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tracking, it is offset free if the output target is reachable and minimizes the offset if some of the con-
straints are active at steady state. The new approach is based on the definition of a Minkowski functional
related to the input and terminal constraints of the stable infinite horizon MPC. It is also shown that the
domain of attraction is defined by the system model and the constraints, and it does not depend on the
controller tuning parameters. The proposed controller is illustrated with small order examples of the
omain of attraction
inkowski functional

control literature.

. Introduction

The feasibility and/or stability of MPC for linear time invariant
ystems is now well established [1,2]. Standard approaches use the
ual-mode prediction paradigm [3] in conjunction with an infinite
orizon. Within this paradigm, it is assumed that a fixed uncon-
trained feedback K (terminal controller) is used for predictions
eyond the control horizon. In this case, a major obstacle is to
stablish a trade-off between the desirable volume of the domain
f attraction (the set of states for which the controller can generate
feasible input), the overall complexity (computational cost), and

he achievable performance for a given control horizon (degree of
ptimality). Assuming that the control horizon is chosen small for
omputational reasons, the domain of attraction is dominated by
he fixed unconstrained feedback, since additional (terminal) con-
traints are needed to assure the feasibility of the local control law.
ptimality of the dual approach can be obtained if the terminal lin-
ar controller is the Linear Quadratic Regulator (LQR) based on the
ame cost function as the MPC (same tuning weights). Many works
ave proposed strategies to enlarge the domain of attraction of this
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
doi:10.1016/j.jprocont.2011.01.002

ind of controllers: In Refs. [4,5], the authors used a saturated local
ontrol law; in Ref. [6], the authors proposed a contractive terminal
et given by a sequence of reachable sets. On the other hand, the
xtreme of a poorly tuned terminal controller is the null controller
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K = 0 [7]. For unstable systems, however, this control strategy needs
to include a terminal constraint that zeroes the unstable modes (as
they cannot be steered to the origin by the proposed local null con-
troller), reducing in this way the original terminal set, and so, the
whole domain of attraction of the controller.

Another important point related to the feasibility/stability of lin-
ear MPC is the extension of the regulation problem to the tracking
problem. In Ref. [8], the authors explain how a set-point change
transforms the terminal set, producing in some cases a lack of fea-
sibility. They also propose a general formulation to deal with the
tracking problem, and in Ref. [9], they provide conditions for opti-
mality of the controller. However, in some real applications (mainly
in chemical processes), a reasonable lack of optimality is not so rel-
evant if some steady-state conditions computed by a supervisory
level are fulfilled [10]. On the other hand, an augmented domain of
attraction is desirable to account for changes in the output targets
and in the operating window of the process without loss of feasi-
bility and/or stability. In this context [11], reformulates the original
strategy based on the null terminal controller with terminal con-
straints to allow an augmented domain of attraction for both, stable
and unstable systems.

The main idea of the approach proposed in Ref. [11] is to solve
the MPC problem in two steps. In the first step the state is driven to a
set from which the stable manifold can be reached at the end of the
control horizon. Then, in the second step, the state is driven to the
cking with maximal domain of attraction, J. Process Control (2011),

desired equilibrium point. A drawback of this formulation is that it
is limited to the case of systems with at most one unstable mode per
input, which may not be the case for important industrial systems
[12,13]. This paper proposes an extension to the strategy presented
in Ref. [11], introducing a more general way of dealing with the

dx.doi.org/10.1016/j.jprocont.2011.01.002
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nstable modes. The original idea of using slack variables in the con-
traints that zero the unstable modes is extended by means of the
se a functional based on the Minkowski functional. Furthermore,
ome steady state optimality properties, related to the capability
f the controller to account for unreachable output references, are
ncluded.

Notation: For a symmetric positive definite matrix P, ||x||P =
xTPx denotes the weighted Euclidean norm. Matrix In ∈Rn×n
enotes the identity matrix, and matrix 0n,m ∈Rn×m denotes the
ull matrix. Consider two sets U and V, and a real number �. The
inkowski sum U ⊕ V is defined by U ⊕ V = {u+ v : u∈U, v ∈V };

he set U \ V is defined by U \ V ={u : u ∈ U and u /∈ V}; and the set
U ={�u : u ∈ U} is a scaled set of U. Besides, int(U) and ∂U denote
he interior and the boundary of U, respectively. Given a continu-
us function �̄ : Rn → R, and � ≥ 0, the level set N[�̄ , �] is defined
y N[� , �] ={x :� (x) ≤�}. The boundary of this set, ∂N, is the level
urface of  .

. System description

Let us consider the (controllable) system

x(k + 1) = Ax(k) + B�u(k)
y(k) = Cx(k), (1)

here x(k) ∈Rnx is the current state vector, �u(k) = u(k) − u(k −
) ∈Rnu is the input move and y(k) is the current output of the sys-
em. In addition, let us consider that the system has nun unstable
nd ns stables poles, and ni = max(nu, ny) poles at one. These inte-
rating poles are produced by the incremental form of model (1).
hen, matrix A can be decomposed into the integrating, unstable
nd stable modes using the Jordan decomposition:

=W�V = [Wi Wu Ws ]

[
�i 0 0
0 �u 0
0 0 �s

][
VT
i
VTu
VTs

]
, (2)

here WV = Inx, and � is a block diagonal matrix (Jordan canon-
cal form). The column spaces of matrices WT

i
, WT

u and WT
s are

he integrating, unstable and stable subspaces or manifolds of the
tate space, Wi, Wu and Ws, respectively. SinceWi ⊕Wu ⊕Ws = Rnx,
very state can be decomposed as x = xi + xu + xs, where xi =WiV

T
i
x

elongs to Wi, xu =WuVTu x belongs to Wu and xs =WsVTs x belongs
o Ws. Clearly, if x ∈ Wi, then xu =WuVTu x = 0 and xs =WsVTs x = 0,
nd so on for the other subspaces. It can be shown that Wi, Wu and

s are invariant subspaces of the state space under the transforma-
ion A. Although the results presented here can be extended to any
inear system, we assume for simplicity that �i = Ini (i.e., systems

ith non-repeated poles at one1).
The input is constrained to belong to a set �U, defined as fol-

ows:

U = {�u : −�umax ≤�u ≤�umax andumin ≤ u(k − 1)

+�u ≤ umax},
here u(k − 1) is the past value of the input u. Furthermore, the

tates are constrained to be in a set X, which for simplicity is
iven by X = Xi ⊕ Xu ⊕ Xs, where Xi ⊆ Wi, Xu ⊆ Wu and Xs ⊆ Ws. This
et should be consistent with the operating window of the process.
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
doi:10.1016/j.jprocont.2011.01.002

emark 1. Notice that in the model defined in (1), the input
ppears in the incremental form. This property gives an alternative
ay to achieve an offset-free control, in comparison to the target

1 Notice that when the original system has integrating poles, the velocity form of
he model defined in (1) produces integrating modes with multiplicity two. In this
ase, matrix�i will be triangular, and the original integrating modes are considered
s unstable modes (See [14]).
 PRESS
ss Control xxx (2011) xxx–xxx

calculation strategy used in [15,16], that needs a separate opti-
mization problem to be solved in order to compute the achievable
steady-state. Secondly, input increment constraints are included
together with the input constraints. This constitutes an important
feature of real processes usually disregarded by theoretical MPC
formulations, and contributes to a better description of the whole
system, since this kind of constraints limits the maximal domain of
attraction of the system, as can be seen in the next sub-section.

