1 + KGp),
and complementary sensitivity function,T := KGpS, the
internal stability condition can be stated as follows.

Definition 2. (Internal stability of the combined control sys-
tem). The system shown inFig. 2 is internally stable if the
transfer function matrix

M =




(Gd − CfGp)S T

−K(Gd − CfGp)S KS

Gd 0

Cf 0


 (5)

from [d r]T to [y uk d1 d2]T, belongs toRH∞ for all bounded
d(t) andr(t).

Note that requiring internal stability to the feedback-loop
alone is not sufficient for the combined system. For com-
bined internal stability it is also necessary thatCf (s) and
Gd(s) be stable functions. Otherwise, for anyd(t) ∈ L2[0,
∞), neitherd1(t) nor d2(t) will be bounded functions. In
other words, if the controllerCf (s) and the plantGd(s) be-

long to the subspaceRH∞, the internal stability of the
feedback-loop is not affected since all the input signals
are bounded, and there is no effect on the characteristic
equation.

Remark 2. The combined feedforward–feedback control
system is internally stable ifGd(s) andCf (s) belong toRH∞
andK(s) is an internally stabilizing feedback controller.

2.3. Nominal and robust stability

To extend the analysis to realistic cases, let us assume that
there are available two nominal models and the correspond-
ing uncertainty limits to represent the real plant. Hence, the
entire plant dynamics can be described by means of two
perturbed models, which are defined using the classic mul-
tiplicative uncertainty, namely

Gp(s) = Gpo(s)(1 + lmu(s)), (6)

Gd(s) = Gdo(s)(1 + lmd(s)), (7)

whereGpo andGdo are the nominal models. Two families
of modelsΠd andΠu are involved here, explicitly

Πu :=
{
Gp : |lmu(jω)| :=

∣∣∣∣Gp(jω)−Gpo(jω)

Gpo(jω)

∣∣∣∣ ≤ lmu(ω)

}
,

(8)

Πd :=
{
Gd : |lmd(jω)| :=

∣∣∣∣Gd(jω)−Gdo(jω)

Gdo(jω)

∣∣∣∣ ≤ lmd(ω)

}
,

(9)

wherelmu(ω) andlmd(ω) are the upper bounds for the mul-
tiplicative uncertainty modulus|lmu(jω)| and |lmd(jω)|, re-
spectively. Note that, due to the internal stability condition,
all members ofΠd must belong toRH∞.

Then, the Remark 2 and the expressions (6)–(9) allow the
following definitions.

Definition 3. (Nominal stability of the combined control
system). The feedforward–feedback control system have
nominal stability if the feedback controllerK(s) gives in-
ternal stability to the closed-loop with the nominal model
Gpo(s) and,Gdo(s) andCf (s) belong toRH∞.

Definition 4. (Robust stability of the combined control sys-
tem). The feedforward–feedback control system have robust
stability if the feedback controllerK(s) gives internal stabil-
ity to the closed-loop for allGp(s) ∈ Πu, andCf (s) and all
Gd(s) ∈ Πd belong toRH∞.

2.4. Nominal and robust performance

A main concern in this work is the performance of the
combined control system. To address this problem let us
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substitute the sensitivity functionS := 1/(1+KGp), and the
perturbed models (6) and (7) in theEq. (2). This gives

y(s)

d(s)
= S(s)

{
Gdo(s) [1 + lmd(s)]

−Cf (s)Gpo(s) [1 + lmu(s)]
}
. (10)

The right side of this expression suggests the definition of a
new transfer function as

Rd(s) := Gdo(s) [1 + lmd(s)] − Cf (s)Gpo(s) [1 + lmu(s)] ,

(11)

which can be thought as theopen-loop residual disturbance
remaining after the feedforward compensation. Hence,
Eq. (10)can be rewritten as

y(s) = S(s)Rd(s)d(s), (12)

from where it is readily seen that the condition

|S(jω)Rd(jω)| ≤ γ, ∀ 0 ≤ ω < ∞, (13)

ensures

‖y(jω)‖ ≤ γ ‖d(jω)‖ . (14)

