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Abstract

An offset-free control is one that drives the controlled outputs to their desired targets at steady state. In the linear model predictive control
(MPC) framework, the elimination of steady-state offset may seem a little obscure, since the closed-loop optimization tends to hide the integral
action. Theoretically, implementing a well-posed optimization problem and having unbiased steady-state predictions are sufficient conditions to
eliminate the output offset. However, these basic conditions are not always achieved in practical applications, especially when state-space models
are used to perform the output predictions. This paper presents a detailed practical analysis of the existing strategies to eliminate offset when using
linear state-space models with moderated uncertainties. The effectiveness of these strategies is demonstrated by simulating three different control
problems: a linear SISO system where the effect of using the estimation of the control variable is highlighted, a continuous stirred tank reactor
(CSTR) with non-linear dynamics and the consequent model uncertainty and, a 2 × 2 system representing a distillation column that verifies the
consistency of previous results and extends the conclusions to higher dimension systems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Model predictive control (MPC) technology is widely used
in chemical process industries where it is generally the default
technology for advanced process control applications. It refers to
a class of control algorithms that optimizes future plant behavior
through the use of an explicit mathematical model. Exceptional
overviews of MPC and comparisons of commercial MPC con-
trollers are available in Refs. [1–3]. The most widely used
industrial MPC implementations such as DMC, QDMC, and
IDCOM-M are based on stable open-loop models and cannot
be used with unstable systems. To achieve offset-free control,
these MPC approaches use an increment of the control variable
which is computed at each sampling time (configuring an inte-
gral mode) and the predictions are corrected by adding an output

Abbreviations: CSTR, continuous stirred tank reactor; DMC, dynamic
matrix control; MPC, model predictive control; QDMC, quadratic dynamic
matrix control; IDCOM, identification command.
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step disturbance computed as the residual difference between the
output measurement and the value predicted for the present time.

In this paper the analysis is restricted to those developments
where the process dynamics are represented by state-space mod-
els. At each sample time, the system states are estimated and
an open-loop optimization is carried out. The controller input is
taken as the first element of an open-loop optimal input sequence
that is computed by driving the model predicted outputs as close
as possible to a desired future trajectory.

When state-space models are used, the offset elimination is
accomplished in two basic ways.1 The first approach involves
working with models in their velocity form, that is, models that
use input and state increments instead of input and state values.
These models permit a well-posed optimization problem since
the targets of the state increments are always correct (i.e., they
are always zero) even if the plant and the model are not equal [4].

1 It is not considered here the method that modifies the controller objective
including integration of the tracking error. This method augments the process
model with tracking error states, and then, requires an anti-windup algorithm
for the integral term [7].

0255-2701/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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Rodrigues and Odloak [5] and Odloak [6], have reported uncom-
mon examples of the implementation of this kind of models to
MPC. In these works, the integral action is achieved by using
the inputs in the incremental form in both, the output predictions
and the observer. The second method involves an augmented
process model including a step disturbance. This disturbance,
which is estimated from the measured process variables, is gen-
erally assumed to remain constant in the future and its effect on
the controlled variables is removed by shifting the steady-state
target for the controller. However, when independent models are
used, this second strategy has proved to be acceptable only for
stable plants—it does not work for unstable systems because the
observer contains the unstable poles of the process model. To
overcome this problem, different authors suggested more gen-
eral state-space models [7,8] considering input, state and output
disturbances that allow handling unstable plants.

In this work, we focus attention on the analysis of the
main existing strategies to eliminate output offset, and eluci-
date the critical point of some algorithms that, contrary to the
appearances, cannot lead to an offset-free MPC. In addition,
a comprehensive comparison between the performances of the
different approaches is carried out through a few numerical sim-
ulations.

The organization of this paper is as follows. Section 2 includes
a theoretical framework presentation related to three known
MPC formulations: the use of the simple velocity form, the com-
plete velocity form, and the linear regulator with disturbance
sub-models. Then, Section 3 presents numeric simulations that
show the improvement reached in the performance using the
analyzed techniques. Finally, in Section 4, the conclusions are
summarized.

2. Theoretical framework

The MPC controller uses a dynamic model of the process
to predict the output trajectories and performs a constrained on-
line optimization to determine the optimal future input sequence.
The first control move is injected in the real plant and the pro-
cedure is repeated in the next sampling time. A significant part
of the recent research literature on MPC shows contributions
based on state-space models. This tendency has been stimulated
by the connections found between the standard linear quadratic
regulator (LQR) theory and MPC when prediction and con-
trol horizon approaches infinity and there are no constraints.
In fact, an intensive effort has been done using state-space rep-
resentations, for instance, on rigorous conditions for developing
stable MPC [9,5,6], or to demonstrate recursive feasibility of the
sequence of optimal control solutions [10].