Remark 2. The evolution of input u can be written as
u(k + 1) = u(k) +�u(k) and, from the decomposition (2), it follows
that VT

i
x(k + 1) = VT

i
x(k) + VT

i
B�u(k). Then VT

i
x = VT

i
Bu and so

WiV
T
i
x = xi =WiV

T
i
Bu. Now, since the input amplitude is con-

strained, the state component Xi should be constrained to belong
to Xi = {xi ∈Wi :WiV

T
i
Bumin ≤ xi ≤WiV

T
i
Bumax}.

2.1. Characterization of the steady states

The idea here is to show that, under mild conditions, systems
with integrating modes have the equilibrium states in the inte-
grating manifold of the state space. Without loss of generality, it is
assumed that nu = ny = ni (for non-square systems the procedure to
characterize the steady state is similar). For a given output target
(or set-point) ysp, any steady state of the system defined in (1), (xss,
�uss), associated with this target should satisfy xss = Axss + B�uss

and ysp = Cxss. Then, using (2), pre-multiplying the first equation
above by V, and considering that WV = Inx, it follows that[

(�− Inx) VB
CW 0ni,ni

][
Vxss
�uss

]
=

[
0
ysp

]
.

Now, developing the matrices of the above equation into its
integrating, unstable and stable components, we have⎡
⎢⎣
Ini − Ini 0 0 VT

i
B

0 �u − Inun 0 VTu B
0 0 �s − Ins VTs B
CWi CWu CWs 0ni,ni

⎤
⎥⎦

⎡
⎢⎣
VT
i
xss

VTu xss
VTs xss
�uss

⎤
⎥⎦ =

[
0
ysp

]
. (3)

Thus, assuming that rank(VT
i
B) = ni, it follows that any steady

state of the system is such that⎡
⎢⎣
CWiV

T
i
xss

VTu xss
VTs xss
�uss

⎤
⎥⎦ =

⎡
⎢⎣

ysp

0nun,1
0ns,1
0ni,1

⎤
⎥⎦ , (4)

From Eq. (4) it can be seen that the unstable and stable com-
ponents of xss are null (xuss =WuVTu xss = 0, xsss =WsVTs xss = 0) and
�uss = 0. This means that the steady states are condensed in the sub-
space corresponding to the integrating modes, Wi (xiss =WiV

T
i
xss =

xss); and furthermore, xiss =Wi(CWi)
−1ysp. Notice that the equilib-

rium states are confined to a ni dimensional subspace, which is the
output dimension; so, every point of the integrating manifold is an
equilibrium state of the unconstrained system.

Now, since the system is subject to constraints, it should be
steered to those steady states that satisfy the constraints. From the
definition of the state constraints, the set of these admissible steady
states is then given by Xss ≡ Xi ⊆ Wi.

2.2. Characterization of the controllable sets
cking with maximal domain of attraction, J. Process Control (2011),

In this section we exploit the steady state characterization pre-
sented in the last section in order to define some useful controllable
sets. First, we define the set of states in X that can be admissibly
steered, by means of an admissibly sequence of j control actions, to

dx.doi.org/10.1016/j.jprocont.2011.01.002
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he equilibrium set, Xss (j-step controllable set to Xss):

Cj(X,Xss) = {x(0) ∈C : for all k = 0, . . . , j − 1,
∃�u(k) ∈�U such that x(k) ∈X and x(j) ∈Xss}.

Since the target set is an equilibrium set, then Cj is a control
nvariant set for the system (1) subject to �u ∈�U and x ∈ X, for
ll j ≥ 1 (and so they are called stabilizable sets). The set2 C∞ ⊂ X is
herefore the largest possible domain of attraction of any controller
esigned for system (1), since it does not depend on the selected
ontrol law, but on the nature of the system and the constraints.

Now we will define the j-step controllable set to the equilibrium
et Xss, for unstable modes:

u
j (Xu, Xss) = {xu(0) ∈Xu : for all k = 0, . . . , j − 1,

∃�u(k) ∈�U such that x(k) ∈U, x(j) ∈U and xu(j) ∈Xss}

Clearly, the terminal condition xu(j) ∈ Xss is equivalent to
u(j) ∈{0}, and so, Cu

j
defines the unstable state components that

an be steered to the origin in j steps, by means of a feasible con-
rol sequence {�u(0), . . ., �u(j − 1)} and maintaining the state
equence {x(0), . . ., x(j)} in X. Notice that the projection of Cj onto

u is a subset of Cu
j

, since the latter set only forces the terminal
omponents xu(j) to be null, while setting the terminal components
i(j) and xs(j) free inside Xi and Xs, respectively. It can be shown that
u
j

⊂ Cu
j+1, for all j > 0, and furthermore Cu

j
tends to a bounded set as

he number of steps j tends to infinity, even if X is unbounded.3

emark 3. The set Cu
j

can be computed using iteratively the
ell-known methods for computing the one step controllable set

o a given set (quantifier elimination, projection and Minkowski
ummation, etc.) and the projection of a set onto a subspace
Fourier–Motzkin elimination, etc.) – see chapters 2 and 3 of [17]
or details. Since the system is linear and the constraints are box-
ype constraints, the sets Cu

j
can be easily computed using available

ools: Matlab Invariant set Toolbox [18]; and Multi-parametric
oolbox (MPT) [19]. From a practical point of view, the set Cu∞ can
e computed by increasing the index j of Cu

j
up to N, in such a way

hat CuN+1 ≈ CuN . Then, CuN ≈ Cu∞, and this will be a good estimation of
he largest possible domain of attraction for the unstable subspace.

Now, from the latter definition, one can define the following
ubset of C∞ ⊂ Rnx:

j = {x∈C∞ : xu ∈Cuj (Xu, Xss)}.

