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Abstract

A model-based design and tuning procedure is proposed for feedforward controllers, which accounts for model uncertainties in SISO
systems. Proper relationships for the analysis of feedforward—feedback control systems show that tuning the feedforward controller is not
completely independent from the feedback-loop spectral characteristics. Similarly, fine tune of the associated feedback controller requires to
be based on the residual disturbance remaining after the feedforward control action. Consequently, the simultaneous tuning is proposed for
efficiently solving disturbance-rejection problems. Two application examples show that the robust combined tuning gives satisfactory results
for different dynamics and different tuning requirements.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction the controlled variable. Mainly, they are cases where the
control variable is slower than the disturbance variable
Classical methods for tuning feedback controllers like the because of a large time constant or a large time delay.
earliestZiegler and Nichols (1942and Cohen and Coon  When this disturbance is measurable, the use of a com-
(1953) have been used for decades. Ziegler—Nichols usesbined feedforward—feedback control system is advisable,
experimental measurements of the ultimate gain and the ul-and in fact, very common in the process industry: it can be
timate period to calculate the controller settings based onfound in distillation columnsRix, Léwe, & Gelbe, 199y,
a quarter-decay criterion. Cohen—Coon uses the same tunpower plants\(Veng & Ray, 199, and continuous reactors
ing criterion assuming that a first-order-plus-delay process among many other examples. The extensive application of
model is available. this combined scheme moved some researchers to initiate
More recently,Rivera and co-workers (198@®troduced investigations in this are&ternad and Soderstrém (1988)
a PID controller design method based on internal model consider the design problem using stochastic disturbances;
control (IMC) that is attractive to industrial users because it Morari and Zafiriou (1989present a feedforward controller
has only one tuning parameter. Lat&hien and Fruehauf  based on IMC parameterizatioB{derstrém (199%9xtends
(1990) extended this approach to cover three different im- the pervious work to correlated disturbances, and in the last
plementations of the PID algorithm and a wide range of pro- yearsGrimble (1999)proposes an optimal solution for an
cess models. Despite of these and other contributions to thet{ ../#, feedforward stochastic control problem.
feedback-tuning problem, the level of performance obtained The classic feedforward controller design frequently suf-
can be insufficient when a disturbance strongly affects the fers from several inherent weaknesses: (i) it requires the
control system. identification of the disturbance, and a very good model of
There are many examples from different engineering the process, something quite difficult for many systems in
areas where a disturbance input has a strong effect onthe chemical industry; (ii) the changes in the process pa-
rameters cannot be compensated unless a reliable estimation
+ Corresponding author. Tels 54-342-4559174; procgdure is mcor.porated; (||{) it Ifa_ads. to improper transfer
fax: +54-342-4550944. functions, so that important simplifications must be done to
E-mail addressjlmarch@ceride.gov.ar (J.L. Marchetti). obtain realizable results.
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This work attempts to partially address the first two prob- clear thatGy(s) and Gp(s) are linear time invariants (LTI)
lems by proposing a design procedure where process modemodels representing the real plant.
uncertainties are included. The third point is analyzed using The objective for the feedforward controller is basically to
internal-model control (IMC) concepts: the philosophy of generate anticipated corrective actions to compensate mea-
the IMC open-loop controller design is used for extending sured input disturbances. Standard textbooks Skdorg,
the classical feedforward controller design, this provides a Edgar, and Mellichamp (198%nd Stephanopoulos (1984)
rational procedure to obtain a realizable controller transfer indicate that a controlle€s (s) connected as shown Fig. 1,
function. Then, the individual feedforward controller and the is capable of achieving such goal.
combined feedforward—feedback control system are tuned When the feedforward controller is implemented alone,
using perturbed plant models with known uncertainty limits. the disturbance effect on the output variable is written as
The des_lred closed_-loop characteristics for the_output gnd ¥(s) = [Ga(s) — C(5)Gp()]d(s) @
the manipulated variable are handled through suitable objec-
tive functions where the feedforwardsidual disturbance  but in case that a feedback-loop is also used, the correct

plays a key role. expression is
This paper is organized as followSection 2gives the Gd(s) — Ci(s)Gp(s)
preliminary concepts related to the combined feedforward— Y($) = 14 Go()K() (s) 2

feedback control system and introduces tasidual-dis-
turbanceformula. This section exposes also new expressions 1hus, the ideal feedforward controller that yields) = 0
for nominal and robust performance conditions for distur- €ven ifd(s) # 0, is
bance rejection when using the combined control system, _ Gd(s)
and sets the bases for successive or simultaneous tuning.Cf (5) = Gp(s)’