It is also apparent from (14), that the disturbance attenua-
tion of the output variable is achieved ifγ < 1. This con-
dition however, refers to the inequality (13), which links
the residual disturbance to the feedback sensitivity function,
and leads to the following statements: (i) the fine tuning
of a feedforward controller has to be done considering the
feedback-loop characteristics or; (ii) both, feedforward and
feedback controllers should be simultaneously tuned for an
efficient disturbance rejection.

To formalize this result, recall that if the performance
objectives are satisfied for the nominal plant, the control
system reaches what is named nominal performance.

Definition 5. (Nominal performance for disturbance rejec-
tion). The combined feedforward–feedback control system
attains nominal performance if, for everyd(t) ∈ L2[0,∞),
the desired performance objectives are satisfied for the nom-
inal modelsGpo andGdo.

Let ||·||∞ denote theH infinity norm based on the clas-
sical definition, also letS0 stand for the nominal sensitivity
functionS0 := 1/(1+ KGpo), and thenominal residual dis-
turbancebeRdo := Gdo − CfGpo. Then, the performance
objective can be expressed by the following lemma.

Lemma 1. (Nominal performance for disturbance rejec-
tion). The feedforward–feedback control system reaches the
nominal performance for disturbance rejection if∥∥wp S0Rdo

∥∥∞ ≤ 1 (15)

is satisfied, wherewp is a weight function included for a
more general formulation.

Letting d(t) ∈ L2[0,∞), the proof is trivial since the
inequality (13) can be rewritten for nominal models as
Eq. (15), whereγ−1 = |wp| ≥ 1.

Furthermore, the expression (13) represents the robust
performance condition for the combined feedforward–feed-
back control system when, beingγ < 1, it holds for all the
models included in the familiesΠu andΠd.

Definition 6. (Robust performance for disturbance rejec-
tion). The combined feedforward–feedback control system
attains robust performance if, for everyd(t) ∈ L2[0,∞),
the desired performance condition is satisfied for every per-
turbed modelGp ∈ Πu andGd ∈ Πd.

Similarly to Lemma 1, this sufficient condition can be
formalized as follows:∥∥wp S Rd

∥∥∞ ≤ 1 (16)

Lemma 2. (Robust performance of the combined control
system). Let Gp(s) and Gd(s) belong to the familiesΠu and
Πd , respectively, then the combined feedforward–feedback
control system achieves robust performance if the following
condition is satisfied:

|wp(jω)S0(jω)Rd(jω)| + |T0(jω)lmu(jω)| ≤ 1,

∀ 0 ≤ ω < ∞. (17)

whereT0 = 1 − S0.

The proof ofLemma 2is included inAppendix A. Rel-
evant result arises from this analysis by noting that the first
term in Eq. (17)does not completely match the condition
(15) for Nominal Performance, and that‖T0lmu‖∞ ≤ 1
represents the necessary and sufficient condition for robust
stability of the feedback-loop. The point is that in robust
control theory, it is frequently accepted that nominal per-
formance plus robust stability implies robust performance,
but according to theEq. (17) this is not the case for the
combined feedforward–feedback control system whereRd
is different form the nominalRdo in Eq. (15). Furthermore,
it is worth to note thatEq. (17) reduces to the traditional
feedback condition in the absence of feedforward action.

3. Feedforward controller design

This section discusses the development of a design pro-
cedure for feedforward controllers when the process model
have reliability problems, i.e., when it is not possible to ne-
glect the effect of model uncertainties on the control per-
formance, or to ignore that the actual plant dynamics are
significantly more complex than the assumed linear model.