This set satisfies Cj ⊆	j (in fact, 	j is significantly less conser-
ative than Cj for most of the cases, given that the projection of Cj
nto Wu is a subset of Cu

j
). Furthermore, it can be shown that	j is

control invariant set for system (1) subject to�u ∈�U and x ∈ X.

.3. Controllable sets in the context of MPC

It is well-known from the MPC literature that when an infinite
utput horizon is used in the objective function of the controller,
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
doi:10.1016/j.jprocont.2011.01.002

nd no terminal controller is assumed for predictions beyond the
ontrol horizon, the non-stable (integrating and unstable) modes
ust be canceled at the end of the control horizon, m, to prevent

nbounded values of the cost. Then, unless the current state is such

2 In the sequel, the set Cj(X, Xss) will be simply denoted as Cj .
3 As it was done with the unstable modes, it could be defined the j-step control-

able set to the equilibrium set for the integrating-unstable modes and for stable
odes as Ci−u

j
(Xi−u, Xss) and Cs

j
(Xs, Xss), respectively (Xi−u is the direct sum of Xi and

u). It can be shown that Ci−u
j

always tends to a bounded set as j tends to infinity (see
emark 1 of [11]). On the other hand, if Cs ≡ Ws , the set Cs∞ is necessarily unbounded.
 PRESS
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that its integrating-unstable component is in the m-controllable set
to the equilibrium point, the infinite horizon MPC will be infeasible.
For the case of integrating modes, the required terminal constraint
can be easily slacked and then, by means of a constraint viola-
tion penalty, the asymptotic convergence of these modes to zero
is guaranteed, together with the convergence of the state to the
equilibrium point [20]. On the other hand, the terminal constraint
associated to the pure unstable modes cannot be directly slacked,
since for this case a constraint violation penalty does not produce
an asymptotic convergence of these modes to zero. In this context,
it is useful to characterize the maximal region where the terminal
constraint for the unstable modes is feasible. From the analysis of
controllable sets in Section 2.2, it follows that this set is given by
	m.

3. A stable MPC for tracking

3.1. Conventional infinite horizon MPC (IHMPC)

For tracking a non-zero output target ysp, the classical IHMPC
formulation is as follows [7,16]:

Problem 1

min
�uk

Jk =
∑m−1

j=0
{||x(k + j|k) − xsp||2Q + ||�u(k + j|k)||2R}

+ ||x(k +m|k)||2P

subject to :

�u(k + j|k) ∈�U, j = 0, . . . ,m− 1

x(k + j|k) ∈X, j = 1, . . . ,m

xi(k +m|k) − xsp = 0 (5)

xu(k +m|k) = 0 (6)

where x(k|k) = x(k), xsp = Wi(CWi)−1ysp4, �u(k + j|k) is the control
move computed at time k to be applied at time k + j, m is the con-
trol horizon, Q and R are positive weighting matrices of appropriate
dimension, and �uk = (�u(k|k), . . ., �u(k + m − 1|k)). Observe that
xsp is the equilibrium state corresponding to the output set point
ysp. Because of the terminal constraints (5) and (6), which corre-
spond to the zeroing of the integrating and unstable modes at the
end of the control horizon respectively, it can be shown that the
control cost of Problem 1 corresponds to the infinite horizon cost
if the terminal penalty matrix P, that depends only on the stable
modes of system, is computed by solving a Lyapunov equation as
in [11].

The domain of attraction of the controller resulting from the
solution to Problem 1 may be small (see [16] for an interesting
example), mainly in the cases where the input increment constraint
is included. As discussed in Section 2.3, the inclusion of slack vari-
ables in the terminal constraints is appropriate for constraint (5),
which is related to the integrating modes (see [20,14]). However,
it is not appropriate to remove the conflict between constraint (6)
and the input constraints to preserve the stability of the system,
and so, a new method has to be developed to maximize the domain
of attraction of the infinite horizon MPC.
cking with maximal domain of attraction, J. Process Control (2011),

3.2. The proposed stable MPC with maximal domain of attraction

To enlarge the domain of attraction of the controller defined
through Problem 1, in Ref. [11], it is presented a method to include

dx.doi.org/10.1016/j.jprocont.2011.01.002
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S1 ⊂ S2 ⊂ . . .⊂ Sn, the sequence of functionals {�S1 (x), . . . ,�Sn (x)}
is such that �S1 (x) ≥ �S2 (x) ≥ . . . ≥ �Sn (x) for each x.

To overcome this difficulty, it is possible to replace the
sequence of Minkowski functionals {�S1 (x), . . . ,�Sn (x)} by
ARTICLEModel
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lack variables in constraints (5) and (6), while preserving the sta-
ility of the closed-loop system. The main idea of this approach

s to separate the IHMPC problem in two stages: the first one is
evoted to steer the state to the set 	m (maximal region where
he terminal constraint for unstable modes is feasible) in a finite
umber of steps; while the second one is devoted to asymptoti-
ally steer the state from 	m to the desired equilibrium point in
ss, as classical IHMPC does. Each of these stages corresponds to a
ifferent optimization problem and there is guarantee of feasibility
nd boundness of the cost function at any time step. However, the
trategy presented in Ref. [11] has some limitations, since it cannot
e applied to systems with an arbitrary number of unstable modes.

The idea here is to generalize the two-stage procedure presented
n Ref. [11] to the case where we may have an arbitrary number of
nstable modes. For this purpose, it should be emphasized that the
bjective of the first stage of the two-stage IHMPC formulation is
o steer the state from 	j to 	j−1, for m < j ≤ N and N computed
s in Remark 4, until 	m is reached. So, it makes sense to use,
s the cost function of the first optimization problem, a function
f xu(k + m|k) whose level surfaces matches in some way the con-
ours of the controllable sets {Cum, . . . , CuN}. With this approach, to

inimize the latter cost becomes equivalent to feasibly steer the
tates towards	m. A l2-norm of xu(k + m|k) would not produce the
esired effect (except for the case where each input is associated
ith at most one unstable mode, as it was assumed in Ref. [11]),

ince the level surfaces of this norm are different in shape from
he contours of the controllable sets. Here, we propose the devel-
pment of a new functional, which is derived from the Minkowski
unctional. It will be shown that the proposed functional directly
ssociates their level surfaces with the contour of scaled sets of Cu

j
.

s a consequence, a new IHMPC with maximal domain of attraction
s obtained.

