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In this work, a stable MPC that maximizes the domain of attraction of the closed-loop system is proposed.
The proposed approach is suitable to real applications in the sense that it accounts for the case of output
tracking, it is offset free if the output target is reachable and minimizes the offset if some of the con-
straints are active at steady state. The new approach is based on the definition of a Minkowski functional

related to the input and terminal constraints of the stable infinite horizon MPC. It is also shown that the
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control literature.

domain of attraction is defined by the system model and the constraints, and it does not depend on the
controller tuning parameters. The proposed controller is illustrated with small order examples of the

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The feasibility and/or stability of MPC for linear time invariant
systems is now well established [1,2]. Standard approaches use the
dual-mode prediction paradigm [3] in conjunction with an infinite
horizon. Within this paradigm, it is assumed that a fixed uncon-
strained feedback K (terminal controller) is used for predictions
beyond the control horizon. In this case, a major obstacle is to
establish a trade-off between the desirable volume of the domain
of attraction (the set of states for which the controller can generate
a feasible input), the overall complexity (computational cost), and
the achievable performance for a given control horizon (degree of
optimality). Assuming that the control horizon is chosen small for
computational reasons, the domain of attraction is dominated by
the fixed unconstrained feedback, since additional (terminal) con-
straints are needed to assure the feasibility of the local control law.
Optimality of the dual approach can be obtained if the terminal lin-
ear controller is the Linear Quadratic Regulator (LQR) based on the
same cost function as the MPC (same tuning weights). Many works
have proposed strategies to enlarge the domain of attraction of this
kind of controllers: In Refs. [4,5], the authors used a saturated local
control law; in Ref. [6], the authors proposed a contractive terminal
set given by a sequence of reachable sets. On the other hand, the
extreme of a poorly tuned terminal controller is the null controller
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K=0]7].For unstable systems, however, this control strategy needs
to include a terminal constraint that zeroes the unstable modes (as
they cannot be steered to the origin by the proposed local null con-
troller), reducing in this way the original terminal set, and so, the
whole domain of attraction of the controller.

Another important point related to the feasibility/stability of lin-
ear MPC is the extension of the regulation problem to the tracking
problem. In Ref. [8], the authors explain how a set-point change
transforms the terminal set, producing in some cases a lack of fea-
sibility. They also propose a general formulation to deal with the
tracking problem, and in Ref. [9], they provide conditions for opti-
mality of the controller. However, in some real applications (mainly
in chemical processes), a reasonable lack of optimality is not so rel-
evant if some steady-state conditions computed by a supervisory
level are fulfilled [10]. On the other hand, an augmented domain of
attraction is desirable to account for changes in the output targets
and in the operating window of the process without loss of feasi-
bility and/or stability. In this context [11], reformulates the original
strategy based on the null terminal controller with terminal con-
straints to allow an augmented domain of attraction for both, stable
and unstable systems.

The main idea of the approach proposed in Ref. [11] is to solve
the MPC problem in two steps. In the first step the state isdriventoa
set from which the stable manifold can be reached at the end of the
control horizon. Then, in the second step, the state is driven to the
desired equilibrium point. A drawback of this formulation is that it
islimited to the case of systems with at most one unstable mode per
input, which may not be the case for important industrial systems
[12,13]. This paper proposes an extension to the strategy presented
in Ref. [11], introducing a more general way of dealing with the
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unstable modes. The original idea of using slack variables in the con-
straints that zero the unstable modes is extended by means of the
use a functional based on the Minkowski functional. Furthermore,
some steady state optimality properties, related to the capability
of the controller to account for unreachable output references, are
included.

Notation: For a symmetric positive definite matrix P, ||X||p =
vxTPx denotes the weighted Euclidean norm. Matrix I, e R™"
denotes the identity matrix, and matrix On m € R™™ denotes the
null matrix. Consider two sets U and V, and a real number A. The
Minkowski sum U@V is defined by UV ={u+v:uelU,veV};
the set U\V is defined by U\V={u:ueUandu¢V}; and the set
AU={Au:ueU} is a scaled set of U. Besides, int(U) and oU denote
the interior and the boundary of U, respectively. Given a continu-
ous function ¥ : R" — R, and y >0, the level set N[¥, y] is defined
by N[V, y]={x: ¥(x) < y}. The boundary of this set, dN, is the level
surface of .

2. System description

Let us consider the (controllable) system

x(k +1) = Ax(k) + BAu(k) ¢!
y(k) = Cx(k), :

where x(k) e R™ is the current state vector, Au(k) = u(k) — u(k —
1) e R™ is the input move and y(k) is the current output of the sys-
tem. In addition, let us consider that the system has nun unstable
and ns stables poles, and ni=max(nu, ny) poles at one. These inte-
grating poles are produced by the incremental form of model (1).
Then, matrix A can be decomposed into the integrating, unstable
and stable modes using the Jordan decomposition:

A 0 0 vI
Wsl| 0 A, O v, (2)
0 0 A |V]

A=WAV=[W; W,

where WV =1, and A is a block diagonal matrix (Jordan canon-
ical form). The column spaces of matrices W], W[ and W] are
the integrating, unstable and stable subspaces or manifolds of the
state space, W;, W, and W, respectively. Since W; @ W, & Ws = R™,
every state can be decomposed as x=x! +x" + x5, where x' = W;VIx
belongs to W;, x* = W,V x belongs to Wy, and x* = W,VIx belongs
to Ws. Clearly, if x e W;, then x* = Wy, VIx = 0 and x° = WsVIx = 0,
and so on for the other subspaces. It can be shown that W;, W, and
W; are invariant subspaces of the state space under the transforma-
tion A. Although the results presented here can be extended to any
linear system, we assume for simplicity that A;=1I,; (i.e., systems
with non-repeated poles at one').