Section 3proposes a sequence of steps heading to optimum _ . . .
Sprop d P g b However, the expression (3) might result in an improper or

‘H2 model-based feedforward controller design, mostly fol- ) .
lowing Morari and Zafiriou (1989)A short analysis of few unstable transfer fun(.:tllon.. When this happ@ig) should
be chosen such to minimize the effect of the disturbance on

extraordinary conditions for perfect disturbance rejection is - . . .
Y P ) the controlled variable. From inspection B§. (2) Morari

also presented in this sectioBection 4tells how to solve . ) . .

the combined tuning problem as well as the use of linear and Zafiriou (1989)point out that the 0pt|mal_select|0n de-

fractional transformation (LFT) to include additional fea- pend_s on the feedback controller and fche disturbance char-

tures like a weight on the manipulated variabfction 5 acteristics. They also propose af optimal feedforward
controller design under the theoretical framework supporting

presents two application examples that reveal the ability of o
this approach for tuning both the feedforward and the asso_the IMC parameterization. Though the proposal accounts for
realizability and instability, there are no suggestions about a

ciated feedback-loop. Finally, the conclusions are presented X -
P y P convenient approach for synthesizing the feedforward con-

in Section 6 . . "
troller when there is information about model uncertainties.

3)

2. Properties of the feedforward—feedback control 2.2. Internal stability

Let us assume inputd(t) andr(t) are bounded signals,
i.e., dt), r(t) € £2[0,00), where £2[0,00) stands for any
continuous signals on [8) that have finite 2-normGreen
& Limebeer, 1995.

2.1. Basic relationships

Fig. 1 shows an sketch of the combined control system
whereK(s) is the feedback controlleG;(s) is the feedfor-
ward controller,Gq(s) stands for the transfer function be-
tween the outpuy(s) and the exogenous disturbands),
and Gp(s) is the transfer function between the output and
the manipulated variablgs). From this representation, it is

Definition 1. (Perfect disturbance rejection). Feedforward
control allows perfect disturbance rejection when the con-
trolled variable does not change as a consequence of any
bounded input disturbance, i.e.,

CNSRN Fo7ry

y(@#) =0, Vt>0 ford(t) € £2[0,00) and r(r) =0
(4)

wherey(t) is defined as a deviation from the steady-state
value.

(s)

Recognizing thatRH, is the real rational subspace of
H~ consisting of all proper and rational stable transfer func-
tions Zhou & Doyle, 1998, a convenient remark rises from
Fig. 1. Feedforward—feedback control system. the above definition anHgs. (1)—(3)
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Fig. 2. Internal stability of the feedforward—feedback control system.
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long to the subspac®H.., the internal stability of the
feedback-loop is not affected since all the input signals
are bounded, and there is no effect on the characteristic
equation.

Remark 2. The combined feedforward—feedback control
system is internally stable @4(s) andC; (s) belong toR H
andK(s) is an internally stabilizing feedback controller.

2.3. Nominal and robust stability

To extend the analysis to realistic cases, let us assume that
there are available two nominal models and the correspond-
ing uncertainty limits to represent the real plant. Hence, the
entire plant dynamics can be described by means of two

Remark 1. (Perfect disturbances rejection). Let us assume Perturbed models, which are defined using the classic mul-
there is no mismatch between the actual plant and the LTI tiplicative uncertainty, namely

nominal models. Let us assume also that the disturbdftce

is bounded. Then, perfect disturbance rejection is achieve
using feedforward controller (3) if this controller belongs to
the subspac® Ho.

(GP() = Gpo(5) L+ IMy(s)).

(6)
(7)

where Gp, and Gq4, are the nominal models. Two families

Gd(s) = G, () (L+Imy(s)),

The above statements emphasize the fact that feedforwardf modelsiTq and /1, are involved here, explicitly

control allows the possibility of perfect disturbance rejec-

tion, something that is not possible using feedback control 7, :=

(Morari & Zafiriou, 1989. Since this property causes the

feedforward control to be an interesting control strategy, this
work objective is to analyze its strength under realistic cases

where model uncertainties are present.