.2.1. The generalized Minkowski functional
This subsection is devoted to the introduction of a new

unctional (that we call generalized Minkowski functional) which
s an extension of the well-known Minkowski functional. The

inkowski functional is defined as follows [21]:

efinition 1. Given a convex set S ⊂ X that includes the origin as
n interior point, the Minkowski functional � S associated to S is
efined as

S(x) = inf{
 ≥ 0 : x∈
S}. (7)

The main property of this (convex) functional is that its level sets
ave the shape of the set S, i.e., the level sets of� S(x) can be obtained
y linearly scaling the set S. Observe that from the definition (7),
= N[� S(x), 1], � S(x) < 1, for x ∈ int(S), and � S(x) > 1, for x /∈ S. Fig. 1
hows the set S and the level sets of � S(x), for an example in R2.

The idea here is to extend the concept of the Minkowski func-
ional associated to a set, to a new generalized functional associated
o a sequence of sets. For this purpose, let us consider a sequence
f 0-symmetric convex sets {S1, . . ., Sn}, with S1 ⊂ S2 ⊂ . . .⊂ Sn, and
onsider the corresponding sequence of pairwise disjoint sets, {� 1,
. ., � n}, where � i+1 = int(Si+1) \ int(Si), i = 1, . . ., n − 1 (observe that
hese sets are a partition of Sn). Then, the aim is to find a func-
ional whose level surfaces in � i+1 are some scaled sets of Si, for
= 1, . . ., n − 1. Fig. 2 shows the sequence of sets {S1, S2, S3}, the
orresponding sequence {� 2, � 3} and the level surfaces that the
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
doi:10.1016/j.jprocont.2011.01.002

esired functional should have, for an example inR2. In this context,
n intuitive first candidate for the desired generalized functional
ould be as follows:

Given a sequence of convex sets {S1, . . ., Sn}, with
1 ⊂ S2 ⊂ . . .⊂ Sn, the generalized Minkowski functional � ′

{S1,...,Sn}
Fig. 1. The level sets of the Minkowski functional � S(x).

associated to {S1, . . ., Sn} is defined as

� ′
{S1,...,Sn}(x) =

{
�Si (x) if x∈�i+1, i = 1, . . . , n− 1

�S1 (x) if x∈ S1

This functional, however, does not have the desired property;
i.e., its level sets are not the scaled sets of Si. It looks like the
one shown in the simplified diagram of Fig. 3. Furthermore, it is
not a quasi-convex function and so it cannot be directly used as
the cost function of an optimization problem. In fact, given that
cking with maximal domain of attraction, J. Process Control (2011),

Fig. 2. Sequence of sets {S1, S2, S3} and level surfaces of the desired generalized
functional.

dx.doi.org/10.1016/j.jprocont.2011.01.002
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ig. 3. Descriptive diagram of the generalized Minkowski functional � ′
{S1,S2,S3 }(x).

��1S1 (x), . . . ,��nSn (x)}, where the sequence of real numbers {�1,
. ., �n} is such that �1S1 ⊇�2S2 ⊇ . . .⊇�nSn (see Fig. 4). In this way,
e have ��1S1 (x) ≤ ��2S2 (x) ≤ . . . ≤ ��nSn (x), for each x, and the

ollowing generalized functional can be defined:

efinition 2. Given a sequence of convex sets {S1, . . ., Sn}, with
1 ⊂ S2 ⊂ . . .⊂ Sn, we propose to define the generalized Minkowski
unctional �{S1,...,Sn} associated to {S1, . . ., Sn} as follows

{S1,...,Sn}(x) =
{
��iSi (x) if x∈�i+1, i = 1, . . . , n− 1

��1S1 (x) if x∈ S1

here the coefficients vi are such that �iSi ⊇�i+1Si+1.
This generalized Minkowski functional looks like the one shown
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
doi:10.1016/j.jprocont.2011.01.002

n the simplified diagram of Fig. 5, which is a quasi-convex function.
urthermore, its level surfaces in each set � i+1 are scaled sets of
i, for i = 1, . . ., n − 1, as desired (see Fig. 2). More technically, the
roposed generalized Minkowski functional satisfies the following
roperties:

ig. 4. Sequence of scaled sets {v1S1,v2S2, v3S3}, corresponding to the sequence {S1,
2, S3} of Fig. 2, for v1 > v2 > v3 and v3 = 1.
Fig. 5. Descriptive diagram of the quasi-convex generalized Minkowski functional
�{S1,S2,S3 }(x).

Properties:

1. �{S1,...,Sn}(x) is piecewise continuous and piecewise convex. It
has a discontinuity at each contour ∂Si of the sets Si, for i = 1, . . .,
n − 1. Furthermore, �{S1,...,Sn}(x)> 0,∀x /= 0, and �{S1,...,Sn}(x) =
0 ⇔ x = 0.

2. �{S1,...,Sn}(x) has a global minimum at 0. This follows from the fact
that every Minkowski functional ��iSi (x) has a global minimum
at 0.

3. If x ∈� i, then �{S1,...,Sn}(x) = 1/�i−1 ⇔ x∈ ∂Si−1 for i = 2, . . ., n.
That is: ∂N[�{S1,...,Sn}(x),1/�i] = ∂Si, for i = 1, . . ., n − 1, and as
a consequence, on the contours of the sets Si, the generalized
Minkowski functional has increasing values.

4. �{S1,...,Sn}(x) satisfies:

�{S1,...,Sn}(x1) ≤ �{S1,...,Sn}(x2) ≤ �{S1,...,Sn}(x3)

for x1 ∈� i, x2 ∈ ∂ Si and x3 ∈� i+1 which means that�{S1,...,Sn}(x)
is strictly increasing according to the following definition:

N[�{S1,...,Sn}(x), �1] ⊂ N[�{S1,...,Sn}(x), �2] ⇔ �1 < �2.

5. If all the sets Si have the same aspect ratio (that is, if �iSi = Sn,
i = 1, . . ., n for some sequence of coefficients �i) then, the gener-
alized Minkowski functional becomes the Minkowski functional
corresponding to the largest set, Sn.

6. Strictly quasi-convexity: The proposed functional is not
convex. However, it can be shown that �{S1,...,Sn}(x) is
strictly quasi-convex, that is �{S1,...,Sn}(�x1 + (1 − �)x2)<
max(�{S1,...,Sn}(x1),�{S1,...,Sn}(x2)), for �∈ (0, 1) and x1 /= x2,
�{S1,...,Sn}(x1) /= �{S1,...,Sn}(x2).

The proofs of the these properties were omitted for brevity.