The input is constrained to belong to a set AU, defined as fol-
lows:

AU = {Au : —Aumax < Au < Aumax and Uiy < u(k — 1)
+ Au < Umax},

where u(k—1) is the past value of the input u. Furthermore, the
states are constrained to be in a set X, which for simplicity is
given by X=X; ® X, ® X5, where X; € W;, X, €W, and X; € W;. This
set should be consistent with the operating window of the process.

Remark 1. Notice that in the model defined in (1), the input
appears in the incremental form. This property gives an alternative
way to achieve an offset-free control, in comparison to the target

! Notice that when the original system has integrating poles, the velocity form of
the model defined in (1) produces integrating modes with multiplicity two. In this
case, matrix A; will be triangular, and the original integrating modes are considered
as unstable modes (See [14]).

calculation strategy used in [15,16], that needs a separate opti-
mization problem to be solved in order to compute the achievable
steady-state. Secondly, input increment constraints are included
together with the input constraints. This constitutes an important
feature of real processes usually disregarded by theoretical MPC
formulations, and contributes to a better description of the whole
system, since this kind of constraints limits the maximal domain of
attraction of the system, as can be seen in the next sub-section.

Remark 2. The evolution of input u can be written as
u(k+1)=u(k)+ Au(k) and, from the decomposition (2), it follows
that VIx(k+1)=V[x(k)+ VBAu(k). Then V/x=V[Bu and so
W;VIx = x' = W;VIBu. Now, since the input amplitude is con-
strained, the state component X' should be constrained to belong
to X; = {x' € W; : W;V] Bupin < x' < W;V] Bumax}.

2.1. Characterization of the steady states

The idea here is to show that, under mild conditions, systems
with integrating modes have the equilibrium states in the inte-
grating manifold of the state space. Without loss of generality, it is
assumed that nu = ny = ni (for non-square systems the procedure to
characterize the steady state is similar). For a given output target
(or set-point) y*P, any steady state of the system defined in (1), (s,
Aug), associated with this target should satisfy xgs=Axss + BAugs
and y*P = Cxs. Then, using (2), pre-multiplying the first equation
above by V, and considering that WV = I, it follows that

(A-Iy) VB Vs | | O
cw Oni,ni Auss - ysP :
Now, developing the matrices of the above equation into its
integrating, unstable and stable components, we have

hi-ly 0 0 VIB] [Vixs
0 Au-Iwm O  VIB| |Vixg| { 0 ] )
0 0 As—ls VIB| [Vixg | = |y? |
w; Wy CW; Oni,ni Augs

Thus, assuming that rank(ViTB) = ni, it follows that any steady
state of the system is such that

cw; ViTXSS yspP
Vgxss Onun,1
= ) , 4
VSTXSS Ons,1 )
Augs Oni,l

From Eq. (4) it can be seen that the unstable and stable com-
ponents of xgs are null (x% = Wy VI xs = 0, x5, = WsVIxss = 0) and
Augs =0.This means that the steady states are condensed in the sub-
space corresponding to the integrating modes, W; (xi, = W,~V1.TxSs =
xss); and furthermore, xi; = Wi(CW,»)‘1 y*P. Notice that the equilib-
rium states are confined to a ni dimensional subspace, which is the
output dimension; so, every point of the integrating manifold is an
equilibrium state of the unconstrained system.

Now, since the system is subject to constraints, it should be
steered to those steady states that satisfy the constraints. From the
definition of the state constraints, the set of these admissible steady
states is then given by Xss =X; € W;.

2.2. Characterization of the controllable sets

In this section we exploit the steady state characterization pre-
sented in the last section in order to define some useful controllable
sets. First, we define the set of states in X that can be admissibly
steered, by means of an admissibly sequence of j control actions, to
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the equilibrium set, Xs (j-step controllable set to Xss):

Gi(X, Xss) = (x(0)e C : forallk =0, ...,j -1,
JAu(k) e AU such thatx(k) € X and x(j) € Xss}.

Since the target set is an equilibrium set, then C; is a control
invariant set for the system (1) subject to Aue AU and x X, for
allj>1 (and so they are called stabilizable sets). The set? C,, c X is
therefore the largest possible domain of attraction of any controller
designed for system (1), since it does not depend on the selected
control law, but on the nature of the system and the constraints.

Now we will define the j-step controllable set to the equilibrium
set Xs, for unstable modes:

Cj”(Xu,XSS) ={x"(0)eX, : forallk=0,...,j -1,
JAu(k) e AU such thatx(k) e U, x(j) € U and x*(j) € Xss}

Clearly, the terminal condition x“(j)eXs is equivalent to
x!(j) €{0}, and so, Cj" defines the unstable state components that
can be steered to the origin in j steps, by means of a feasible con-
trol sequence {Au(0), ..., Au(j—1)} and maintaining the state
sequence {x(0), ..., x(j)} in X. Notice that the projection of C; onto
W, is a subset of Cj”, since the latter set only forces the terminal
components x¥(j) to be null, while setting the terminal components
xi(j) and x5(j) free inside X; and X, respectively. It can be shown that

Cj!l C C]“+l for all j> 0, and furthermore Cj!l tends to a bounded set as

the number of steps j tends to infinity, even if X is unbounded.3

Remark 3. The set C]?‘ can be computed using iteratively the
well-known methods for computing the one step controllable set
to a given set (quantifier elimination, projection and Minkowski
summation, etc.) and the projection of a set onto a subspace
(Fourier-Motzkin elimination, etc.) — see chapters 2 and 3 of [17]
for details. Since the system is linear and the constraints are box-
type constraints, the sets C* can be easily computed using available
tools: Matlab Invariant set Toolbox [18]; and Multi-parametric
Toolbox (MPT) [19]. From a practical point of view, the set C¥ can
be computed by increasing the index j of Cj“ up to N, in such a way
that Cy ; ~ Cy.Then, Cj ~ C%,, and this will be a good estimation of

N+1
the largest possible domain of attraction for the unstable subspace.