Fig. 2 shows a rearranged sketch of the block diagram I1q :=

in Fig. 1, which serves to analyze the internal stability of

the combined feedforward—feedback control system. In this

figure, two disturbances affecting the feedback-loa-and

) Gp(jw) — Gp. (] —
{Gpi||mu(Jw)| :=‘ p“‘gp (jw‘)"’““)) slmu«o)},
(8)

. Gy(jw) — Gg.(j —
{Gd3||md(Ja))| :=‘ "(“gd (jw;"’“‘“) S'md(a))},
9)

wherelmy(w) andimg(w) are the upper bounds for the mul-

dr>—are identified as internally generated signals. Recalling tiplicative uncertainty modulumy(je)| and [Img(je)], re-

the definitions of sensitivity function§ := 1/(1 + KGp),
and complementary sensitivity functioff, := KGpS, the
internal stability condition can be stated as follows.

Definition 2. (Internal stability of the combined control sys-
tem). The system shown frig. 2is internally stable if the
transfer function matrix

(Ga—CiGp)S T
—K(Gq— CiGp)S KS

M= (Gd 1Gp) (5)
Gy 0
Cs 0

from [d r]T to [y ux d1 d2] T, belongs tdR H . for all bounded
d(t) andr(t).

Note that requiring internal stability to the feedback-loop
alone is not sufficient for the combined system. For com-
bined internal stability it is also necessary tl@i{s) and
Gy(s) be stable functions. Otherwise, for adft) € £5[0,
00), neitherd;(t) nor dx(t) will be bounded functions. In
other words, if the controlle€;(s) and the planGy(s) be-

spectively. Note that, due to the internal stability condition,
all members offlTg must belong toR H .

Then, the Remark 2 and the expressions (6)—(9) allow the
following definitions.

Definition 3. (Nominal stability of the combined control
system). The feedforward—feedback control system have
nominal stability if the feedback controllé(s) gives in-
ternal stability to the closed-loop with the nominal model
Gp,(s) and, G, (s) andCs(s) belong toRH .

Definition 4. (Robust stability of the combined control sys-
tem). The feedforward—feedback control system have robust
stability if the feedback controllé£(s) gives internal stabil-

ity to the closed-loop for alGp(s) € 11y, andC¢(s) and all
Gqy(s) € I1g4 belong toRH oo

2.4. Nominal and robust performance

A main concern in this work is the performance of the
combined control system. To address this problem let us
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substitute the sensitivity functiafi:= 1/(1+KGp), and the Letting d(r) € L3[0, c0), the proof is trivial since the
perturbed models (6) and (7) in tl&. (2) This gives inequality (13) can be rewritten for nominal models as
Eq. (15) wherey™! = |wp| > 1.
¥(s) = S(s) {Gd (5) [1+ Img(s)] Furthermore, the expression (13) represents the robust
d(s) ° performance condition for the combined feedforward—feed-
— Ct()Gpo () [1+ Imy(s)]} . (10) back control system when, being< 1, it holds for all the

models included in the familie, and I1y.
The right side of this expression suggests the definition of a Y d

new transfer function as Definition 6. (Robust performance for disturbance rejec-

. _ tion). The combined feedforward—feedback control system
Ra(s) := Gao (5) [1 4 IMa(9)] = Ct(5)Gpo () [1 +IMu()] attains robust performance if, for evedyr) € L£[0, o),
(11) the desired performance condition is satisfied for every per-

which can be thought as tlopen-loop residual disturbance turbed modelG, € /7, andGq € Iq.

remaining after the feedforward compensation. Hence,

Eq. (10)can be rewritten as Similarly to Lemma 1 this sufficient condition can be

formalized as follows:
¥(s) = S(s)Ru(5)d(s), 12)  wpSRa| <1 (16)
from where it is readily seen that the condition .
Lemma 2. (Robust performance of the combined control
[SGo)Ry(jw)| <y, VO <w < oo, (13) systen Let G,(s) and G;(s) belong to the familie¢7, and
I1,4, respectivelythen the combined feedforward—feedback
control system achieves robust performance if the following
ly(w)| < ylld(w)]l . (14) condition is satisfied

ensures

It is also apparent from (14), that the disturbance attenua- |wp(jw)So(jw) Rd(jw)| + [To(jw)imy(jw)| < 1,

tign of the output variable is a_chieveq W< 1. Thi§ con- 0<w< oo (17)
dition however, refers to the inequality (13), which links

the residual disturbance to the feedback sensitivity function, where7p = 1 — So.