The procedure proposed here for the synthesis of a dy-
namic feedforward controller consists of determining

Cfo(s) = Γ1

{
Gdo(s)

Gpo(s)

}
, (18)
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whereGdo(s) andGpo(s) are the nominal transfer functions,
andΓ 1{·} is an operator that excludes the following parts
from the polynomial ratio: (i) the zeros ofGpo(s) that belong
to the right-half complex plane; (ii) the unstable poles of
Gpo(s); and (iii) the positive time delay that might result
from the differenceθdo − θpo, whereθdo and θpo are the
nominal delays inGdo(s) andGpo(s), respectively.

Though the operation defined in (18) gives a stable trans-
fer function, in many cases the result is no realizable. There-
fore, an auxiliary filter function is proposed to solve the re-
alizability problem. The final controller expression is then
given by

Cf (s) = Cfo(s)f(s), (19)

wheref(s) is defined as follows.

Definition 7. (Feedforward filter). The feedforward filter
f(s) is chosen as a stable rational transfer function,

f(s) := Kf

(λf s+ 1)n
, (20)

whereλf and Kf are positive tuning parameters andn is
determined by

n :=
{

|Γ2| if Γ2{Cfo(s)} < 0

0 if Γ2{Cfo(s)} ≥ 0
(21)

In this expressionΓ 2{·} stands for an operator that com-
putes the relative order ofCfo(s), in other words, it gives the
difference between denominator and numerator order.

Notice that in case the complete relationship{Gdo/Gpo}
is included in the design (no zero or pole is excluded from
Gpo orGdo) andCfo is realizable, the feedforward controller
leads to perfect disturbance rejection only if the model un-
certainties are negligible. This statement is supported by a
short analysis of the residual disturbanceRd, which can be
written

Rd(s)=Gdo(s)[1 + lmu(s)]

×
{

[1 + lmd(s)]

[1 + lmu(s)]
− Cf (s)

Gpo(s)

Gdo(s)

}
. (22)

Assuming the particular case in which the operatorΓ 1 does
not exclude any term, the full cancellation ofGpo andGdo

in Eq. (22)yields

Rd(s) = Gdo(s)[1 + lmu(s)]

{
[1 + lmd(s)]

[1 + lmu(s)]
− f(s)

}
. (23)

It is apparent from expression (23) that ifCfo is realizable
and both multiplicative uncertainty are negligible, namely,
lmd(s) ∼= 0 and lmu(s) ∼= 0, thenf(s) = Kf = 1 would
be enough to ensure disturbance rejection sinceRd ∼= 0.
However, if the uncertainties are not negligible andf(s) =
[1+ lmd(s)]/[1 + lmu(s)] is adopted, the residual disturbance
will rarely remain null all the time. This happens because
the actual concept underlying the uncertainty functionslmd

andlmu is that they do not describe deterministic dynamics
such to make possible an exact compensation. Global model
uncertainties like these are useful functions for providing
limit behaviors only.

4. Tuning procedures

4.1. Tuning the feedforward controller

Most feedforward controllers designed as indicated before
have the filter gainKf and the filter time constantλf as
adjusting parameters. For a robust performance tuning, the
following frequency domain problem can be proposed: find
Kf andλf such that∥∥wpSRd

∥∥
∞ = 1, (24)

where wp stands for a weighting function that pro-
vides an additional degree of freedom for defining the
output-response characteristics. Since the tuning parameters,
Kf andλf , belong to the residual disturbanceRd exclusively,
a question might arise in regard to the possibility of usingRd
alone. However, the arguments to include the feedback sen-
sitivity functionS in (24) were explained inSection 2, based
on the convenience of referring the disturbance-rejection
problem to the expression inEq. (13). Given a feedback
controller previously tuned, the feedforward solution to the
above problem considers the frequency-spectrum character-
istics of that specific feedback-loop. Alternatively, the use
of Rd alone would give a feedforward-controller tuning in-
dependent from the feedback-loop, and probably, of lower
combined performance.