3.2.2. The proposed MPC formulation
Now, the generalized Minkowski functional presented above
cking with maximal domain of attraction, J. Process Control (2011),

can be used as the objective function of the first problem of the two
step IHMPC, where the objective is to feasibly steer the unstable
component of the state to the set Cum. Then, the proposed infi-
nite horizon MPC is obtained from the sequential solution of the
following two problems:

dx.doi.org/10.1016/j.jprocont.2011.01.002
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If at time step k, x /∈	 , then the optimal cost of Problem
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Problem 2a

min
ua,k
Ja,k = �{Cum,...,CuN }(x

u(k +m|k))

ubject to:

ua(k + j|k) ∈�U, j = 0, . . . ,m− 1

(k + j|k) ∈X, j = 1, . . . ,m

Problem 2b

min
ub,k,ı

i
k
,ıu
k

Jb,k =
∑m−1

j=0
{||x(k + j|k) − xsp − ı(k, j)||2Q

+ ||�ub(k + j|k)||2R} + ||x(k +m|k)2
P + Ji(ıik)

ubject to:

ub(k + j|k) ∈�U, j = 0, . . . ,m− 1

(k + j|k) ∈X, j = 1, . . . ,m

i(k +m|k) − xsp = ıik (8)

u(k +m|k) = ıuk (9)

{Cum,...,CuN }(x
u(k +m|k)) ≤ � ∗ (10)

here ıi
k

and ıu
k

defined in (8) and (9) are slack variables asso-
iated with the integrating and unstable modes, respectively; the
onstraint violation penalty, Ji(ıi

k
) : Rni → R, is a convex, positive

efinite function such that Ji(0) = 0; and �* is the optimal cost of
roblem 2a. Because of the inclusion of a constraint violation term
(k, j) = ıi

k
+Wu�

j−m
u VTu ı

u
k

into the predictions, the infinite horizon
ost of Problem 2b can be also written as a finite horizon cost with a
erminal penalty term (see [10,11] for the details). Constraint (10)
orces the states to remain in the controllable set determined by
roblem 2a. Clearly, as �* decreases, the slack variable ıu

k
tends to

ero.
The following algorithm produces a stabilizing control law:

lgorithm 1. At every time step, k, solve Problem 2a and pass the
ptimal value of the cost to Problem 2b. Implement the first control
ction�ub(k|k).

emark 4. From a practical point of view, the computation of
he generalized Minkowski functional,�{Cum,...,CuN }(xu), is as follows.

irst, the sequence of sets {Cum, . . . , CuN} is computed as in Remark 3.
hen the sequence of coefficients {�m, . . ., �N} is computed by solv-
ng the optimization problems: �i = min{� ≥ 0 : �Cu

i
⊇ �i+1C

u
i+1},

or i = m, . . ., N − 1, with �N = 1. It is important to note that the sets
Cum, . . . , C

u
N} and the coefficients {�m, . . ., �N} are computed off line,

ince they depend only on the system and the constraints, i.e., they
re not controller parameters. Finally, following Definition 2, an
lgorithm is developed to evaluate this functional and use it as a
ost function of Problem 2a.

emark 5. Let us define the m controllability matrix of system (1)
s Com = [Am−1B Am−2B . . . B ]. Then, once the state is in 	m,
he terminal constraints (8) and (9) in Problem 2b can be written
s

Coim
] [

ıi + xsp −WiV
Tx(k)

]

Please cite this article in press as: A.H. González, et al., Stable MPC for tra
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Coum
�ub,k = k i

−WuVTu A
mx(k)

,

where Coim =WiV
T
i
Com (m controllability matrix for the inte-

rating modes), Coum =WuVTu Com (m controllability matrix for the
 PRESS
ss Control xxx (2011) xxx–xxx

unstable modes). As a result, the control horizon m should be large

enough to assure that matrix

[
Coim
Coum

]
is full rank.

Remark 6. As optimization problems 2a and 2b are solved sequen-
tially at every time step, we can assure that, depending on the
available degrees of freedom of the system, while the state is being
driven to 	m, the transient performance will also be optimized in
Problem 2b.

Remark 7. There exist different alternatives to define the slack
penalization function Ji(ıi

k
). In Ref. [9] it is shown that Ji must be

positive definite and subdifferentiable to minimize the distance
between the steady state output and the output set point. Two pos-
sible choices for Ji that fulfill these conditions are the l1-norm (or
l∞-norm) penalty [9]: Ji(ıi

k
) = ˛||ıi

k
||1, where ˛ is a real penaliza-

tion; and the quadratic penalty [11]: Ji(ıi
k
) = ||ıi

k
||2S , where S is a

positive penalization matrix. In the first case, if a lower bound for
˛ is found, the dynamic optimality of the solution is preserved (i.e.,
the slacked problem gives exactly the same solution as the origi-
nal problem, if the latter has a feasible solution). However, a lower
bound for the parameter ˛ is difficult to obtain since it depends on
the Lagrangian multipliers and so, it depends on the current states
and output set-points [22]. In the second case, which is the choice
in the present work, no exact penalty is achieved. The resulting lack
of optimality, however, is not so relevant in the context considered
here, given that the main objective here is to enlarge the domain of
attraction of a controller that can be easily implemented in practice.

The theorem that follows proves the asymptotic stability of the
controlled system, when the control law is obtained through the
solution of problems 2a and 2b, and a quadratic slack penalization
is used in Problem 2b.

Theorem 1. For system (1) subject to�u ∈�U and x ∈ X, the con-
troller resulting from the application of Algorithm 1, with Ji(ıi

k
) =

||ıi
k
||2S , is always feasible with a domain of attraction given by C∞.

Also, the control sequence obtained by applying Algorithm 1 at
successive time steps drives the output of the closed loop system
asymptotically to a point that minimizes Ji (particularly, if the out-
put set-point is reachable, the output of the closed loop system is
asymptotically steered to the set-point without offset).

Proof (:). The proof is divided into three parts: first, it will be
shown that the state (admissibly) reaches the set 	m in a finite
number of time steps; next it will be shown that once the state is in
	m, the system is steered to a steady state given by xss = xsp + ıi∗

k
,

and finally it will be shown that the latter steady state minimizes
Ji(ıi

k
) (with ıi

∗
k

= 0 if the output set-point is reachable).