and leads to the following statements: (i) the fine tuning

of a feedforward controller has to be done considering the ~ The proof ofLemma 2is included inAppendix A Rel-
feedback-loop characteristics or; (i) both, feedforward and €vant result arises from this analysis by noting that the first

feedback controllers should be simultaneously tuned for ant€rm in Eq. (17)does not completely match the condition
efficient disturbance rejection. (15) for Nominal Performance, and thafolmyll, < 1

To formalize this result, recall that if the performance represents the necessary and sufficient condition for robust

objectives are satisfied for the nominal plant, the control Stability of the feedback-loop. The point is that in robust
system reaches what is named nominal performance. control theory, it is frequently accepted that nominal per-
formance plus robust stability implies robust performance,
Definition 5. (Nominal performance for disturbance rejec- but according to théeg. (17) this is not the case for the
tion). The combined feedforward—feedback control system combined feedforward—feedback control system wigye

attains nominal performance if, for evedyr) € £5[0,00), IS different form the nominaRy, in Eq. (15) Furthermore,
the desired performance objectives are satisfied for the nom-it is worth to note thatEq. (17)reduces to the traditional
inal modelsGp, andGg, . feedback condition in the absence of feedforward action.

Let |}/l denote theH infinity norm based on the clas-
sical definition, also le§ stand for the nominal sensitivity 3. Feedforward controller design
function Sp := 1/(1+ KGy,), and thenominal residual dis- _ _ _ _
turbancebe Rq, := Gg, — CtGp,. Then, the performance This section discusses the development of a design pro-
objective can be expressed by the following lemma. cedure for feedforward controllers when the process model

have reliability problems, i.e., when it is not possible to ne-
Lemma 1. (Nominal performance for disturbance rejec- glect the effect of model uncertainties on the control per-
tion). The feedforward—feedback control system reaches theformance, or to ignore that the actual plant dynamics are

nomina' performance for disturbance rejection if Significantly more CompleX than the assumed |inefir model.
The procedure proposed here for the synthesis of a dy-
| wp So Reg [ o, < 1 (15 namic feedforward controller consists of determining

is satisfied wherew,, is a weight function included for a

more general formulation (18)

Cfo(S)=F1{M},

Gpo (s)
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whereGg, (s) andGp, (s) are the nominal transfer functions,
and I"1{-} is an operator that excludes the following parts
from the polynomial ratio: (i) the zeros @iy, (s) that belong

to the right-half complex plane; (ii) the unstable poles of
Gp,(s); and (iii) the positive time delay that might result
from the differencedy, — 6p,, Whereéy, and 6, are the
nominal delays irGg,(s) andGp,(s), respectively.

Though the operation defined in (18) gives a stable trans-

1903

andImy is that they do not describe deterministic dynamics
such to make possible an exact compensation. Global model
uncertainties like these are useful functions for providing
limit behaviors only.

4. Tuning procedures

fer function, in many cases the result is no realizable. There-4.1. Tuning the feedforward controller

fore, an auxiliary filter function is proposed to solve the re-
alizability problem. The final controller expression is then
given by

Ct(s) = Ct,(5) f(5),

wheref(s) is defined as follows.

(19)

Definition 7. (Feedforward filter). The feedforward filter
f(s) is chosen as a stable rational transfer function,

(20)

where A; and Ks are positive tuning parameters ands
determined by

)l
“lo if

I2{Ct(5)} < 0

(21)

R{Ct,(s)} = 0

In this expression™»{-} stands for an operator that com-
putes the relative order @, (s), in other words, it gives the
difference between denominator and numerator order.