Observe also that (24) defines a loop-shaping procedure
rather than an optimization problem since it is equivalent
to the condition (13), whereγ = |wp|−1 ≤ 1. This strat-
egy is quite different, for instance, from the problem of
minimizing

∥∥wpSRd
∥∥

∞ where the non-linear terms lead to
a result that must not be considered an optimum since the
global optimality is not guaranteed. Even more important:
this pseudo-optimal search might attempt the idealλf = 0
solution, which is unrealizable.

4.2. Tuning the feedforward–feedback control system

Recall that the feedback controllers are usually tuned to
satisfy one of the following two objectives: (i) good set-point
tracking; or (ii) good disturbance rejection. In this subsec-
tion, the combined feedforward–feedback tuning for the reg-
ulation problem is analyzed.

The simplest strategy is to adjust the feedforward con-
troller such to reduce the effect of the disturbance in the
presence of an specific feedback controller and simultane-
ously to tune the feedback controller such to complete the
disturbance rejection to the level indicated bywp. Although
the tuning problem inEq. (24)can be extended to include
the feedback controller by simply allowing the variation of
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Fig. 3. Linear fractional transformation of the feedforward–feedback control system. Here,w = d, z = [z1 z2]T, Fl(P,K) = P11 +P12K(I−P22K)
−1P21

with P11 = [wpRd 0]T, P12 = [wpGp wuI], P21 = Rd andP22 = Gp.

additional parameters—like the proportional gain and the
integral-reset time in case that a PI controller is used—an
alternative functional can be defined according to the needs.

For instance, followingZhou and Doyle (1998)or
Sanchez Peña and Sznaier (1998), the linear fractional
transformation (LFT) can be applied to the combined
feedforward–feedback control system, as indicated in
Fig. 3. Hence, attending to the new definition of the system
output, the following mixed functional can be proposed
which includes performance limits for the manipulated
variable,

N =
[

wpSRd
−wu(KSRd)

]
(25)

where,wu and wp are weight functions used to restrict
the actuator movements and to determine the performance
required to the combined control system respectively. This
way, the index functionwpSRd used in (24) is mixed with
another term that focus on the intensity of the manipulated
variable movements. The extension from the performance
index (24) to a new one using (25) revels that the combined
system can also be analyzed and tuned under differentH∞
performance requirements.

Remark 3. The general combined feedforward–feedback
tuning for the regulation problem can be presented as an
H∞ mixed criteria problem, namely

‖N‖∞ ≤ 1. (26)

whereN is a functional defining the required performance
and where the solution is constrained to parameter spaces
ensuring a stable control system.

Besides, note that when the feedback-loop is used alone to
solve the regulation problem, the mixed criterion inEq. (25)

changes to

N =
[

wpSGd
−wuKSGd

]
, (27)

where N now includes the transfer functionGd defining
the disturbance characteristics instead of the residual distur-
banceRd. The main difference between these two functions
is thatRd includes adjusting parameters in contrast withGd.
Hence, a valuable insight about the effect of adding a feed-
forward controller to a feedback control loop is obtained by
comparingEqs. (25) and (27).

Remark 4. A functional defining regulation criteria for
the combined feedforward–feedback tuning is structurally
similar to the functional defining the same criteria for the
feedback-loop alone, with the only difference that the resid-
ual disturbance transfer functionRd(s) must be used in
place of the original disturbance transfer functionGd(s).

5. Application examples

5.1. Example 1

Consider the design of a feedforward–feedback control
system like sketched inFig. 1, where

Gd(s) = Kde−θds

(τds+ 1)
and Gp(s) = Kpe−θps

(τp1s+ 1)(τp2s+ 1)
.