Now, from the latter definition, one can define the following
subset of Co, C R™:

Oj={xeCyx:x'e Cju(Xu,Xss)}-

This set satisfies C; € ®); (in fact, &; is significantly less conser-
vative than ; for most of the cases, given that the projection of G
onto Wy, is a subset of Cj”). Furthermore, it can be shown that ©; is
a control invariant set for system (1) subject to Aue AU and xeX.

2.3. Controllable sets in the context of MPC

It is well-known from the MPC literature that when an infinite
output horizon is used in the objective function of the controller,
and no terminal controller is assumed for predictions beyond the
control horizon, the non-stable (integrating and unstable) modes
must be canceled at the end of the control horizon, m, to prevent
unbounded values of the cost. Then, unless the current state is such

2 In the sequel, the set G;(X, Xss) will be simply denoted as C;.

3 As it was done with the unstable modes, it could be defined the j-step control-
lable set to the equilibrium set for the integrating-unstable modes and for stable
modes as C;’“(Xi,u, Xss) and CJ?(XS,XSS), respectively (X;_, is the direct sum of X; and
Xu). It can be shown that C]?"“ always tends to a bounded set as j tends to infinity (see
Remark 1 of [11]). On the other hand, if C; = W, the set CS, is necessarily unbounded.

thatits integrating-unstable component is in the m-controllable set
to the equilibrium point, the infinite horizon MPC will be infeasible.
For the case of integrating modes, the required terminal constraint
can be easily slacked and then, by means of a constraint viola-
tion penalty, the asymptotic convergence of these modes to zero
is guaranteed, together with the convergence of the state to the
equilibrium point [20]. On the other hand, the terminal constraint
associated to the pure unstable modes cannot be directly slacked,
since for this case a constraint violation penalty does not produce
an asymptotic convergence of these modes to zero. In this context,
it is useful to characterize the maximal region where the terminal
constraint for the unstable modes is feasible. From the analysis of
controllable sets in Section 2.2, it follows that this set is given by
Onm.

3. A stable MPC for tracking
3.1. Conventional infinite horizon MPC (IHMPC)

For tracking a non-zero output target y°P, the classical IHMPC
formulation is as follows [7,16]:

Problem 1

m—1

minj, = x(k +jlk) — x| 12 + [|Au(k + k)| |2
minje = 3 (B4 51K) = X -+ 1 AuCk+ KR

+[1x(k +m[k)|[3

subjectto :

Au(k +jlk)e AU, j=0,...,m-1

x(k+jlk)eX, j=1,...,m
Xi(k+mlk) —xP =0 5)
x4(k +mlk) =0 )

where x(k|k)=x(k), xP = W;(CW;)~1y*P4 Au(k+j|k) is the control
move computed at time k to be applied at time k+j, m is the con-
trol horizon, Q and R are positive weighting matrices of appropriate
dimension, and Au=(Au(k|k), ..., Au(k+m—1]k)). Observe that
xP is the equilibrium state corresponding to the output set point
%P, Because of the terminal constraints (5) and (6), which corre-
spond to the zeroing of the integrating and unstable modes at the
end of the control horizon respectively, it can be shown that the
control cost of Problem 1 corresponds to the infinite horizon cost
if the terminal penalty matrix P, that depends only on the stable
modes of system, is computed by solving a Lyapunov equation as
in[11].

The domain of attraction of the controller resulting from the
solution to Problem 1 may be small (see [16] for an interesting
example), mainly in the cases where the input increment constraint
is included. As discussed in Section 2.3, the inclusion of slack vari-
ables in the terminal constraints is appropriate for constraint (5),
which is related to the integrating modes (see [20,14]). However,
it is not appropriate to remove the conflict between constraint (6)
and the input constraints to preserve the stability of the system,
and so, a new method has to be developed to maximize the domain
of attraction of the infinite horizon MPC.

3.2. The proposed stable MPC with maximal domain of attraction

To enlarge the domain of attraction of the controller defined
through Problem 1, in Ref. [11], it is presented a method to include
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slack variables in constraints (5) and (6), while preserving the sta-
bility of the closed-loop system. The main idea of this approach
is to separate the IHMPC problem in two stages: the first one is
devoted to steer the state to the set ®,; (maximal region where
the terminal constraint for unstable modes is feasible) in a finite
number of steps; while the second one is devoted to asymptoti-
cally steer the state from ®, to the desired equilibrium point in
Xss, as classical IHMPC does. Each of these stages corresponds to a
different optimization problem and there is guarantee of feasibility
and boundness of the cost function at any time step. However, the
strategy presented in Ref. [11] has some limitations, since it cannot
be applied to systems with an arbitrary number of unstable modes.

Theideahereis to generalize the two-stage procedure presented
in Ref. [11] to the case where we may have an arbitrary number of
unstable modes. For this purpose, it should be emphasized that the
objective of the first stage of the two-stage IHMPC formulation is
to steer the state from ©&; to ®;_;, for m<j<N and N computed
as in Remark 4, until &, is reached. So, it makes sense to use,
as the cost function of the first optimization problem, a function
of x¥(k+m|k) whose level surfaces matches in some way the con-
tours of the controllable sets {C},, ..., C,L\’,}. With this approach, to
minimize the latter cost becomes equivalent to feasibly steer the
states towards ®p,. A l,-norm of x(k +m|k) would not produce the
desired effect (except for the case where each input is associated
with at most one unstable mode, as it was assumed in Ref. [11]),
since the level surfaces of this norm are different in shape from
the contours of the controllable sets. Here, we propose the devel-
opment of a new functional, which is derived from the Minkowski
functional. It will be shown that the proposed functional directly
associates their level surfaces with the contour of scaled sets of Cj“.
As a consequence, a new IHMPC with maximal domain of attraction
is obtained.