Notice that in case the complete relationsfi(@qy,/ Gp, }
is included in the design (no zero or pole is excluded from
Gp, or G¢,) andCy, is realizable, the feedforward controller

leads to perfect disturbance rejection only if the model un-

Most feedforward controllers designed as indicated before
have the filter gairK; and the filter time constamt; as
adjusting parameters. For a robust performance tuning, the
following frequency domain problem can be proposed: find
Kt andAs such that

|wpSRi, = 1.

where wp stands for a weighting function that pro-
vides an additional degree of freedom for defining the
output-response characteristics. Since the tuning parameters,
Kt and¢, belong to the residual disturbang exclusively,
a question might arise in regard to the possibility of ustyg
alone. However, the arguments to include the feedback sen-
sitivity function Sin (24) were explained iBection 2 based
on the convenience of referring the disturbance-rejection
problem to the expression iaq. (13) Given a feedback
controller previously tuned, the feedforward solution to the
above problem considers the frequency-spectrum character-
istics of that specific feedback-loop. Alternatively, the use
of Ry alone would give a feedforward-controller tuning in-
dependent from the feedback-loop, and probably, of lower
combined performance.

Observe also that (24) defines a loop-shaping procedure
rather than an optimization problem since it is equivalent

(24)

certainties are negligible. This statement is supported by ato the condition (13), wherg = |wp|‘l < 1. This strat-

short analysis of the residual disturbariRg which can be
written

Rd(s) = Gy (9)[1 + Imy(s)]

{[1 +Img()] Gpo(s) }
[1 + Imy(s)] Gao(s) )
Assuming the particular case in which the operdterdoes

not exclude any term, the full cancellation 6, and G,
in Eq. (22)yields

Ci (s) (22)

[1 + Img(s)]
[1+ Imy(s)]

It is apparent from expression (23) thatdf, is realizable
and both multiplicative uncertainty are negligible, namely,
Img(s) = 0 andlmy(s) = 0, then f(s) = K = 1 would
be enough to ensure disturbance rejection siRge= 0.
However, if the uncertainties are not negligible af{d) =
[1+1Img()])/[1 +1my(s)] is adopted, the residual disturbance
will rarely remain null all the time. This happens because
the actual concept underlying the uncertainty functilong

Rd(s) = Gao ()1 + Imy(s)] { - f(S)} - (29)

egy is quite different, for instance, from the problem of
minimizing wpSRy| _ where the non-linear terms lead to

a result that must not be considered an optimum since the
global optimality is not guaranteed. Even more important:
this pseudo-optimal search might attempt the idgak 0
solution, which is unrealizable.

4.2. Tuning the feedforward—feedback control system

Recall that the feedback controllers are usually tuned to
satisfy one of the following two objectives: (i) good set-point
tracking; or (ii) good disturbance rejection. In this subsec-
tion, the combined feedforward—feedback tuning for the reg-
ulation problem is analyzed.

The simplest strategy is to adjust the feedforward con-
troller such to reduce the effect of the disturbance in the
presence of an specific feedback controller and simultane-
ously to tune the feedback controller such to complete the
disturbance rejection to the level indicateddy. Although
the tuning problem irEq. (24)can be extended to include
the feedback controller by simply allowing the variation of
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d
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— P /— 5 I renl—5
Uy y

Fig. 3. Linear fractional transformation of the feedforward—feedback control system. #lefel, z = [z1 2], Fi(P, K) = P11+ P1oK(I — P22K) 1Py
with P11 = [wpRy 0]", P12 = [wpGp wul], P21 = Rq and Py = Gp.

additional parameters—Ilike the proportional gain and the changes to

integral-reset time in case that a PI controller is used—an

alternative functional can be defined according to the needs.y = [ wpSGy } , (27)
For instance, followingZhou and Doyle (1998)or —wuKSG

Sanchez Pefia and Sznaier (1998)e linear fractional

where N now includes the transfer functioGq definin
transformation (LFT) can be applied to the combined d g

o . the disturbance characteristics instead of the residual distur-
feedforward—feedback control system, as indicated in banceRy. The main difference between these two functions
Fig. 3. Hence, atte_nding _to the new definition of the system is thatRy includes adjusting parameters in contrast v@th
out_put,.the following mixed func_tlonal can be proposed Hence, a valuable insight about the effect of adding a feed-
Wh'.Ch includes performance limits for the manipulated ¢4\yarq controller to a feedback control loop is obtained by
variable, comparingggs. (25) and (27)

N:[ wpShy ] (25)

—wyu(K SRy) Remark 4. A functional defining regulation criteria for

where, w, and wp are weight functions used to restrict the combined feedforward—feedback tuning is structurally
the actuator movements and to determine the performanceSimilar to the functional defining the same criteria for the
required to the combined control system respectively. This fé€dback-loop alone, with the only difference that the resid-
way, the index functions,SRy used in (24) is mixed with ual dlsturbancg_trans_fer functioRy(s) must be used in
another term that focus on the intensity of the manipulated Place of the original disturbance transfer functi@a(s).
variable movements. The extension from the performance
index (24) to a new one using (25) revels that the combined
system can also be analyzed and tuned under difféggnt 5. Application examples
performance requirements.