(28)

In this problem, [Kd, τd, θd ] and [Kp, τp1, τp2, θp] are un-
certain parameters ofGd(s) andGp(s), respectively. Let us
adopt as nominal parameter valuesKdo = 1, τdo = 1, θdo =
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Table 1
Limit values for the uncertain parameters in Example 1

Minimum Maximum

Kd 0.8 1.2
τd 0.9 1.1
θd 0.095 0.105
Kp 0.95 1.05
τp1 0.95 1.05
τp2 0.95 1.05
θp 0.19 0.21

0.1,Kpo = 1, τp1o = 1, τp2o = 1, andθpo = 0.2, with uncer-
tainty ranges given byTable 1. Assume also, that the feed-
back regulator is a PID controller with settings determined
by (Morari & Zafiriou, 1989),

KC = τp1o + τp2o

Kpo(ε+ θpo)
,

TI = τp1o + τp2o and TD = τp1oτp2o

τp1o + τp2o

(29)

Furthermore, according toEqs. (18)–(21), the design expres-
sion for the feedforward controller is

Cf (s) = KdoKf

Kpo

(τp1os+ 1)(τp2os+ 1)

(τdos+ 1)(λf s+ 1)
. (30)

The parameter intervals inTable 1define convex hulls in
the parameters space that are projected on the complex plane,
generating uncertainty regions like shown inFig. 4. The
maximum boundslmu and lmd are numerically determined
as the largest distance between the nominal model and the
respective family boundary.

The following tuning approaches are tested: (1) the com-
bined feedback–feedforward settings are determined by

Fig. 4. Maximum uncertainty boundlmu computed for a given frequencyω.

Table 2
Settings obtained for different limit values ofγ

γ ε Kf λf

1.00 2.93 2.29 0.0256
0.75 3.51 1.97 0.0242
0.50 3.98 1.67 0.0244
0.25 4.60 1.39 0.0233
0.15 4.88 1.10 0.0127

solving the problem (24) for different constant values of
wp; (2) the mixed performance index inEq. (25)is used to
observe the effect of changing the weightwu on the output
performance.

The numerical solutions to these tuning problems did not
show sensibility to the initial parameter values even though
they include nonlinear relationships. However, a simple but
reasonable initialization was used:ε = 1 for being close to
fast closed-loop response conditions,Kf = 1 and, a small
value ofλf for being not too far from ideal compensation.

In the first tuning approach, both the feedforward and
feedback controller parameters are determined simultane-
ously using (24). The problem basically consists on finding
the set of parameters{ε, Kf , λf } satisfying an arbitrary value
of γ = |wp|−1 ≤ 1. The numerical experience is run here
for five different upper limits, like shown inFig. 5 where
|SRd| is plotted versus frequency. The settings obtained in
each case are exposed inTable 2. Figs. 6 and 7show the
time responses of the system output and the control vari-
able, respectively, obtained for a unit-step change in the dis-
turbance. Clearly, the disturbance rejection improves as the
upper limit decreases.

Fig. 8 shows four frequency responses under different
control conditions. The first curve corresponds to |y(jω)|



1906 E.J. Adam, J.L. Marchetti / Computers and Chemical Engineering 28 (2004) 1899–1911

Fig. 5. Simultaneous tuning of the combined control system for differentγ values.

= |Gd(jω)|, which obviously shows the complete distur-
bance effect on the output when the system is not controlled
at all. The second curve is the result of incorporating the
feedback controller only, namely, this is the plot of |y(jω)|
= |S(jω)Gd(jω)| using ε = 4.88, the same feedback tun-
ing shown inTable 2for γ = 0.15. The third one, is the
open-loop residual disturbance |y(jω)| = |Rd(jω)| show-
ing the important rejection obtained by the feedforward
controller alone; the settings in this case areKf = 1.10
and λf = 0.0127. Finally, the last curve shows the effect
of combining both controllers, which, in fact, were tuned
together to satisfy the upper limitγ = |wp|−1 = 0.15.

Fig. 6. Output-variable responses to a unit-step change in the disturbance using settings inTable 2.