3.2.1. The generalized Minkowski functional

This subsection is devoted to the introduction of a new
functional (that we call generalized Minkowski functional) which
is an extension of the well-known Minkowski functional. The
Minkowski functional is defined as follows [21]:

Definition 1. Given a convex set S ¢ X that includes the origin as
an interior point, the Minkowski functional ¥ associated to S is
defined as

Ws(x) = inf{u > 0 : x e uS}. (7)

The main property of this (convex) functional is that its level sets
have the shape of the set S, i.e., the level sets of W(x) can be obtained
by linearly scaling the set S. Observe that from the definition (7),
S=N[¥s(x), 1], ¥s(x)<1, for x e int(S), and ¥s(x)> 1, for x ¢ S. Fig. 1
shows the set S and the level sets of ¥(x), for an example in R2.

The idea here is to extend the concept of the Minkowski func-
tional associated to a set, to a new generalized functional associated
to a sequence of sets. For this purpose, let us consider a sequence
of 0-symmetric convex sets {Sy, ..., Sp}, withS; cS; ... C Sy, and
consider the corresponding sequence of pairwise disjoint sets, {71,
..., Tn}, where Ty =int(Sjq )\ int(S;),i=1, ..., n—1 (observe that
these sets are a partition of S;). Then, the aim is to find a func-
tional whose level surfaces in 7.1 are some scaled sets of S;, for
i=1, ..., n—1. Fig. 2 shows the sequence of sets {S1, S, S3}, the
corresponding sequence {15, 73} and the level surfaces that the
desired functional should have, for an example in R, In this context,
an intuitive first candidate for the desired generalized functional
could be as follows:

Given a sequence of convex sets {S;, ..., Sp}, with
S1cSy C...C Sy, the generalized Minkowski functional l,I/(’S1

X1

X2

Fig. 1. The level sets of the Minkowski functional ¥s(x).

associated to {Sq, ..

(x) = s, (x) if xeTiq, i=1,...,n-1
- q/sl(X) if xeSq

., Sn} is defined as

'1'(,51,...,5”;
This functional, however, does not have the desired property;
i.e., its level sets are not the scaled sets of S;. It looks like the
one shown in the simplified diagram of Fig. 3. Furthermore, it is
not a quasi-convex function and so it cannot be directly used as
the cost function of an optimization problem. In fact, given that
S1CS2C...CSy, the sequence of functionals {¥s, (x), ..., ¥s,(x)}
is such that Ws, (x) > ¥s, (x) = ... = ¥, (x) for each x.
To overcome this difficulty, it is possible to replace the
sequence of Minkowski functionals {¥s, (x),...,¥s, (x)} by

X1

|| X

Fig. 2. Sequence of sets {Si, S, S3} and level surfaces of the desired generalized
functional.
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Fig. 3. Descriptive diagram of the generalized Minkowski functional lI/(/S1 s S3)(x). 3 2

{Wys5,(%), ..., Wy,5,(x)}, where the sequence of real numbers {vy,
..., vp}issuch that v1S; D vS; D... D vySy (see Fig. 4). In this way,
we have Y, s (x) < W,,s5,(x) < ... < ¥, 5, (x), for each x, and the
following generalized functional can be defined:

Definition 2. Given a sequence of convex sets {S, ..., Sn}, with
S1cSy C...Cc Sy, we propose to define the generalized Minkowski
functional ¥s, s, associated to {Sq, ..., Sp} as follows

Pys,(x) if xeTiy, i=1,...,n-1

lpfslwsn’(x):{ W5, (%) if xeS;

where the coefficients v; are such that v;S; 2 V41 Si41.

This generalized Minkowski functional looks like the one shown
in the simplified diagram of Fig. 5, which is a quasi-convex function.
Furthermore, its level surfaces in each set 7', are scaled sets of
S;, fori=1, ..., n—1, as desired (see Fig. 2). More technically, the
proposed generalized Minkowski functional satisfies the following
properties:

X1

X2

Fig. 4. Sequence of scaled sets {v15;1,1252, 353}, corresponding to the sequence {S;,
S2,S3} of Fig. 2, for vy >v, >v3 and vz = 1.

Fig. 5. Descriptive diagram of the quasi-convex generalized Minkowski functional
Wis, .5,.55)(X)-

Properties:

1. Ys, ... s.1(x) is piecewise continuous and piecewise convex. It
has a discontinuity at each contour dS; of the sets S;, fori=1, ...,
n— 1. Furthermore, ¥s, .. s,,(X) > 0,V¥x # 0, and W5, 5.,(x) =
0 x=0.

2. ¥, ,...spy(x) has a global minimum at 0. This follows from the fact
that every Minkowski functional ¥,,s,(x) has a global minimum
at 0.

3. If xe Tiv then q/(sl’__.’sn)(x) = 1/1),',1 <> Xe 351;1 for i=2, ..., n.
That is: ON[¥s, ... s,(x), 1/v;] = 0S;, for i=1, ..., n—1, and as
a consequence, on the contours of the sets S;, the generalized
Minkowski functional has increasing values.

4. W, ,....sn)(x) satisfies:

Uis,,.sm(X1) < Ws, osa(%2) < Wisy s (X3)

forx; € Ty, x; € 8S;and x3 € Ty whichmeans that Ws, | s,.4(x)
is strictly increasing according to the following definition:

N[Ws,....s0(X), 1] C N[5, s (%), Y2l © v1 < 12.

5. If all the sets S; have the same aspect ratio (that is, if A;S;=S;,
i=1, ..., n for some sequence of coefficients A;) then, the gener-
alized Minkowski functional becomes the Minkowski functional
corresponding to the largest set, S;.

6. Strictly quasi-convexity: The proposed functional is not
convex. However, it can be shown that W, . s,(x) is
strictly quasi-convex, that is W, . s,3(Ax% +(1-2A)kx;) <
max(¥s,....sy(x1), ¥is,,....sn(x2)), for A€(0, 1) and x1 # X3,
Ui, ..sm(X1) # Yis, .5 (X2)-

The proofs of the these properties were omitted for brevity.