5.1. Example 1
Remark 3. The general combined feedforward—feedback
tuning for the regulation problem can be presented as an Consider the design of a feedforward—feedback control

Hoo Mixed criteria problem, namely system like sketched iRig. 1, where
”N”oo < 1 (26) Kdeieds er—eps

. . . . Gd(s) = ——— and Gp(s) = .
whereN is a functional defining the required performance (tgs + 1) (tprs + D(zpas + D

and where the solution is constrained to parameter spaces (28)
ensuring a stable control system.
In this problem, Kg, 74, 64 ] and [Kp, tp1, Tp2, 6p] are un-
Besides, note that when the feedback-loop is used alone tocertain parameters @q(s) and Gp(s), respectively. Let us
solve the regulation problem, the mixed criteriorEq. (25) adopt as nominal parameter valuég = 1, tq, = 1, 69, =
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Table 1 Table 2
Limit values for the uncertain parameters in Example 1 Settings obtained for different limit values of

Minimum Maximum y € Kt Af
Kg 0.8 12 1.00 2.93 2.29 0.0256
7d 0.9 11 0.75 3.51 1.97 0.0242
0d 0.095 0.105 0.50 3.98 1.67 0.0244
Kp 0.95 1.05 0.25 4.60 1.39 0.0233
Tp1 0.95 1.05 0.15 4.88 1.10 0.0127
Tp2 0.95 1.05
Op 0.19 0.21

0.1, Kp, = 1, 1p1, = 1, 1p2, = 1, andp, = 0.2, with uncer-
tainty ranges given byable 1 Assume also, that the feed-
back regulator is a PID controller with settings determined
by (Morari & Zafiriou, 1989,

Ke— Pl T T2
C= w1
Ko (& + bp,)
T T
Ty = 11, + Tz, and Tp = —Po PR (29)
Tpl + Tp2

Furthermore, according t6gs. (18)—(21,)the design expres-
sion for the feedforward controller is
KdoKf (Tp]_os + 1)(Tp20s + 1)

Crls) = Koy (tdgs + DOgs+1)

(30)

The parameter intervals ifable 1define convex hulls in

solving the problem (24) for different constant values of
wp; (2) the mixed performance index g. (25)is used to
observe the effect of changing the weight on the output
performance.

The numerical solutions to these tuning problems did not
show sensibility to the initial parameter values even though
they include nonlinear relationships. However, a simple but
reasonable initialization was used= 1 for being close to
fast closed-loop response conditio&, = 1 and, a small
value of s for being not too far from ideal compensation.

In the first tuning approach, both the feedforward and
feedback controller parameters are determined simultane-
ously using (24). The problem basically consists on finding
the set of parametefs, Ks, At } satisfying an arbitrary value
of y = |w|0|‘1 < 1. The numerical experience is run here
for five different upper limits, like shown ifrig. 5 where
[SRy| is plotted versus frequency. The settings obtained in

the parameters space that are projected on the complex planesach case are exposedTiable 2 Figs. 6 and 7show the

generating uncertainty regions like shown Fig. 4. The
maximum bounds¢m, andlmg are numerically determined

time responses of the system output and the control vari-
able, respectively, obtained for a unit-step change in the dis-

as the largest distance between the nominal model and theurbance. Clearly, the disturbance rejection improves as the

respective family boundary.

The following tuning approaches are tested: (1) the com-

upper limit decreases.
Fig. 8 shows four frequency responses under different

bined feedback—feedforward settings are determined bycontrol conditions. The first curve corresponds Y6d)|

0.015 T T

0.01

0.005 |

-0.005 |

Imaginary

-0.01

G,,gm)tmn(/m)|
0015 |

-0.02

-0.025

|G gk Go)|

-0.12 -0.1 -0.08

-0.06 -0.04 -0.02 0

Real

Fig. 4. Maximum uncertainty bounlin, computed for a given frequenay.
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ISG@)R (o)

10?