Table 3
Settings obtained for different values ofwu and constantγ = 1

wu ε Kf λf

1 3.27 1.36 0.024
10 33.8 1.23 0.036
15 50.0 1.18 0.13
20 66.6 1.15 0.22
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Fig. 7. Manipulated variable movements that correspond to the responses inFig. 6.

This analysis shows the role played by each controller to
achieve the disturbance-rejection objective. Note that both,
the contribution made by the feedforward controller with-
out endangering the stability, and the feedback influence at
low frequencies can be simultaneously conditioned by the
weighting functionwp.

In the second tuning approach used in this application
example, the combined control system is tuned using the
mixed performance index (25) forwp = 1, and differ-
ent values of the weightwu. The settings obtained in this
case are given inTable 3, while Figs. 9 and 10show

Fig. 8. Effect of using feedback and feedforward controllers separately, and the combined feedforward–feedback control system.

the corresponding output and manipulated time response.
The initial manipulated-variable stroke is important in all
cases (−56.2; −33.9; −9.12; −5.2), with the larger one
being that correspondent to the most demanding settings
(wu = 1).

5.2. Example 2

In this second example, the plant shows inverse responses
to changes in the manipulated variable, which delays the
feedback control action and makes the control problem more
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Fig. 9. Output-variable responses to a unit-step change in the disturbance and different weightswu.

challenging. Thus, the plant is modeled in this case by

Gd(s) = Kde−θds

τds+ 1
, and Gp(s) = Kp(−zps+ 1)e−θps

τ2
ps

2 + 2ζτps+ 1
,

(30)

and the feedforward controller takes the form

Cf (s) = KdKf

Kp

(τ2
ps

2 + 2ξτps+ 1)

(τds+ 1)(λf s+ 1)
. (31)

Fig. 10. Manipulated variable movements that correspond to the responses inFig. 9.

Let us adopt the following parameter valuesKd = 1, θd =
1, θd = 0.5, Kp = 1, τp = 2.0, zp = 2.0, ξ = 0.23,
andθp = 1.5. The model uncertainties are assumed to de-
pend exclusively on the time delays; this is equivalent to say
that the multiplicative uncertainties forGp andGd are given
by lmu(s) = e−θps − 1, and lmu(s) = e−θps − 1, respec-
tively.

The strategy used for designing the feedback controller
follows again the IMC parameterization given byMorari and
Zafiriou (1989); in this caseGp(s) leads to a PID controller
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Fig. 11. Second example withτd = 1.0. Output-variable modulus for different tuning procedures.

with settings determined by

KC = 2ξτ

Kp(2zp + ε)
, TI = 2ξτ, and TD = τ

2ξ
. (32)

Successive and simultaneous tunings are tested in this ap-
plication example. In the successive tuning, the feedback
parameterε is first adjusted to satisfy |S(jω)Gd(jω)| = 1;
then, the feedforward parametersKf and λf are adjusted
to obtain |S(jω)Rd(jω)| = 1 while maintainingε constant.
In the simultaneous case, the feedforward–feedback tun-
ing is solved usingε, Kf , and λf as free parameters to

Fig. 12. Time-domain responses that correspond to the results inFig. 11.

satisfy |S(jω)Rd(jω)| = 1 directly. The settings obtained in
these different adjustments are shown in the first part of
Table 4.

Fig. 11 shows the index functions versus frequency de-
termined by the settings inTable 4, andFig. 12 shows the
corresponding time-domain responses to a unit-step change
in the disturbance. None of these figures shows a signifi-
cant difference between successive or simultaneous tuning.
Surprisingly, no even the simple static feedforward con-
troller shows a large difference in the frequency domain,
other than a pick aroundω = 0.5–0.6 radians/s; however,
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Fig. 13. Second example withτd = 1.5. Output-variable modulus for different tuning procedures.

the time-domain response shows the effect of ignoring the
|S(jω)Rd(jω)| = 1 condition. A slight difference in favor of
the simultaneous tuning can be observed since the time do-
main response shows a sorter settling time.