3.2.2. The proposed MPC formulation

Now, the generalized Minkowski functional presented above
can be used as the objective function of the first problem of the two
step IHMPC, where the objective is to feasibly steer the unstable
component of the state to the set C¥. Then, the proposed infi-
nite horizon MPC is obtained from the sequential solution of the
following two problems:

doi:10.1016/j.jprocont.2011.01.002

Please cite this article in press as: A.H. Gonzalez, et al., Stable MPC for tracking with maximal domain of attraction, J. Process Control (2011),



dx.doi.org/10.1016/j.jprocont.2011.01.002

G Model
JJPC-1220; No.of Pages12

6 A.H. Gonzdlez et al. / Journal of Process Control xxx (2011) XxX—XXx

Problem 2a

mm] k= Y, cu
A“a,k a,k (Chyseees

Subject to:

Aug(k +jlk)e AU, j=0,...,m-1

x(k+jlk)eX, j=1,...,m
Problem 2b
m-1
min  Jp i = {11x(k + jlk) — X — 8(k, )IIZ
Auy 8,84 bk Zj=0 Q
+ 11 Aup(k + 1K)} + [1x(k + mIk) +J(8})
Subject to:

Aup(k+jlk)e AU, j=0,...,m-1

x(k+jlk)eX, j=1,...,m

xi(k + mik) — x°P :8}; (8)
xM(k +mlk) = 8} (9)
Yicu .. Ch)(x“(k-i- mik)) < ¥* (10)

where 5}; and &} defined in (8) and (9) are slack variables asso-
ciated with the integrating and unstable modes, respectively; the
constraint violation penalty, Ji(8}) : R" — R, is a convex, positive
definite function such that Ji(0)=0; and ¥* is the optimal cost of
Problem 2a. Because of the inclusion of a constraint violation term
8(k, j) = 8, + Wy A} VI 8% into the predictions, the infinite horizon
cost of Problem 2b can be also written as a finite horizon cost with a
terminal penalty term (see [10,11] for the details). Constraint (10)
forces the states to remain in the controllable set determined by
Problem 2a. Clearly, as ¥* decreases, the slack variable &) tends to
zero.
The following algorithm produces a stabilizing control law:

Algorithm 1. Atevery time step, k, solve Problem 2a and pass the
optimal value of the cost to Problem 2b. Implement the first control
action Aup(k|k).

Remark 4. From a practical point of view, the computation of
the generalized Minkowski functional, W{Cy",__.’cm(x”), is as follows.
First, the sequence of sets {C}, .. ., C;} is computed as in Remark 3.
Then the sequence of coefficients {vp, ..., vy} is computed by solv-
ing the optimization problems: v; = min{v >0 : vCi” o) vi+1ClF‘+1},
fori=m,...,N—1, with vy=1. It is important to note that the sets
{Ch, ..., Cy})and the coefficients {vp, .. ., vy} are computed off line,
since they depend only on the system and the constraints, i.e., they
are not controller parameters. Finally, following Definition 2, an
algorithm is developed to evaluate this functional and use it as a
cost function of Problem 2a.

Remark 5. Let us define the m controllability matrix of system (1)
as Cop = [A™ 1B Am—2B B]. Then, once the state is in Oy,
the terminal constraints (8) and (9) in Problem 2b can be written
as

Col, _ | 8 +xP — WVIx(k)
[CO;;,] Aty = [ ~W,VIAmx(k) |

where Co},, = W;VI Copy (m controllability matrix for the inte-
grating modes), Co¥, = W, VI Cosn (m controllability matrix for the

unstable modes). As a result, the control horizon m should be large

i
5227 } is full rank.

enough to assure that matrix [
m

Remark 6. Asoptimization problems2aand 2b are solved sequen-
tially at every time step, we can assure that, depending on the
available degrees of freedom of the system, while the state is being
driven to ®p,, the transient performance will also be optimized in
Problem 2b.

Remark 7. There exist different alternatives to define the slack
penalization function Ji(8}). In Ref. [9] it is shown that J' must be
positive definite and subdifferentiable to minimize the distance
between the steady state output and the output set point. Two pos-
sible choices for J' that fulfill these conditions are the I;-norm (or
l-norm) penalty [9]: Ji(8}) = «||8% |11, where « is a real penaliza-
tion; and the quadratic penalty [11]: Ji(8}) = |18}|12, where S is a
positive penalization matrix. In the first case, if a lower bound for
« is found, the dynamic optimality of the solution is preserved (i.e.,
the slacked problem gives exactly the same solution as the origi-
nal problem, if the latter has a feasible solution). However, a lower
bound for the parameter « is difficult to obtain since it depends on
the Lagrangian multipliers and so, it depends on the current states
and output set-points [22]. In the second case, which is the choice
in the present work, no exact penalty is achieved. The resulting lack
of optimality, however, is not so relevant in the context considered
here, given that the main objective here is to enlarge the domain of
attraction of a controller that can be easily implemented in practice.

The theorem that follows proves the asymptotic stability of the
controlled system, when the control law is obtained through the
solution of problems 2a and 2b, and a quadratic slack penalization
is used in Problem 2b.

Theorem 1. For system (1) subject to Aue AU and x € X, the con-
troller resulting from the application of Algorithm 1, with ]‘(8;{) =
||8§<\|§. is always feasible with a domain of attraction given by C,..
Also, the control sequence obtained by applying Algorithm 1 at
successive time steps drives the output of the closed loop system
asymptotically to a point that minimizes J' (particularly, if the out-
put set-point is reachable, the output of the closed loop system is
asymptotically steered to the set-point without offset).

Proof (:). The proof is divided into three parts: first, it will be
shown that the state (admissibly) reaches the set ®,, in a finite
number of time steps; next it will be shown that once the state is in
®n, the system is steered to a steady state given by xss = x°P + 8’?,
and finally it will be shown that the latter steady state minimizes
Ji(8L) (with 81 = 0 if the output set-point is reachable).