10-3 L1l 10 il 10l 21l L

107 10" 10° 10' 107 10°

Frequency (rad/sec.)

Fig. 5. Simultaneous tuning of the combined control system for diffeyevdlues.

= |Gy(jw)|, which obviously shows the complete distur- Table 3
bance effect on the output when the system is not controlled Settings obtained for different values of, and constany = 1

at all. The second curve is the result of incorporating the ,,, e Kq Af
feedback controller only, namely, this is the plot ¥fj¢)|

) . i 1 3.27 1.36 0.024
= [Sjw)Ga(jw)| usinge = 4.88, the same feedback tun- ;, 338 123 0.036
ing shown inTable 2for y = 0.15. The third one, is the 15 50.0 1.18 0.13
open-loop residual disturbancg(j)] = [Ry(jw)| show- 20 66.6 1.15 0.22

ing the important rejection obtained by the feedforward
controller alone; the settings in this case &g = 1.10
and xs = 0.0127. Finally, the last curve shows the effect
of combining both controllers, which, in fact, were tuned
together to satisfy the upper limgg = |wp|*1 = 0.15.

0.2 T T T T T

Controlled Output

0 5 10 15 20 25 30

Time (sec.)

Fig. 6. Output-variable responses to a unit-step change in the disturbance using setliagke i
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Fig. 7. Manipulated variable movements that correspond to the responfes 6

This analysis shows the role played by each controller to the corresponding output and manipulated time response.
achieve the disturbance-rejection objective. Note that both, The initial manipulated-variable stroke is important in all
the contribution made by the feedforward controller with- cases {56.2; —33.9; —9.12; —5.2), with the larger one
out endangering the stability, and the feedback influence atbeing that correspondent to the most demanding settings
low frequencies can be simultaneously conditioned by the (wy = 1).
weighting functionwy.

In the second tuning approach used in this application 5.2. Example 2
example, the combined control system is tuned using the
mixed performance index (25) fowp = 1, and differ- In this second example, the plant shows inverse responses
ent values of the weighi,. The settings obtained in this to changes in the manipulated variable, which delays the
case are given iffable 3 while Figs. 9 and 10show feedback control action and makes the control problem more

|GG

10°

10"

Modulus

107 SR Gjo)|

I g aaaal n gl I sl I o aa il I LAl
107 10" 10° 10° 10° 10°
Frequency (rad/sec.)

10°

Fig. 8. Effect of using feedback and feedforward controllers separately, and the combined feedforward—feedback control system.
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Fig. 9. Output-variable responses to a unit-step change in the disturbance and different wgights

challenging. Thus, the plant is modeled in this case by

Kde—Gds
——, and Gp(s) =

Kp(—ZpS + 1)e_0ps

Gd(s) = v

w552 + 2tps + 1

Let us adopt the following parameter valukg = 1, 6 =
1,69 = 05 Kp =1, 1p = 20, zp = 20, £ = 0.23,
andf, = 1.5. The model uncertainties are assumed to de-
pend exclusively on the time delays; this is equivalent to say
that the multiplicative uncertainties f@, andGq are given

(30) by Imy(s) = e % — 1, andlmy(s) = e % — 1, respec-
tively.
and the feedforward controller takes the form The strategy used for designing the feedback controller
KqKi (rf,sz + 2ps + 1) follqus again th_e IMQ parameterization givenlidyprari and
Ci(s) = . (31) Zafiriou (1989) in this caseGy(s) leads to a PID controller
Kp (zas+D(ss+ 1D
0 T T T T T ]

02 F .

04 F 4
o -06F E
|
& 081 .
R
£ 7T 20 ), =13 T
2 L /"
g -12f A= - x
=

14 }F \w 10 \wuzl B
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2 1 1 1 1
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Fig. 10. Manipulated variable movements that correspond to the responbes @
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Fig. 11. Second example witty = 1.0. Output-variable modulus for different tuning procedures.

with settings determined by satisfy Hjw)R4(jw)| = 1 directly. The settings obtained in
21 . these different adjustments are shown in the first part of