Assuming that the MPC controller is closed-loop stable and
can guide the system to a global minimum, two conditions are
sufficient to obtain an offset-free control. The first one consists
of getting an unbiased prediction of the steady state, which is
achieved by including an integral action in the observer (pro-
vided that the control loop is based on a state-space model).
This detail, in spite of its simplicity, is not always evident in the
MPC formulation since the integral action is often (incorrectly)
attributed to the use of velocity form models in the optimization

problem. Note that, if the observer does not reach accurately
the stationary states – i.e., if the observer does not include an
integral action – then, the predictions are made based on a mis-
taken stationary model. Therefore, the optimization will lead the
wrong system, not the accurate one, to the set points. As can be
seen, this behavior produces a steady-state error since the inputs
that eliminate the wrong-model offset are different, in general,
from the ones that eliminate the offset in the true plant.

The second condition obliges to design a well-posed MPC
optimization problem, and can be succinctly explained as fol-
lows [11]. Suppose that the observer gets unbiased stationary
estimations, the optimization problem is not well posed (the
steady-state minimum does not correspond to zero tracking
error). Since the performance index is not set up so that the
minimum (at steady state) corresponds to zero tracking error,
then the converse must occur; that is, the optimum control will
unavoidably cause offset. This is what happens when absolute
input values (not the increments) are used in the cost function
and the desired output is different from zero.

In the following sections, we describe standard strategies and
expose the way each one accomplishes the above conditions.

2.1. Velocity form

Consider the original stable state-space model

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k), (1)

where “x”, “u” and “y” represent the state, the input and the
model output, respectively, and A, B and C are matrices of
appropriate dimensions.

A typical MPC formulation [1], that we denote Strategy 1 in
this work, is based on the following cost function:

V1(k)�
p∑

j=0

[
C x(k + j/k) − ysp

]T
Q
[
C x(k + j/k) − ysp

]

+
m−1∑
j=0

�u(k + j)TR �u(k + j), (2)

where “p” and “m” are the prediction and control hori-
zon, respectively, “ysp” stands for the output set points,
�u(k) = u(k) − u(k − 1) are the input increments, which at the
same time are the optimization variables, and Q and R are posi-
tive definite weighting matrices. This cost function is minimized
subject to

umin ≤ u(k + j) ≤ umax, �umin ≤ �u(k + j) ≤ �umax,

and the successive states (predictions) are computed using the
current measured state x(k) and the following velocity model2:[

x(k + 1)

u(k)

]
=
[

A B

0 I

][
x(k)

u(k − 1)

]
+
[

B

I

]
�u(k)

y(k) = [ C 0 ]

[
x(k)

u(k − 1)

] . (3)

2 Note that this augmented model includes an integrating mode.
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Fig. 1. Representative block diagram of the velocity form control structure.
Here, z(k) is a non-controlled variable and γ and Ψ are matrices defined as in
Ref. [1].

The objective function (2) together with velocity models like
(3), produce a well-posed optimization problem, since the com-
bination y = ysp and �u = 0 is always possible at steady state.

Fig. 1 shows an MPC close-loop diagram in which the block
called “optimizer” is the one that performs the minimization
described above [1]. In this diagram, matrices γ and Ψ accom-
modate the prediction equations taking into account the model
formulation (3). Note that in (3), the input “u” represents itself a
new state, which would not need to be estimated by the observer
but computed by saving the implemented value.

This seems to be right, since estimating a variable that was
implemented one sampling time before makes no much sense.
However, as it is shown next, this is the reason why this control
structure produces output offset. The trouble arises because the
observer must perform explicitly the integral action. Assume
that for a time k̄ large enough, the system reaches the steady
state. At this time, the output predictions will be

ŷ(k̄ + j/k̄) = CAjx̂k̄ + C(I + A + · · · + Aj−1)Buk̄,

1 ≤ j ≤ p, (4)

where ŷ(k̄ + j/k̄) represents the predicted output, x̂k̄ represents
the estimated state (that remains constant for stable observers),
and uk̄ is the steady-state input. Note that, since we assume
steady-state conditions, then �uk̄ = 0. On the other hand, the
observer steady-state equation is given by3:

x̂k̄ = Ax̂k̄ + Buk̄ + Laux[yk̄ − C(Ax̂k̄ + Buk̄)], (5)

where Laux is the observer gain, and yk̄ is the (measured) output
feedback. From this equation, we can see that there is no rea-
son for the model output, C(Ax̂k̄ + Buk̄), to achieve the plant
output, yk̄. Note, from (5), that the steady-state x̂k̄+1 = x̂k̄ does
not mean that x̂k̄ = Ax̂k̄ + Buk̄, since the estimated states may
not evolve according to matrices A and B, that are only a model.
Consequently, the steady-state condition would happens with

x̂k̄ /= Ax̂k̄ + Buk̄. (6)

3 Eq. (5) is derived from a typical discrete state observer.

So, the steady-state prediction equations will be given by

ŷ(k̄ + 1/k̄) = C(Ax̂k̄ + Buk̄) /= yk̄

...