Part |

Let us assume that the output reference is reachable and the
current state is such that x € C.. Consider first that at time step k,
X € ®n, which implies that the unstable component of x, x, belongs
to Cf,. So, because of the definition of CV, there exists a feasible
control sequence that steers (admissibly) x¥ to zero in m steps.
Therefore, the optimal cost of Problem 2a, L= v*, will be null
(see the property “(1)” of the generalized Minkowski functional).
Once the null value of the cost of the first problem is passed to
Problem 2b, constraint (10) forces the predicted state x(k + m|k) to
be in the integrating-stable subspace. Then, the sequence of Prob-
lems 2a and 2b is equivalent to Problem 2b with a feasible terminal
constraint for the unstable modes (i.e., §; = 0).

If at time step k, x¢ O, then the optimal cost of Problem
2a will be L= Y* > 0. This is so because by definition of the
controllable sets for the unstable modes there is not a feasi-
ble control sequence that steers the unstable component of the
state to zero in m steps. Let us assume that the state x(k|k)
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Fig. 6. Domain of attraction of the proposed controller (solid-line) and the conventional IHMPC (dashed-line).

belongs to ®, \ ®,_1, for some m <n < N, which implies that x!(k|k)
belongs to CH\C}_;. Then, there exists a feasible input sequence
that steers (admissibly) the unstable component to C}_,,. Further-
more, the region CH_,, corresponds to the lowest possible value
of the cost lll(c%wck’)(xu(k + myk)), since the level surfaces of the

cost function matches the contours of the controllable sets (see
the property “(4)” of the generalized Minkowski functional) and
Ch o C C;’fmﬂ C --- C Ch.Then, the optimal input sequence at time
k will be such that x"(k + 11k)e C}_;, x*(k+2[k)eC} ,, ..., x"(k+
mj|k) € Cj;_p,. Once the optimal value of the cost of the first problem,
v* is passed to Problem 2b, constraint (10) forces the predicted
unstable component x¥(k + m|k) to stay in C}_,. Furthermore, every
predicted unstable component will belong to the controllable set
specified by Problem 2a; this is so, because by the definition of
controllable set, it is not possible to reach Cy_,, in m steps, without
reaching C}_ ; in m—1 steps, and so on until C;_, is reached in
one step. Now, given that no model mismatch is considered, then
x4(k+1|k)=x"(k+1|k+1), which means that the actual unstable
component x"(k+1|k+1) belongs to C, ;. Following this reason-
ing, the unstable component of the state will reach (admissibly)
C¥ inn—m steps (i.e., x*(k + n — m|k + n — m) e C&), which implies
that x € @y, and the optimal cost of Problem 2a, ¥*, goes to zero
in n—m time steps. Again, because of constraint (10), once ¥* is
zeroed, Problems 2a and 2b become equivalent to Problem 2b with
a feasible terminal constraint for the unstable modes.

Part Il

Now, we will show that if the state is in @y, (i.e., ¥*=0 and (Sz =
0), then the solution to Problem 2b produces a control sequence
that steers the states to a steady state given by xs5 = xP +8§:.
As usual in MPC, one can compare successive optimal costs ];;’k
and]z;’,<+1 by defining a feasible input sequence, Al 1 = (Au*(k +
11k), ..., Au*(k +m — 1]k), 0), and a feasible slack variable S;{H =
8}{ in order to show that ]g’k is a Lyapunov function. Following a
similar procedure to that of [23], it can be shown that

Toert =J5 o+ 1xCklk) = X — 8 113 + 11 Auj(kIIIE

whereJ}, ;1 is the cost obtained with the feasible solution proposed
above, the optimal cost at time k+1 will be such that

T seer ST+ Clk) = X% — 8113 + | Aup (k1K)

This last equation means that at the steady state, the closed
loop state and input will be such that ||x(k|k) — xP — &} Hé =0and
||Au;;(k|k)\|§ = 0, which implies that x(k|k) = xP + 8}(

Part III

To complete the proof, it will be shown that the slack variable
penalization (i.e., the proposed quadratic penalization) is mini-
mized at steady state. For this purpose, consider a steady state (time
k large enough) given by x(k|k) = x5 +8§( and Auy; =(0,...,0).
Since a steady state is considered, then x(k|k) € W;.The optimization
cost corresponding to that point will be]bj{ = |\8;.<| \g, and given that
the sequence of control actions are null, the terminal constraints
corresponding to this point will (trivially) be

x(klk) — xP = 8 (11)
W, VIA™x(k|k) = 0. (12)

Now, because of the rank condition discussed in Remark 6, there
exists a sequence of m small changes in the manipulated variable,
e =(&g,...,Em_1)cR™M™ that moves the system in the direction of
the set-point (i.e., produces a decrease of the integrating slack vari-
able), maintaining the predicted unstable component x¥(k + m|k) at
zero. If we now implement this small changes at time k (instead of
the null increment that corresponds to steady-state situation) the
terminal constraints become

x(l_<|l_<)+Co£ns—x5p—3;'}:0, (13)
W, VIA™x(k|k) + Cole = 0, (14)

where the new slack variable 5;'.( is such that HS}{H% < HS%H%. These
small changes also produce an increase in the dynamic error. To
analyze the effect of this increase in the cost function of Problem
2b, let us consider the predicted state errors:

x(k +jlk) — xP — 5;'-{ = Ax(kik)+[Co; Ojle —xP— =34 (15)

i
k
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Table 1
Domain of attraction of typical MPC strategies.