Part I
Let us assume that the output reference is reachable and the

current state is such that x ∈ C∞. Consider first that at time step k,
x ∈	m, which implies that the unstable component of x, xu, belongs
to Cum. So, because of the definition of Cu

j
, there exists a feasible

control sequence that steers (admissibly) xu to zero in m steps.
Therefore, the optimal cost of Problem 2a, J∗

a,k
= � ∗, will be null

(see the property “(1)” of the generalized Minkowski functional).
Once the null value of the cost of the first problem is passed to
Problem 2b, constraint (10) forces the predicted state x(k + m|k) to
be in the integrating-stable subspace. Then, the sequence of Prob-
lems 2a and 2b is equivalent to Problem 2b with a feasible terminal
constraint for the unstable modes (i.e., ıu

k
= 0).
cking with maximal domain of attraction, J. Process Control (2011),

m

2a will be J∗
a,k

= � ∗ > 0. This is so because by definition of the
controllable sets for the unstable modes there is not a feasi-
ble control sequence that steers the unstable component of the
state to zero in m steps. Let us assume that the state x(k|k)

dx.doi.org/10.1016/j.jprocont.2011.01.002
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Fig. 6. Domain of attraction of the proposed control

elongs to	n \	n−1, for some m < n ≤ N, which implies that xu(k|k)
elongs to Cun\Cun−1. Then, there exists a feasible input sequence
hat steers (admissibly) the unstable component to Cun−m. Further-

ore, the region Cun−m corresponds to the lowest possible value
f the cost �{Cum,...,CuN }(xu(k +m|k)), since the level surfaces of the

ost function matches the contours of the controllable sets (see
he property “(4)” of the generalized Minkowski functional) and
u
n−m ⊂ Cun−m+1 ⊂ · · · ⊂ Cun . Then, the optimal input sequence at time
will be such that xu(k + 1|k) ∈Cun−1, x

u(k + 2|k) ∈Cun−2, . . . , x
u(k +

|k) ∈Cun−m. Once the optimal value of the cost of the first problem,
*, is passed to Problem 2b, constraint (10) forces the predicted

nstable component xu(k + m|k) to stay in Cun−m. Furthermore, every
redicted unstable component will belong to the controllable set
pecified by Problem 2a; this is so, because by the definition of
ontrollable set, it is not possible to reach Cun−m in m steps, without
eaching Cun−m+1 in m − 1 steps, and so on until Cun−1 is reached in
ne step. Now, given that no model mismatch is considered, then
u(k + 1|k) = xu(k + 1|k + 1), which means that the actual unstable
omponent xu(k + 1|k + 1) belongs to Cun−1. Following this reason-
ng, the unstable component of the state will reach (admissibly)
u
m in n − m steps (i.e., xu(k + n−m|k + n−m) ∈Cum), which implies
hat x ∈	m, and the optimal cost of Problem 2a, �*, goes to zero
n n − m time steps. Again, because of constraint (10), once �* is
eroed, Problems 2a and 2b become equivalent to Problem 2b with
feasible terminal constraint for the unstable modes.

Part II
Now, we will show that if the state is in	m (i.e.,�* = 0 and ıu

k
=

), then the solution to Problem 2b produces a control sequence
hat steers the states to a steady state given by xss = xsp + ıi∗

k
.

s usual in MPC, one can compare successive optimal costs J∗
b,k

nd J∗
b,k+1 by defining a feasible input sequence,�ũk+1 = (�u∗(k +

|k), . . . ,�u∗(k +m− 1|k),0), and a feasible slack variable ı̃i
k+1 =

i∗
k

, in order to show that J∗
b,k

is a Lyapunov function. Following a
imilar procedure to that of [23], it can be shown that
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
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b,k+1 = J∗b,k + ||x(k|k) − xsp − ıi∗k ||2Q + ||�u∗
b(k|k)||2R,
lid-line) and the conventional IHMPC (dashed-line).

where J̃b,k+1 is the cost obtained with the feasible solution proposed
above, the optimal cost at time k + 1 will be such that

J∗b,k+1 ≤ J∗b,k + ||x(k|k) − xsp − ıi∗k ||2Q + ||�u∗
b(k|k)||2R,

This last equation means that at the steady state, the closed
loop state and input will be such that ||x(k|k) − xsp − ıi∗

k
||2Q = 0 and

||�u∗
b
(k|k)||2R = 0, which implies that x(k|k) = xsp + ıi∗

k
.

Part III
To complete the proof, it will be shown that the slack variable

penalization (i.e., the proposed quadratic penalization) is mini-
mized at steady state. For this purpose, consider a steady state (time
k̄ large enough) given by x(k̄|k̄) = xsp + ıi

k̄
and �ub,k̄ = (0, . . . ,0).

Since a steady state is considered, then x(k̄|k̄) ∈Wi. The optimization
cost corresponding to that point will be Jb,k̄ = ||ıi

k̄
||2S , and given that

the sequence of control actions are null, the terminal constraints
corresponding to this point will (trivially) be

x(k̄|k̄) − xsp = ıi
k̄

(11)

WuV
T
u A

mx(k̄|k̄) = 0. (12)

Now, because of the rank condition discussed in Remark 6, there
exists a sequence of m small changes in the manipulated variable,
ε = (ε0, . . . , εm−1) ∈Rm·nu, that moves the system in the direction of
the set-point (i.e., produces a decrease of the integrating slack vari-
able), maintaining the predicted unstable component xu(k + m|k) at
zero. If we now implement this small changes at time k̄ (instead of
the null increment that corresponds to steady-state situation) the
terminal constraints become

x(k̄|k̄) + Coimε− xsp − ı̄i
k̄

= 0, (13)

WuV
T
u A

mx(k̄|k̄) + Coumε = 0, (14)

where the new slack variable ı̄i
k̄

is such that ||ı̄i
k̄
||2S < ||ıi

k̄
||2S . These
cking with maximal domain of attraction, J. Process Control (2011),

small changes also produce an increase in the dynamic error. To
analyze the effect of this increase in the cost function of Problem
2b, let us consider the predicted state errors:

x(k̄ + j|k̄) − xsp − ı̄i
k̄

= Ajx(k̄|k̄) + [ Coj Oj ]ε− xsp− = ı̄i
k̄

(15)

dx.doi.org/10.1016/j.jprocont.2011.01.002
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Table 1
Domain of attraction of typical MPC strategies.