ŷ(k̄ + p/k̄) = CApx̂k̄+C(I + A + · · · + Ap−1)Buk̄ /= yk̄,

(7)

which means that the predicted output that the optimization will
try to guide to the set point is in general different from the true
stationary output. This is a case in which, despite the optimiza-
tion problem is in principle well posed (that is, the minimum
of the objective function corresponds to the desired effect), it
is not possible to assure the output offset elimination. This is
a remarkable fact since usually is supposed that working with
costs that penalizes the input increments instead of the inputs,
the output offset is automatically removed. In Section 3, the
simulation examples illustrate this theoretical discussion.

The natural way to overcome this trouble is by adding an inte-
grating mode to the observer. This can be made in two different
forms: by including the complete model (3), that is, estimating
the input “u” together with the original states; or by adding a dis-
turbance model. Using the former of these alternatives, which
we call Strategy 2, it is easy to see that the steady-state observer
equation is given by[

x̂k̄

ûk̄

]
=
[

A B

0 I

][
x̂k̄

ûk̄

]
+
[

B

I

]
�uk̄ +

[
Lx

Lu

]

×
[
yk̄ − [ C 0 ]

([
A B

0 I

][
x̂k̄

ûk̄

]
+
[

B

I

]
�uk̄

)]
,

(8)

where Lu and Lx form the observer gain matrix,4 and again,
�uk̄ = 0. This equation leads to

x̂k̄ = Ax̂k̄ + Bûk̄ + Lx

(
yk̄ − [ C 0 ]

[
A B

0 I

][
x̂k̄

ûk̄

])
,

(9)

ûk̄ = ûk̄ + Lu

(
yk̄ − [ C 0 ]

[
A B

0 I

][
x̂k̄

ûk̄

])
. (10)

From (10) we see that, if Lu is of full rank, then

yk̄ = [ C 0 ]

(
Ax̂k̄ + Bûk̄

ûk̄

)
= C(Ax̂k̄ + Bûk̄); (11)

and from (9):

x̂k̄ = Ax̂k̄ + Bûk̄. (12)

Finally, from (11) and (12), predictions (7) will produce accurate
outputs.

Now, provided that the closed loop is supposed to be sta-
ble and the successive optimization problem reach a minimum
in steady state, it is clear that the use of “û(k)” instead

4 Observe that the observer defined in (8), in Strategy 2, is different from the
one defined in (5). The input “u”, is now estimated.
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of “u(k)” in the predictions will compensate the steady-state
model mismatch (or an eventual disturbance). In addition,
we observe that in general is ûk̄ /= uk̄, which means that the
additional state is only a fictitious variable with no physical
meaning.5

It is important to remark that the use of û(k) instead of u(k)
is in principle counterintuitive since one could expect that the
offset will be effectively eliminated when the designer use the
measured input variable instead of the estimated one. In addi-
tion, to estimate a variable that is implemented by the controller
(and so, it is available to be used for prediction) seems to be a
meaningless decision, and that could make the designer to chose
the wrong option. There are another velocity models that do not
show an explicit relationship between the new state and the input
u. In Ref. [5], a state is added to the original system to have an
incremental model that is associated with the steady-state out-
put. In this way, the observer automatically includes an integral
action.

2.2. Complete velocity form

A different strategy to have an offset-free controller is by
using the complete velocity form [12]. This kind of models con-
siders the increments on both, the input and the states, and has
the following form:

ς(k + 1) = Ãς(k) + B̃ �u(k), y(k) = C̃ς(k), (13)

where

Ã =
[

A 0

CA I

]
, B̃ =

[
B

CB

]
, C̃ = [0 I

]
,

ς(k) =
[

�x(k)

y(k)

]
,

�x(k) = x(k) − x(k − 1).

On the other hand, the tracking MPC cost function can be
written as

V2(k)�
p∑

j=0

(
C̃ς(k + j/k) − ȳsp

)T
Q
(
C̃ς(k + j/k) − ȳsp

)

+
m−1∑
j=0

�u(k + j)TR �u(k + j),

where ȳsp = [ 0 · · · 0 ysp ]T. Observe that in this cost the
new state vector ς is directly penalized in order to achieve a
stationary point in which the state increments are null and the
output is equal to the set point.