MPC strategy Domain attraction Dependence on
controller
parameter

IHMPC [7] (xeX:xite C;',,’”(X, {(x5P})} m, xP

Slacked IHMPC [23] On m

Dual MPC [1] Cm(X, OK (x7)) m, K, xP

Dual MPC for tracking [8] Cm(X, OX) m, K

Proposed IHMPC Coo -

where 0; =0}y m_jnu- Since Aix(kik) e W;, then Aix(kik) = x(kik);
and taking into account (13), the predicted state errors can be writ-
ten as

x(k + jik) = x — 8F = ([ Co;  0;]— Colp)e (16)
which depends exclusively on ¢. As a result, the cost function of
Problem 2b can be expressed as a function of ¢ as follows*:

Jp (&)= llell3 + 118 + Colnel |3,

where  Q =MIQM; +R+MJPM,, Q =diag(Q,...,Q), R=

diag(R, ...,R)and
[Cop Og] — Col,

M; = , My = Copyq — Col,

[Com Om] — Col,

This is the cost obtained with the proposed small change, and
trivially satisﬁes]bﬁ(s =0)=Jy;= ||8;l<||§. Now, to know if the new
cost is smaller than the previous one Ub’,—c) for small values of ¢, let
us consider the derivative of the cost function with respect to the
change:

3][,';} (8)
oe

= £T(Q7 +Q) + (8, + Colne)' (ST +S)Coly

= 267Q +2(8L + Colye)' SColy,
which represents a vector of m-nu components. Notice that the
second term of the right hand side of the above equation is negative
because ¢ is such that ||8;.<||§ < |\8;.<|\§, and so 8||<S;.< (€)112/0e < 0.The
derivative evaluated at £ =0 gives

ajb’]} (5)

de

= 261 SCol, < 0.
=0

This means that there exists a (possibly small) value of ¢ such
that ]b,,-< <l Therefore, a decrement in the slack penalty cor-
responds to a decrement in the complete MPC cost, and so the
controlled system asymptotically converges to a steady state out-
put that minimizes the distance to the output set-point. As a
consequence of the latter property, if the output set-point is reach-
able, then the MPC cost asymptotically converges to zero. O

Remark 8. The main advantage of the proposed controller is that
it has the largest possible domain of attraction, i.e., the domain of
attraction is given by C,,, which does not depend on the control
law.

Table 1 below shows a comparison between the domain of
attraction of the proposed IHMPC and other typical strategies.>

4 The form of this term results from (13) and (11).

5 The set OX (x*) is the maximal admissible invariant set for a given control law
u=Kx (LQR) and a given equilibrium point x*. The set OX is the maximal admissible
invariant set for tracking, for a given control law u=Kx (LQR) (see [8] for details).

4. Simulation results
4.1. Unstable reactor

The aim of this simulation results is to compare the performance
and feasibility of the proposed formulation with the classical IHMPC
[7,16] and the Dual MPC that uses the LQR as terminal controller [1].
The selected system is the continuous stirred-tank reactor (CSTR)
described in Ref. [24]. The objective is to control one output vari-
able (reactor temperature) manipulating one input variable (jacket
flow rate). Using Taylor series expansion and a convenient trans-
formation, for a sampling time T=0.05, the following diagonalized
discrete time linear model is obtained:

1 0 0 0 1.5524
A 0 1.0311 0 0 B— 0.7621
10 0 0.9559 0 ’ ~ | 0.2168
0 0 0 0.5841 —-0.5616

and

C:[o.6018 ~0.9575 —0.8965 0.0242]

The input constraints are given by: umax=1.32, Ui, =0,
Aumax =0.1. The input increment bounds are chosen small to
clearly show its effect on the controllers’ domain of attraction.

The tuning parameters for the three controllers are: Q=50 and
R=1. Furthermore, the slack penalization for the proposed MPC is
Si=5 x 10%. The coefficients v; of the generalized Minkowski func-
tional used for Problem 2a of the proposed controller are given by:
V5 =3, l)6=2.5, V7 =2, Vg =1.7, U9=1.5, U10=1.35, V11 =1.2, V12 =1.1,
v13 =1.03 and v14 =1 (the maximal controllable set for the unstable
component is given by C7,).

First, we analyze the domain of attraction for the integrating-
unstable components of the three controllers (assuming that for
both, the classical IHMPC and Dual MPC, the desired equilibrium
point is the origin). Fig. 6 shows the domain of attraction of the
classical IHMPC for m=5, m=10, m=20 and m=30 (dashed-line),
and the domain of attraction for the proposed MPC (solid-line).
Fig. 7 shows the domain of attraction of the Dual MPC for m=3,
m=5, m=10, m=20 and m=30 (dashed-line), and the domain of
attraction for the proposed MPC (solid-line). Notice that for the
integrating-unstable modes the domain of attraction of the IHMPC
and the Dual MPC tends to a limit set as m increases, and further-
more, this limit set is smaller than the maximal domain of attraction
of the system (i.e., the domain of attraction of the proposed con-
troller, which does not depend on the control horizon).

Next, the performance and feasibility properties of the three
controllers are analyzed. First, the system is simulated starting
from a point in C;*“ where the initial integrating-unstable states
are close to the boundary of the maximal domain of attraction
of the system. The transformed initial state is given by: x(0) =
[0 043 0.2 -0.2 ]T, which corresponds to the following state
in the original state variables as defined in Section 2: x;(0)=—-0.13
(concentration of reactant), x,(0)=0.15 (reactor temperature) and
x3(0)=—0.71 (jacket temperature), written as deviation variables.
Fig. 8 shows the trajectories of the integrating-unstable states for
the three controllers considered above. We can see that the pro-
posed controller with m=5 (green line) steers the system to C};” in
two time steps, and then regulates the system to the desired equi-
librium point. In the same Fig. 8, it can be seen (blue-line) the state
evolution for the IHMPC with m=30. In the first three time steps,
this controller drives the system to the set-point in a feasible way
but then, the system reaches a state (shown in Fig. 8) where no

Furthermore, K depends on the cost weights Q and R.
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Fig. 7. Domain of attraction of the proposed controller (solid-line) and the Dual MPC (dashed-line).

feasible control action can be found and recursive feasibility is lost.
In the same figure, the state evolution corresponding to the Dual
MPC with m=15 (red line) is shown. As in the conventional IHMPC,
this strategy also steers the system to a point where the feasibility
is lost, even with a quite large control horizon.