C= X Ty =21, and Tp = > (32) Table 4

p(22p +8) 5 Fig. 11 shows the index functions versus frequency de-

Successive and simultaneous tunings are tested in this aptermined by the settings ifable 4 andFig. 12 shows the

plication example. In the successive tuning, the feedback corresponding time-domain responses to a unit-step change
parametere is first adjusted to satisfyS{jw)Gq(jw)| = 1; in the disturbance. None of these figures shows a signifi-
then, the feedforward parametefs and As are adjusted cant difference between successive or simultaneous tuning.
to obtain Hjw)Ry(jw)| = 1 while maintaininge constant. Surprisingly, no even the simple static feedforward con-
In the simultaneous case, the feedforward—feedback tun-troller shows a large difference in the frequency domain,
ing is solved usingg, K¢, and As as free parameters to other than a pick aroun@d = 0.5-0.6 radians/s; however,

K

1.5 T T T T T T

TFeedback only

0.5F

Successive tuning

Controlled Output Response

Simultaneous tuning

\F eedback plus Static Feedforward

Il
0 10 20 30 40 50 60 70 80 90 100

Time (sec.)

Fig. 12. Time-domain responses that correspond to the resuRgyinl1
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[SG@)R (jw)| -Auccessive tuning

10° 10° 10" 10° 10'

Frequency (rad/sec)

10°

Fig. 13. Second example witly = 1.5. Output-variable modulus for different tuning procedures.

the time-domain response shows the effect of ignoring the Table 4

[S(w)Ry4(jw)| = 1 condition. A slight difference in favor of  Settings obtained for Example 2

the simultaneous tuning can be observed since the time do-ryning procedure . Ks At
main response shows a sorter settling time.
Figs. 13 and 14how the results of similar tuning proce- Casery = 1.0
' o it i Successive tuning 30.0 0.997 1.339
dures, but this time changing = 1.0 by g = 1.5 in Gq(s). Simultaneous tuning 14.62 0.966 1.00
An important difference between the successive and the si- Static feedforward 30.0 Ci = Ka/Kp = 1.0
multaneous tuning is observed in these responses, stressing,ce., — 15
the convenience of adopting simultaneous tuning as a stan- successive tuning 32.0 1.476 1.475
dard procedure. The settings determined in this opportunity =~ Simultaneous tuning 7.85 1.329 1.200
Static feedforward 32.0 Ct =Ka/Kp =1.0

are shown in the second part Tdible 4

1.5 T T

Feedback only

0.5}

Feedback plus Static Feedforward

Controlled Output Response
=

Successive tuning

Simultaneous tuning

Time (sec.)

Fig. 14. Time-domain responses that correspond to the resukgyinl3
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6. Conclusions

This work revises the synthesis of feedforward controllers
when the available dynamic models include estimated limits

for the uncertainties. The following statements summarize |Wp(i®)So(@)[1 + To(jw)Imy(jw)] ™" Ra(je)| < 1,

concepts analyzed along this paper, which contribute to solvev 0 < w < oco.

disturbance-rejection problems.

Though it is well known that feedforward controller does
not influence feedback stability, the analysisraérnal sta-
bility for the combined feedforward—feedback control sys-

tem requires that the feedforward controller be a stable
function, and that the disturbance effect on the output be a

bounded signal.

The analysis of including the feedforward controller
in a control system is facilitated by the definition of the
open-loop residual disturbancevhich represents that part
of the original disturbance remaining in the controlled out-

1911
S = So[1 + Tolmy] 72, (A.3)
and substituting (A.3) into (A.1) gives,
(A.4)
Rearranging the above condition gives
|wpSo(L+ Tolmy) ™ Ral < |wpSoRall(L+ Tolmy) ™|
|wpSoRd] |lwpSoRqd] (A5)

T 114 Tolmy| — 1— |Tolmy|’

Hence, from (A.4) and the inequality (A.5), the following
expression can be obtained,

put despite of the feedforward control action. This residual Rearranging again

disturbance defines the regulation task for the feedback

controller that completes the disturbance rejection.
Typically, nominal performance plus robust stability im-
plies robust performance, however the analysis presented i

n

SoR
|wpSo Ryl < (A6)
1 — |Tolmy|
|lwpSoRd| + |Tolmy| <1, VO<w< oo (A7)
which is the result in expression (17). O

this paper demonstrates that this is not the case for the com-

bined feedforward—feedback control system.
The feedforward and the feedback controllers should

be simultaneously tuned for an efficient disturbance rejec-

tion; alternatively, fine-tuning of the feedforward controller
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