Based on model (13), the output predictions will be

ŷ(k + j/k) = C̃Ãjς̂(k) + C̃Ãj−1B̃ �u(k) + · · ·

5 Note thatuk̄ is the control action implemented by the controller (so, the output
offset is eliminated), while ûk̄ is the control action that uses the optimization
problem to perform the output predictions.

+ C̃Ãj−mB̃ �u(k + m − 1), 1 ≤ j ≤ p,

and taking into account that

C̃Ãj = [ 0 I ]

[
A 0

CA I

]j

= [ 0 I ]

[
Aj 0

CAj + · · · + CA I

]

= [ (CAj + · · · + CA) I ],

the steady-state output predictions (k = k̄) will be

ŷ(k̄ + j/k̄) = C̃Ãjς̂k̄ = ŷk̄, 1 ≤ j ≤ p, (14)

provided that �u = 0 and �x = 0 in steady state.
Eq. (14) means that the predicted output will remain constant

and equal to the corresponding observer estimation. To clarify
the nomenclature, note that ŷ(k̄ + j/k̄) represents the predictions
that will be used into the MPC optimization, while ŷk̄ represents
the estimate of the new state added the original model in (13).
Now, we must show that the integrating mode incorporated by
the complete velocity model into the observer assures that the
estimation ŷk̄ reaches the true plant output value. To do that,
consider the observer stationary equation:[

�x̂k̄

ŷk̄

]
=
[

A 0

CA I

][
�x̂k̄

ŷk̄

]
+
[

B

CB

]
�uk̄

+
[

Lx

Ly

][
yk̄ − [ 0 I ]

×
([

A 0

CA I

][
�x̂k̄

ŷk̄

]
+
[

B

CB

]
�uk̄

)]
.

If the estimations x̂ and ŷ are separated, and considering that
the input and state increments are null, then

0 = Lx[yk̄ − ŷk̄], ŷk̄ = ŷk̄ + Ly[yk̄ − ŷk̄].

Finally, if Lx or Ly are full rank, imply

yk̄ = ŷk̄.

Then, it is clear that Eq. (14) produces an unbiased steady-
state output prediction. Finally, taking into account that it is
assumed that the controller stabilizes the system in a stationary
minimum, the output offset will be effectively eliminated. In
order to organize the numeric simulation section, this method-
ology is designated as Strategy 3.

Before advancing to the next section, we mention an imple-
mentation detail. Both of the presented velocity models add
integrating modes to the controlled system, loosing in this way
the open-loop stability assumed in the original system (see (3)
and (13)). Then, if it is desired to guarantee the closed-loop sta-
bility by means of an infinite prediction horizon (p = ∞) (this is
the usual way to achieve stability in MPC, as can be seen in Ref.
[9]), then the cost may become unbounded. That is, even when
the input increments are null behind the control horizon “m”, the
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2188 A.H. González et al. / Chemical Engineering and Processing 47 (2008) 2184–2194

outputs will not converge to the references6 for time steps “k”
in which the closed loop has not reached the steady state. The
way to overcome this problem is by adding a set of constraints
and slack variables (into the on-line optimization problem) that
forces the integrating modes to be null at the end of the control
horizon [5,6,10]. In this way, it is possible to show that the cost
function is a Liapunov function – which guarantees the closed-
loop stability – preserving the offset-free property of velocity
models [10].

2.3. Linear regulator with disturbance sub-model

The use of a disturbance model as a method to include the
feedback information into predictive controllers were initially
proposed by Richalet et al. in Model Predictive Heuristic Control
[13] and by Cutler and Ramaker in Dynamic Matrix Control [14].
In these early versions, the controllers were based on impulse and
step response models, respectively, and the difference between
the true plant output and the model output (that is performed by
means of a simultaneous parallel model) is added to the output
prediction. In this way, the output prediction reaches the true
output (which is the feedback value) in the steady state.