MPC strategy Domain attraction Dependence on
controller
parameter

IHMPC [7] {x∈X : xi−u ∈Ci−um (X, {xsp})} m, xsp

w
a
t
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P

J̄

w
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Slacked IHMPC [23] 	m m
Dual MPC [1] Cm(X,OK∞(xsp)) m, K, xsp

Dual MPC for tracking [8] Cm(X,OK∞) m, K
Proposed IHMPC C∞ –

here Oj = 0j.nu,(m−j).nu. Since Ajx(k̄|k̄) ∈Wi, then Ajx(k̄|k̄) = x(k̄|k̄);
nd taking into account (13), the predicted state errors can be writ-
en as

(k̄ + j|k̄) − xsp − ı̄i
k̄

= ([ Coj Oj ] − Coim)ε (16)

hich depends exclusively on ε. As a result, the cost function of
roblem 2b can be expressed as a function of ε as follows4:

b,k̄(ε) = ||ε||2
Q̃

+ ||ıi
k̄

+ Coimε||2S ,

here Q̃ =MT1 Q̄M1 + R̄+MT2PM2, Q̄ = diag(Q, . . . , Q ), R̄ =
iag(R, . . . , R) and

1 =

⎡
⎢⎢⎣

[Co0 O0] − Coim
...

[Com Om] − Coim

⎤
⎥⎥⎦ , M2 = Com+1 − Coim

This is the cost obtained with the proposed small change, and
rivially satisfies J̄b,k̄(ε = 0) = Jb,k̄ = ||ıi

k̄
||2S . Now, to know if the new

ost is smaller than the previous one (Jb,k̄) for small values of ε, let
s consider the derivative of the cost function with respect to the
hange:

∂J̄b,k̄ (ε)

∂ε
= εT (Q̃ T + Q̃ ) + (ıi

k̄
+ Coimε)

T
(ST + S)Coim

= 2εT Q̃ + 2(ıi
k̄

+ Coimε)
T
SCoim,

hich represents a vector of m · nu components. Notice that the
econd term of the right hand side of the above equation is negative
ecause ε is such that ||ı̄i

k̄
||2S < ||ıi

k̄
||2S , and so ∂||ı̄i

k̄
(ε) ||2S/∂ε < 0. The

erivative evaluated at ε= 0 gives

∂J̄b,k̄ (ε)

∂ε

∣∣∣∣
ε=0

= 2ıi
T

k̄
SCoim < 0.

This means that there exists a (possibly small) value of ε such
hat J̄b,k̄ < Jb,k̄. Therefore, a decrement in the slack penalty cor-
esponds to a decrement in the complete MPC cost, and so the
ontrolled system asymptotically converges to a steady state out-
ut that minimizes the distance to the output set-point. As a
onsequence of the latter property, if the output set-point is reach-
ble, then the MPC cost asymptotically converges to zero. �

emark 8. The main advantage of the proposed controller is that
t has the largest possible domain of attraction, i.e., the domain of
ttraction is given by C∞, which does not depend on the control
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
doi:10.1016/j.jprocont.2011.01.002

aw.

Table 1 below shows a comparison between the domain of
ttraction of the proposed IHMPC and other typical strategies.5

4 The form of this term results from (13) and (11).
5 The set OK∞(xsp) is the maximal admissible invariant set for a given control law
= Kx (LQR) and a given equilibrium point xsp . The set OK∞ is the maximal admissible

nvariant set for tracking, for a given control law u = Kx (LQR) (see [8] for details).
 PRESS
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4. Simulation results

4.1. Unstable reactor

The aim of this simulation results is to compare the performance
and feasibility of the proposed formulation with the classical IHMPC
[7,16] and the Dual MPC that uses the LQR as terminal controller [1].
The selected system is the continuous stirred-tank reactor (CSTR)
described in Ref. [24]. The objective is to control one output vari-
able (reactor temperature) manipulating one input variable (jacket
flow rate). Using Taylor series expansion and a convenient trans-
formation, for a sampling time T = 0.05, the following diagonalized
discrete time linear model is obtained:

A =

⎡
⎢⎣

1 0 0 0
0 1.0311 0 0
0 0 0.9559 0
0 0 0 0.5841

⎤
⎥⎦ , B =

⎡
⎢⎣

1.5524
0.7621
0.2168

−0.5616

⎤
⎥⎦

and

C =
[

0.6018 −0.9575 −0.8965 0.0242
]

The input constraints are given by: umax = 1.32, umin = 0,
�umax = 0.1. The input increment bounds are chosen small to
clearly show its effect on the controllers’ domain of attraction.

The tuning parameters for the three controllers are: Q = 50 and
R = 1. Furthermore, the slack penalization for the proposed MPC is
Si = 5 × 104. The coefficients vi of the generalized Minkowski func-
tional used for Problem 2a of the proposed controller are given by:
�5 = 3, �6 = 2.5, �7 = 2, �8 = 1.7, �9 = 1.5, �10 = 1.35, �11 = 1.2, �12 = 1.1,
�13 = 1.03 and �14 = 1 (the maximal controllable set for the unstable
component is given by Cu14).

First, we analyze the domain of attraction for the integrating-
unstable components of the three controllers (assuming that for
both, the classical IHMPC and Dual MPC, the desired equilibrium
point is the origin). Fig. 6 shows the domain of attraction of the
classical IHMPC for m = 5, m = 10, m = 20 and m = 30 (dashed-line),
and the domain of attraction for the proposed MPC (solid-line).
Fig. 7 shows the domain of attraction of the Dual MPC for m = 3,
m = 5, m = 10, m = 20 and m = 30 (dashed-line), and the domain of
attraction for the proposed MPC (solid-line). Notice that for the
integrating-unstable modes the domain of attraction of the IHMPC
and the Dual MPC tends to a limit set as m increases, and further-
more, this limit set is smaller than the maximal domain of attraction
of the system (i.e., the domain of attraction of the proposed con-
troller, which does not depend on the control horizon).

Next, the performance and feasibility properties of the three
controllers are analyzed. First, the system is simulated starting
from a point in Ci−u7 where the initial integrating-unstable states
are close to the boundary of the maximal domain of attraction
of the system. The transformed initial state is given by: x(0) =
[ 0 0.43 0.2 −0.2 ]T , which corresponds to the following state
in the original state variables as defined in Section 2: x1(0) = − 0.13
(concentration of reactant), x2(0) = 0.15 (reactor temperature) and
x3(0) = − 0.71 (jacket temperature), written as deviation variables.
Fig. 8 shows the trajectories of the integrating-unstable states for
the three controllers considered above. We can see that the pro-
posed controller with m = 5 (green line) steers the system to Ci−um in
two time steps, and then regulates the system to the desired equi-
cking with maximal domain of attraction, J. Process Control (2011),

librium point. In the same Fig. 8, it can be seen (blue-line) the state
evolution for the IHMPC with m = 30. In the first three time steps,
this controller drives the system to the set-point in a feasible way
but then, the system reaches a state (shown in Fig. 8) where no

Furthermore, K depends on the cost weights Q and R.

dx.doi.org/10.1016/j.jprocont.2011.01.002
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Fig. 7. Domain of attraction of the proposed co

easible control action can be found and recursive feasibility is lost.
n the same figure, the state evolution corresponding to the Dual

PC with m = 15 (red line) is shown. As in the conventional IHMPC,
his strategy also steers the system to a point where the feasibility
s lost, even with a quite large control horizon.