Figs. 13 and 14show the results of similar tuning proce-
dures, but this time changingτd = 1.0 by τd = 1.5 in Gd(s).
An important difference between the successive and the si-
multaneous tuning is observed in these responses, stressing
the convenience of adopting simultaneous tuning as a stan-
dard procedure. The settings determined in this opportunity
are shown in the second part ofTable 4.

Fig. 14. Time-domain responses that correspond to the results inFig. 13.

Table 4
Settings obtained for Example 2

Tuning procedure ε Kf λf

Caseτd = 1.0
Successive tuning 30.0 0.997 1.339
Simultaneous tuning 14.62 0.966 1.00
Static feedforward 30.0 Cff = Kd/Kp = 1.0

Caseτd = 1.5
Successive tuning 32.0 1.476 1.475
Simultaneous tuning 7.85 1.329 1.200
Static feedforward 32.0 Cff = Kd/Kp = 1.0



E.J. Adam, J.L. Marchetti / Computers and Chemical Engineering 28 (2004) 1899–1911 1911

6. Conclusions

This work revises the synthesis of feedforward controllers
when the available dynamic models include estimated limits
for the uncertainties. The following statements summarize
concepts analyzed along this paper, which contribute to solve
disturbance-rejection problems.

Though it is well known that feedforward controller does
not influence feedback stability, the analysis ofinternal sta-
bility for the combined feedforward–feedback control sys-
tem requires that the feedforward controller be a stable
function, and that the disturbance effect on the output be a
bounded signal.

The analysis of including the feedforward controller
in a control system is facilitated by the definition of the
open-loop residual disturbance, which represents that part
of the original disturbance remaining in the controlled out-
put despite of the feedforward control action. This residual
disturbance defines the regulation task for the feedback
controller that completes the disturbance rejection.

Typically, nominal performance plus robust stability im-
plies robust performance, however the analysis presented in
this paper demonstrates that this is not the case for the com-
bined feedforward–feedback control system.

The feedforward and the feedback controllers should
be simultaneously tuned for an efficient disturbance rejec-
tion; alternatively, fine-tuning of the feedforward controller
must consider the spectral characteristics of the associated
feedback-loop.

Further contributions of this work are exposed inSection 2
through a set of definitions, lemmas and remarks that ex-
tends classic feedback control concepts to the combined
feedforward–feedback control system.
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Appendix A

Proof of Lemma 2. According toEq. (16),

|wP(jω)S(jω)Rd(jω)| ≤ 1, ∀ 0 ≤ ω < ∞. (A.1)

DefiningL0 := GpoK, thenS = [1 + L0(1 + lmu)]−1 and,

1 + L0(1 + lmu) = 1

S0
[(S0 + S0L0)+ S0L0lmu] (A.2)

Using the complementary sensitivity functionT0 = S0L0
and recalling thatT0 + S0 = 1 allows to write, 1+ L0(1 +
lmu) = (1 + T0lmu)/S0. Replacing this expression in the
definition of sensitivity function,

S = S0[1 + T0lmu]−1, (A.3)

and substituting (A.3) into (A.1) gives,

|wp(jω)S0(jω)[1 + T0(jω)lmu(jω)]
−1Rd(jω)| ≤ 1,

∀ 0 ≤ ω < ∞. (A.4)

Rearranging the above condition gives

|wpS0(1 + T0lmu)
−1Rd| ≤ |wpS0Rd||(1 + T0lmu)

−1|
= |wpS0Rd|

|1 + T0lmu| ≤ |wpS0Rd|
1 − |T0lmu| . (A.5)

Hence, from (A.4) and the inequality (A.5), the following
expression can be obtained,

|wpS0Rd|
1 − |T0lmu| ≤ 1. (A.6)

Rearranging again,

|wpS0Rd| + |T0lmu| ≤ 1, ∀ 0 ≤ ω < ∞ (A.7)

which is the result in expression (17). �
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