Now, it is considered the general form in which the most
recent MPC controllers eliminate the offset by means of distur-
bance models [7,8,15,16]. If we consider the state-space model
given by (1), then, a general way to include disturbance sub-
models is as follows [7]:⎡
⎢⎣ x(k + 1)

d(k + 1)

p(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣A Gd 0

0 I 0

0 0 I

⎤
⎥⎦
⎡
⎢⎣ x(k)

d(k)

p(k)

⎤
⎥⎦+

⎡
⎢⎣B

0

0

⎤
⎥⎦ u(k), (15)

y(k) = [ C 0 Gp ]

⎡
⎢⎣ x(k)

d(k)

p(k)

⎤
⎥⎦ ,

where the state and output disturbance are d(k) ∈Rsd and
p(k) ∈Rsp , respectively; and Gd and Gp are matrices that deter-
mine the effect of the disturbance on the states and the output.
This is a general form of considering the disturbance: if Gd = 0
and Gp = I we have an output disturbance, on the other hand, if
Gd = B and Gp = 0 we have an input disturbance. Tacking into
account the model (15), the steady-state observer equation is
given by

x̂k̄ = Ax̂k̄ + Buk̄ + Gdd̂k̄

+ Lx[yk̄ − C(Ax̂k̄ + Buk̄ + Gdd̂k̄) − Gpp̂k̄] (16)

[
d̂k̄

p̂k̄

]
=
[

d̂k̄

p̂k̄

]
+
[

Ld

Lp

]

× [yk̄ − C(Ax̂k̄ + Buk̄ + Gdd̂k̄) − Gpp̂k̄], (17)

6 Here, an optimization problem based on the open-loop predictions is solved
at each sample time.

Fig. 2. Representative block diagram of the predictive control system with linear
regulator (Strategy 4).

where Lx, Ld and Lp are the observer gains that corresponds to
the states estimation x̂k̄, and the disturbance estimation d̂k̄ and

p̂k̄, respectively. If the system is detectable and [ LT
d LT

p ]
T

is
full rank, then, from (17) we have

yk̄ = C(Ax̂k̄ + Buk̄ + Gdd̂k̄) + Gpp̂k̄.

Then, from (16):

x̂k̄ = Ax̂k̄ + Buk̄ + Gdd̂k̄;

that finally imply

yk̄ = Cx̂k̄ + Gpp̂k̄. (18)

This means that, once the observer is stabilized, the true plant
output has an exact relationship with the estimated state and
disturbance. This is true, naturally, because of the integral action
of the observer.

Now, we analyze how the control scheme given in Fig. 2
removes the offset by means of the disturbance estimations. In
this scheme (here denoted as Strategy 4), there is a MPC regu-
lator block that drives the system to a steady state (xs and us),
which represent the achievable steady-state input and state tar-
get, respectively; and a Target Calculus block that is devoted
to compute these steady-state values. Besides, the variables usp
and ysp represent the input and output set point.7 Note that the
Target Calculus stage does not take into account any economic
criterion to perform the optimization. In fact, all the strategies
presented in this work can be subordinated to a supervisor opti-
mization program – as the one developed in Ref. [17] – whose
main task would be the determination of economic set points for
MPC.

The augmented system given by (15) has states (the states
corresponding to the disturbances) that cannot be controlled by
means of the input u. Then, the MPC regulator makes use of
the original model (1) and shifts the steady-state targets in order
to remove the estimated disturbance effect.8 In addition, the

7 Note this strategy allows input set points; this makes sense when the con-
trolled system has enough degrees of freedom only.

8 Note that to estimate the disturbances it is necessary that the augmented
system be detectable. Theorems and conditions to guarantee that the disturbance-
augmented systems are detectable were analyzed in Refs. [7,8]. For the
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dynamic control is separated from the stationary computation:
the Targets Calculus block is completely devoted to obtain the
stationary values, while the MPC regulator block is dedicated to
guide the states x̂(k) to its corresponding targets. According to
[7], the optimization problem that must be solved in the regulator
block is given by

min
ũ(k+j+1),...,ũ(k+j+m−1)

V (k)

�
∞∑

j=0

{
x̃(k + j/k)TCTQCx̃(k + j/k)

+ ũ(k + j)TRũ(k + j) + �ũ(k + j)TS �ũ(k + j)
}

subject to:

x̃(k + j + 1) = Ax̃(k + j) + Bũ(k + j) ∀j = 0, ∞
�ũ(k + j)� ũ(k + j) − ũ(k + j − 1)

x̃(k) = x̂(k) − xs

ũ(k − 1) = u(k − 1) − us

ũ(k + j) = 0 ∀j ≥ m

umin ≤ ũ(k + j) + us ≤ umax ∀j = 0, m − 1

�umin ≤ �ũ(k + j) ≤ �umax ∀j = 0, m − 1

where it can be seen that the state and input are driven to the
targets xs and us, and the prediction horizon is infinite. The task
of this block is to guide the shifted states and input to zero,
which means that the ability of this strategy to eliminate the
offset depends on the computation of the targets xs and us. To
perform this calculation, the following optimization problem is
solved:

min
xs,us

Vt(k)� {(ysp − ya
t )T

Qs(ysp − ya
t )