In a second case, a less demanding condition is simulated to
compare the performances of the three controllers. The adopted
control horizons are m=5 for the proposed controller, m=17 for
the IHMPC and m=10 for the Dual MPC. Fig. 9 shows the time
responses when the system starts from the initial state x(0) =
[033 0 0 O ]T, where the three controllers are feasible. We can
see from Fig. 9 that as expected the Dual MPC controller has a
slightly better performance (red line) than the others. This is so
because of the optimality of the Dual MPC. However, as can be

4.2. Inverted pendulum

In order to further illustrate the performance of the proposed
strategy, we selected the inverted pendulum system shown in
Fig. 10, where M is the mass of the cart, m is the mass of the pen-
dulum, b is the friction of the cart, I is the inertia of the pendulum,
F is the force applied to the cart, x is the cart position and 6 is the
pendulum angle from vertical (see, for instance, Sontag [25]).

We need to control both the cart’s position (y;) and the pendu-
lum’s angle (y,), manipulating the force applied to the cart (u).

The corresponding state space model, in the incremental form,
is given by

seen in the same figure, the difference between the optimal con- 11 0 0 0 0.6900
troller and the proposed controller (green line) is almost negligible. 0 1 0 0 0 —0.800
The worst performance is achieved with the conventional IHMPC A=10 0 1.5680 0 0 , B=]0.6314
(blue line), which in addition needs the largest control horizon and 00 0 06387 0 0.2720
consequently the highest computer cost. 00 0 0 0.91 0.6900
06 ......................................................
0.4
0.2
infeasible states
x' 0
=-0.2
-0.4
-0.6 — _
-1.5 -1 -0.5 0 0.5
X1

Fig. 8. Integrating-unstable states for the proposed controller (green line), IHMPC (blue line) and Dual MPC (red line). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article.)
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Fig. 9. Input, input increment and output responses for the proposed controller (green line), IHMPC (blue line) and Dual MPC (red line). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of the article.)

— X

Fig. 10. Inverted pendulum scheme.

and

c- -1 0 0.0147 0.0154 -0.99
0 0 0.1762 0.1750 0.0021

where one can easily identify two integrating modes - one being the
integrating model of the original system and the other introduced
by the incremental form of the model above, and one unstable mode
of the original system. Clearly, the second integrating mode can be
considered as a pure unstable mode, and so the system has two
unstable modes and only one input (in which case the controller
proposed in Ref. [11] cannot be applied). The input constraints are
given by: umax =0.5, Uiy = —0.5, Aumax =0.1, and the cart’s position
is constrained in the range —0.3 <y; <0.3. The tuning parameters
of the proposed controller are: Q=diag(10,10), R=0.1, m=4 and
Si=5 x 10%. The coefficients v; of the generalized Minkowski func-
tional used in Problem 2a are given by: v4=1.7,v5s=1.3 and v =1.1;
where for simplicity it is assumed that the maximal controllable set
for the unstable modes is given by C¥, and so v; =1. Fig. 11 shows

o

-0.02

Unstable mode, x,

-0.04

-0.06

-0.08

-0.1 I ! I I

025 -02 -0.15 -0.1 -0.05

L
0 0.05 0.1

Unstable mode, x,

Fig. 11. Controllable sets for the unstable modes, and unstable state trajectory.
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Fig. 12. Input, input increment and output responses.

the controllable sets for the unstable modes (given in this case by
X, and x3).

Initially, a state disturbance is simulated, such that the original
unstable component is in C¥. In this case the controller first steers
the system to Cjj, = C} in three steps, and then regulates the system
to the equilibrium point. Fig. 11 shows the evolution of the unstable
states.

In order to see how the cost of Problem 2a, V,;, changes
for k=1, 2, 3, 4, consider the corresponding values of the
generalized Minkowski functional: W{CZ V7u)(x“(5|1 )) =0.35,

Wiewcn(*(612) =021, Wieu  cn(x"(713))=0.05  and
W{Cu,._i,cg}(x“"(SM))=O, which represents a strictly decreasing
sequence.

Fig. 12 shows the input, input increment and output evolution
versus time. Notice that the input increment constraint becomes
active at the beginning of the simulation, where the effort is made
to steer the unstable part of the system to C}}, = Cj.

In a second simulation, two set point changes are considered.
In the first one the system is guided to a reachable set point

given by y;p =[-0.2 0 ]T, while in the second one, the system

. 01f b
X<
=1
5 0
[e N
£
-01F b
. 0 10 20 30 40 50 60
=
3 T T T T T
< 01 ey -
'qr:j \Upper input constrain
5§ o
‘g /Lower input constrain
S 01k - oA, Y ]
o 1 1 1 1 1
£ 0 10 20 30 40 50 60
0.2 | T \ .I i T T , T ]
< ) Cart's position / Pendulum's angle
> —\
§. -0.2 /‘\/K i
3 04} \ Set-point changes 7
0 10 20 30 40 50 60
time (k)

Fig. 13. Input, input increment and output responses for set-point changes.
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is intended to be guided to an unreachable set-point given by

Ysp=[-035 0 ]T. Fig. 13 shows the input, input increment and
output evolution versus time k for the two changes. In the first
case the MPC cost converges to zero (the output reaches the
set point), while in the second one it converges to a non-null
value, maintaining the feasibility and stability. Notice that at the
desired steady state the output constraint becomes active, while
the input and input increments tend to zero (double integrating
system).

5. Conclusion

A new MPC formulation was presented that exploits the prop-
erties of the model structure and a new Minkowski functional
to obtain stability. As other recent formulations, it guarantees
recursive feasibility and stability for tracking both, reachable and
unreachable output set-points. Furthermore, in the latter case, the
resulting controller steers the system to an admissible station-
ary output that minimizes the distance to the desired set-point,
without the necessity of a target calculation stage. The main differ-
ence/benefit of the proposed approach is that it exhibits the largest
possible domain of attraction (admissible set of initial states),
which is a desirable characteristic for real applications. The domain
of attraction of the proposed controller does not depend on the
controller, but on the nature of the system, including the variable
limits.
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