In a second case, a less demanding condition is simulated to
ompare the performances of the three controllers. The adopted
ontrol horizons are m = 5 for the proposed controller, m = 17 for
he IHMPC and m = 10 for the Dual MPC. Fig. 9 shows the time
esponses when the system starts from the initial state x(0) =
0.33 0 0 0 ]T , where the three controllers are feasible. We can
ee from Fig. 9 that as expected the Dual MPC controller has a
lightly better performance (red line) than the others. This is so
ecause of the optimality of the Dual MPC. However, as can be
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
doi:10.1016/j.jprocont.2011.01.002

een in the same figure, the difference between the optimal con-
roller and the proposed controller (green line) is almost negligible.
he worst performance is achieved with the conventional IHMPC
blue line), which in addition needs the largest control horizon and
onsequently the highest computer cost.

ig. 8. Integrating-unstable states for the proposed controller (green line), IHMPC (blue
gure legend, the reader is referred to the web version of the article.)
er (solid-line) and the Dual MPC (dashed-line).

4.2. Inverted pendulum

In order to further illustrate the performance of the proposed
strategy, we selected the inverted pendulum system shown in
Fig. 10, where M is the mass of the cart, m is the mass of the pen-
dulum, b is the friction of the cart, I is the inertia of the pendulum,
F is the force applied to the cart, x is the cart position and � is the
pendulum angle from vertical (see, for instance, Sontag [25]).

We need to control both the cart’s position (y1) and the pendu-
lum’s angle (y2), manipulating the force applied to the cart (u).

The corresponding state space model, in the incremental form,
is given by

⎡ ⎤ ⎡ ⎤
cking with maximal domain of attraction, J. Process Control (2011),

A =
⎢⎢⎣

1 1 0 0 0
0 1 0 0 0
0 0 1.5680 0 0
0 0 0 0.6387 0
0 0 0 0 0.91

⎥⎥⎦ , B =
⎢⎢⎣

0.6900
−0.800
0.6314
0.2720
0.6900

⎥⎥⎦

line) and Dual MPC (red line). (For interpretation of the references to color in this

dx.doi.org/10.1016/j.jprocont.2011.01.002
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Fig. 9. Input, input increment and output responses for the proposed controller (green lin
to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 10. Inverted pendulum scheme.

Fig. 11. Controllable sets for the unstable m
e), IHMPC (blue line) and Dual MPC (red line). (For interpretation of the references

and

C =
[

−1 0 0.0147 0.0154 −0.99
0 0 0.1762 0.1750 0.0021

]

where one can easily identify two integrating modes – one being the
integrating model of the original system and the other introduced
by the incremental form of the model above, and one unstable mode
of the original system. Clearly, the second integrating mode can be
considered as a pure unstable mode, and so the system has two
unstable modes and only one input (in which case the controller
proposed in Ref. [11] cannot be applied). The input constraints are
given by: umax = 0.5, umin = −0.5,�umax = 0.1, and the cart’s position
is constrained in the range −0.3 ≤ y1 ≤ 0.3. The tuning parameters
cking with maximal domain of attraction, J. Process Control (2011),

of the proposed controller are: Q = diag(10,10), R = 0.1, m = 4 and
Si = 5 × 104. The coefficients vi of the generalized Minkowski func-
tional used in Problem 2a are given by: v4 = 1.7, v5 = 1.3 and v6 = 1.1;
where for simplicity it is assumed that the maximal controllable set
for the unstable modes is given by Cu7 , and so v7 = 1. Fig. 11 shows

odes, and unstable state trajectory.

dx.doi.org/10.1016/j.jprocont.2011.01.002
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Fig. 12. Input, input incr

he controllable sets for the unstable modes (given in this case by
2 and x3).

Initially, a state disturbance is simulated, such that the original
nstable component is in Cu7 . In this case the controller first steers
he system to Cum = Cu4 in three steps, and then regulates the system
o the equilibrium point. Fig. 11 shows the evolution of the unstable
Please cite this article in press as: A.H. González, et al., Stable MPC for tra
doi:10.1016/j.jprocont.2011.01.002

tates.
In order to see how the cost of Problem 2a, Va,k, changes

or k = 1, 2, 3, 4, consider the corresponding values of the
eneralized Minkowski functional: �{Cu

4
,...,Vu7 }(xu(5|1)) = 0.35,

Fig. 13. Input, input increment and outp
t and output responses.

�{Cu
4
,...,Cu7 }(xu(6|2)) = 0.21, �{Cu

4
,...,Cu7 }(xun(7|3)) = 0.05 and

�{Cu
4
,...,Cu7 }(xun(8|4)) = 0, which represents a strictly decreasing

sequence.
Fig. 12 shows the input, input increment and output evolution

versus time. Notice that the input increment constraint becomes
active at the beginning of the simulation, where the effort is made
cking with maximal domain of attraction, J. Process Control (2011),

to steer the unstable part of the system to Cum = Cu4 .
In a second simulation, two set point changes are considered.

In the first one the system is guided to a reachable set point
given by ysp = [ −0.2 0 ]T , while in the second one, the system

ut responses for set-point changes.

dx.doi.org/10.1016/j.jprocont.2011.01.002
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s intended to be guided to an unreachable set-point given by

sp = [ −0.35 0 ]T . Fig. 13 shows the input, input increment and
utput evolution versus time k for the two changes. In the first
ase the MPC cost converges to zero (the output reaches the
et point), while in the second one it converges to a non-null
alue, maintaining the feasibility and stability. Notice that at the
esired steady state the output constraint becomes active, while
he input and input increments tend to zero (double integrating
ystem).

. Conclusion

A new MPC formulation was presented that exploits the prop-
rties of the model structure and a new Minkowski functional
o obtain stability. As other recent formulations, it guarantees
ecursive feasibility and stability for tracking both, reachable and
nreachable output set-points. Furthermore, in the latter case, the
esulting controller steers the system to an admissible station-
ry output that minimizes the distance to the desired set-point,
ithout the necessity of a target calculation stage. The main differ-

nce/benefit of the proposed approach is that it exhibits the largest
ossible domain of attraction (admissible set of initial states),
hich is a desirable characteristic for real applications. The domain

f attraction of the proposed controller does not depend on the
ontroller, but on the nature of the system, including the variable
imits.
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