+ (us − usp)TRs(us − usp)} (19)

subject to:

xs = Axs + Bus + Gdd̂(k) (20)

ya
t �Cxs + Gpp̂(k) (21)

umin ≤ us ≤ umax,

where ya
t is the achievable stationary output. This optimization

problem is a general formulation that considers the case in which
there are more outputs than inputs and some of the outputs are
not controllable. If this is the case, the achievable output target ya

t

will be set up as close as possible (in the least square sense) to the
output set point (in the case that the set point ysp is achievable,
then, ya

t = ysp). On the other hand, if the system has degrees
of freedom (there are more inputs than outputs), then, the input

augmented system (15), these conditions are: the original system given by (A,

C) is detectable, and rank

[
(I − A) −Gd 0

C 0 Gp

]
= n + sd + sp, where n is

the original states dimension and sd and sp are the dimension of the disturbance
states.

targets will be set up as close as possible to the input set points
usp in the least square sense. If the system has not degrees of
freedom, then, only one solution exist to constraints (20) and
(21). Note that, despite the generality of this formulation, the
targets xs and us must be uniquely determined in order to have a
well-posed target tracking optimization problem. The conditions
that must have a non-square system to achieve this uniqueness
can be found in Ref. [7].

Following the strategy depicted in Fig. 2, two optimization
problems must be solved at each sample time “k”. Assume that
constraints (20) and (21) hold true for the stationary disturbances
d̂ and p̂ given by the observer. That is, for a time k̄ large enough,
the states and input target satisfies

xs = Axs + Bus + Gdd̂k̄, (22)

ysp �Cxs + Gpp̂k̄. (23)

On the other hand, from (17), the states and disturbances pro-
vided by the observer satisfies

x̂k̄ = Ax̂k̄ + Buk̄ + Gdd̂k̄, (24)

yk̄ = Cx̂k̄ + Gpp̂k̄. (25)

Then, subtracting (22) from (24) we have9

(x̂k̄ − xs) = A(x̂k̄ − xs) + B(uk̄ − us), (26)

which corresponds to the original system considered by the tar-
get tracking optimization. If the original model given by A, B
and C can be stabilized, then the regulator will guide the states
x̃(k) to zero; that is10

(x̂k̄ − xs) = 0. (27)

Now, subtracting (23) from (25), we have

(yk̄ − ysp) = C(x̂k̄ − xs), (28)

which finally, from (27) and (28), implies

yk̄ = ysp.

Note, finally, that the use of an augmented model requires the
simultaneous solution of both optimization problems. This can
increment the computational cost of the algorithm, especially if
the system has a large number of input and outputs.11

9 Note that in Fig. 2 the observer passes the estimated disturbances to the
Target Calculus block, and then, the disturbances are identical in both blocks.
10 Note that once the closed loop reach a stationary state (k = k̄), the

dynamic predictions in the cost function become: x̃(k̄) = x̂k̄ − xs; x̃(k̄ + 1/k̄) =
Ax̃(k̄) + Bũ(k) = Ax̂k̄ + Buk̄ − (Axs + Bus) = x̂k̄ − Gdd̂k̄︸ ︷︷ ︸

from (24)

− (xs − Gdd̂k̄)︸ ︷︷ ︸
from (22)

=

x̂k̄ − xs; . . . x̃(k̄ + j/k̄) = x̂k̄ − xs. Then, Cx̃(k̄ + j/k̄) = C(x̂k̄ − xs) =
Cx̂k̄ − Cxs = yk̄ − Gpp̂k̄︸ ︷︷ ︸

from (25)

− (ysp − Gpp̂k̄)︸ ︷︷ ︸
from (23)

= yk̄ − ysp.

11 This fact contrasts with the simpler case of using velocity models, in which
only one optimization problem is solved at each sample time.
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Fig. 3. Step responses to set point and load changes when the Strategies 1 and
2 are implemented.

3. Numeric simulations

In this section, three application problems are simulated that
show the behavior attainable with the described formulations.
Note that this verification must be done in the presence of model
uncertainties or load disturbances; otherwise the offset does
not appear. First, a SISO linear case with gain uncertainty is
simulated to observe the role the observer plays in the offset
elimination. Then, a non-linear case – a CSTR with significant
parametric uncertainty – is tested, where the results confirm the
expected offset elimination property when the controller has the
appropriate structure. Finally, a MIMO (2 × 2) system repre-
senting a distillation column is used to verify the consistency of
previous results and confirm that previous conclusions can be
extended to higher dimension systems.

3.1. Linear case

Consider a linear plant given by

G(s) = K(−9s + 1)

45s2 + 18s + 1
, (29)

where K = 1 for the true plant, and K0 = 0.85 for the nominal
plant. In addition, an output load variable is included in order to
consider load disturbances besides set point changes.

Fig. 3 shows the step response (time interval from 50 to 200)
when the Strategy 1 and the corresponding reformulation (Strat-
egy 2) are implemented. Note that in the velocity form given in
Section 2.1 the offset is not null after the transitory response
has ended, while the second strategy has completely eliminated
the error. The responses to the load disturbance show that the
offset of Strategy 1 increases as compared with the previous
one.

On the other hand, Fig. 4 shows the time response given by
Strategies 2, 3 and 4 to changes in set point and load. In the
three cases, the offset is completely eliminated. The inspection
of the results in Fig. 4 tells us that all the discussed strategies

Fig. 4. Step responses to set point and load changes when the Strategies 2, 3
and 4 are implemented.

produce quite reasonable offset-free responses. In particular,
the linear regulator seems to be more appropriate than the other
ones when the settling time is taken as a critical feature of
the desired response. Note that a fair comparison between the
analyzed treatments should involve a study of the individual
tuning procedures, which is out of the scope of this paper. All
the controllers studied in this work have been implemented
using Q = 500Ip×1, R = 0.5Im×1, p = 25 (prediction horizon),
m = 3 (control horizon), umax = 15 and umin = −8. The adopted
sampling interval is Ts = 15 s, and the observers have been
designed with poles at z = 0.1.

Now, it is interesting to show the behavior of the actual input
u(k) implemented by the controller and the estimated input û(k)
provided by the augmented observer in (8), when Strategy 1
and 2 are used. Fig. 5 shows important stationary differences
between both responses, clarifying the cause of the offset when
a single observer (like the one presented in (5)) is applied.

In addition, the difference between the estimated state x̂(k)
and the predicted stateAx̂(k) + Bu(k) can be seen when both, the

Fig. 5. Implemented (actual) input u(k) and estimated input û(k).
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Fig. 6. Estimated state x̂(k) and predicted state Ax̂(k) + Bu(k) (using the actual
input u(k)).

implemented input u(k) and the estimated input û(k), is used to
make the computation. This is depicted in Figs. 6 and 7, where
only the first predicted state is shown. Note that, in the first
case, provided that the observer equation has not an explicit
integral action, the predicted steady state cannot be stabilized
in the estimation x̂(k̄); in other words, Ax̂(k̄) + Bu(k̄) /= x̂(k̄),
which means that the steady-state output predictions will show
an important mismatch with respect to the actual output value.

3.2. Non-linear case

A CSTR with a strong non-linear dynamic [18] is considered
now. The goal is to control the reactor temperature in presence
of set-point changes and unexpected disturbances (feed flow
rate and temperature). Fig. 8 shows the output responses of the
Strategies 1 and 2 when a step change in set point is introduced.
Clearly, Strategy 1 gives offset while the Strategy 2 reaches the
new reference signal.

Fig. 7. Estimated state x̂(k) and predicted states Ax̂(k) + Bû(k) (using the esti-
mated input û(k)).

Fig. 8. Output responses to set point changes when the Strategies 1 and 2 are
implemented.

Fig. 9 shows the time responses of Strategies 1 and 2 when
load step changes (10% in feed flow and 10% in feed tempera-
ture) are introduced. Again, the Strategy 1 gives offset whereas
the Strategy 2 completely rejects the load changes.

Fig. 10 shows the time responses reached for Strategies 2,
3 and 4. Clearly, the three strategies eliminate the output offset
when a set point change is introduced. The same result is veri-
fied when a load change (10% in feed flow) is introduced into
the CSTR (Fig. 11). In this example it is not possible to use both
kind of disturbances d(k) and p(k) simultaneously when Strategy
4 is implemented, since there is only one output. For this appli-
cation example, the transfer function matrices Gp and Gd were
identified using a regular least squares technique, this shows to
be appropriate to achieve the main objective of eliminating out-
put offset. Note that, since the MPC regulator does not use the
augmented model (it is only used by the observer and the target
calculation), the output performance is not strongly dependent
of matrices Gp and Gd.

Fig. 9. Output responses using Strategies 1 and 2 to (a) a 10% step change in
feed flow and (b) a 10% step change in feed temperature.
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Fig. 10. Output responses to set point changes using Strategies 2, 3 and 4.

3.3. MIMO case

Let us analyze now a two-by-two system representing a dis-
tillation column [19], whose transfer function matrix is given by

G(s) =

⎡
⎢⎢⎣

−2.2 e−s

7s + 1

1.3 e−0.3s

7s + 1
−2.8 e−1.8s

9.5s + 1

4.3 e−0.3s

9.2s + 1

⎤
⎥⎥⎦ .

This system is known in the literature as the Vinante–Luyben
(VL) column. All the strategies analyzed previously were
applied to this system to detect problems to achieve offset-
free steady states in multivariable systems. Part of the test was
done by applying unit step changes in set-points for y1 (at t = 0)
and y2 (t = 30). And, since in this case no difference was speci-
fied between plant and model, load changes in the manipulated
variables were produced at t = 0 for u1 and at t = 40 for u2, in
order to observe the effect of the uncertainty implicit in these
disturbances.

Fig. 11. Output responses of the Strategies 2, 3 and 4 to a 10% step change in
feed flow.

Fig. 12. Step responses to set point changes when Strategies 1 and 2 are imple-
mented.

Fig. 12 shows the set point responses when Strategies 1 and
2 are implemented. The simulations show that using Strategy 2
it is possible to obtain smaller overvalues and undervalues than
with Strategy 1. Note, as a difference with the first application
example presented here, that none of the strategies gives out-
put offset; this is because no uncertainties are considered in the
model. On the contrary, Fig. 13 shows that an important off-
set is produced when Strategy 1 is implemented; despite model
uncertainties are not considered, the offset appears because the
disturbance is introduced in an input variable. This disturbance
has the same effect of an additive uncertainty in the transfer
function matrix, which is not detected by the observer since it
uses the controller output instead of the complete information
of the input variable.

Figs. 14 and 15 show responses of the analyzed strategies to
set-point changes and input disturbances, respectively, verifying
that Strategies 3 and 4 eliminate the offset completely. Notice
that for this particular case of the VL column, a better perfor-
mance is obtained with the Strategy 4 than with the Strategy 3
due to the responses is less oscillatory.

Fig. 13. Disturbance responses to step changes in the manipulated variables
when Strategies 1 and 2 are implemented.
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Fig. 14. Step responses to set point changes when Strategies 3 and 4 are imple-
mented.

Fig. 15. Disturbance responses to step changes in the manipulated variables
when Strategies 3 and 4 are implemented.

4. Conclusions

The usual way to guarantee the offset elimination in MPC
is by means of an augmented model that includes disturbances.
When state-space models are used, a target calculation is needed
to compute the steady-state targets that, by means of the dis-
turbance estimates, remove their influences from the controlled
variables. An alternative way to achieve an offset-free MPC con-
troller is by means of the use of velocity models. Despite in this
case the state dimension is increased, there is no need to compute
steady-state targets, which represents an important advantage.
One of the reasons why this method is not often employed is
that, in principle, a problem would arise when an infinite pre-
diction horizon is used to guarantee closed-loop stability. This
happens because the integrating states that contain the veloc-
ity models may produce a permanent output error, which may
cause an unbounded cost. However, it was shown by Odloak [6],
that this problem could be solved using terminal constraints and
appropriate slack variables.

Based on the results obtained from running different simula-
tion examples, it is possible to conclude the following:

(i) An adequate reformulation of the classical velocity-form
model (Section 2.1) can lead to a free offset time response.

(ii) Offset-free MPC controllers are not always simple to
design, particularly when velocity-form models (Strategy
2) are used to predict the output behavior. In this case, the
augmented state must be estimated despite it represents a
variable that can be measured.

(iii) The resulting controller yields offset-free responses only in
case that the prediction is unbiased (which implies the use
of an observer with integrating mode) and the optimization
problem is well posed.

These are important features to be considered when designing a
MPC controller.
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Appendix A. Nomenclature

List of symbols
A,B,C state-space model matrices
d state disturbance
G disturbance gain matrix
G(s) transfer function
I identity matrix
j index of prediction number
k discrete time variable
K transfer function gain
L observer gain
m control horizon
n dimension of the state vector
p prediction horizon
Q,R,S positive definite weighting matrices
s Laplace domain operator
sd dimension of the state disturbance
sp dimension of the output disturbance
Ts sampling interval (s)
u control variable
umax maximum control value
umin minimum control value
V quadratic cost function
x state variable vector
y output variable vector
z discrete domain operator

Greek letters
γ matrix of the predictor [1]
� increment operator
ζ state variable of the augmented model
Ψ matrix of the predictor [1]

Subscripts
d state disturbance
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k discrete time indicator
p output disturbance
s steady-state target
sp set point
t computed at time t
u input
x state
y output

Superscripts
ˆ prediction
− steady-state condition
∼ augmented model
a achievable value
T transpose matrix
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