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Abstract. This paper presents a model based design and adjustment procedure for 
feedforward controllers that accounts for model uncertainties.  It also analyses relevant 
properties of the feedforward-feedback structure and proposes a combined design method 
using robust control concepts in the frequency domain.  This approach allows the 
inspection of the performance limits achievable for each particular application.  The 
benefits of the suggested approach are discussed and illustrated through an application 
example.   
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1.  Introduction 

There are many examples from different engineering areas where an input disturbance has 
a strong effect on the controlled variable.  Classic methods for tuning feedback controllers like 
Ziegler and Nichols (1942) among others have been used per decades.  However, the level of 
performance obtained in set-point changes is not always reached in disturbance rejections.  
Moreover, the combined feedforward-feedback control scheme considers simultaneously both 
the set-point tracking and the regulation problems.  The use of this combined control is usually 
very common in the process industry: it can be found in distillation columns (Rix et al., 1997), 
power plants (Weng and Ray, 1997; Mcaburn and Hughes, 1997), continuous reactors, among 
other examples.  In spite of this, the synthesis of feedforward controllers has not received 
much attention.  Consequently, the feedforward controller design and adjustment still follows 
classic approaches (Seborg et al., 1989; Stephanopoulos, 1984).   

In this work, a method based on H∞ design concepts is proposed which complements the 
classic design by providing a rational procedure to achieving a realizable controller transfer 
function.  In order to present systematically this work, Section 2 gives the preliminary concepts 
related to feedforward-feedback control, Section 3 presents main theoretical fundaments and 
includes an application example that reveals the capabilities of the proposed design technique.  
Finally, in Section 4, the conclusions are presented.   

2.  Feedforward-Feedback Control 

Let us start by analyzing the classical feedforward-feedback structure where linear 
representations with uncertain parameters are assumed for the process system.   
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Figure 1 shows an sketch of the combined control system where c(s) is the feedback 
controller, cf(s) is the feedforward controller, pd(s) stands for the transfer function between the 
output y(s) and the exogenous disturbance d(s) and, p(s) is the transfer function between the 
output and the manipulated variable u(s).  From this representation it is clear that pd(s) and p(s) 
are lineal time invariants (LTI) models representing the real plant.   
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Fig. 1.  Schematic representation of a feedforward-feedback control scheme.   

When the feedforward controller is implemented alone, the disturbance effect on the output 
variable is written as 

( ) ( ) ( ) ( ) ( )d fy s p s c s p s d s= −         (1) 

but in case that a feedback loop is also used, 
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In both cases, the optimal feedforward controller that minimizes 
2d fp c p−  is, 

( )
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c s

p s
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and it would lead to prefect disturbance compensation in both cases if the cf(s) is realizable.  
However, the expression (3) might result in an improper or unstable transfer function; when 
this happens cf(s) should be chosen such to minimize the effect of the disturbance on the 
controlled variable.   

2.1.  Properties of the Feedforward-Feedback Control System 

Let us assume inputs d(t) and r(t) are bounded signals, i.e., d(t), r(t) ∈ 2[0, )L ∞ , where 

2[0, )L ∞  stands for any continuous signals on [0,∞) that have finite 2-norm (Green and 
Limebeer, 1995).   

Definition 1 (Perfect Disturbance Rejection). Feedforward control allows perfect 
disturbance rejection when the controlled variable does not change as consequence of any 
bounded input disturbance, i.e., 

( ) 0    0y t t= ∀ ≥  for 2( ) [0, )d t L∈ ∞  and r(t) = 0   .    (4) 
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Equation (4) assumes the output variable y(t) is defined as a deviation from the steady-state 
value.  Note that, feedforward control allows the possibility of perfect disturbance rejection 
while; this is not possible using feedback control neither for regulation nor for tracking 
problems (Morari and Zafirou, 1989).   

In order to analyze the internal stability of the combined feedforward-feedback control 
system the following definition is introduced:   

Definition 2 (Internal Stability of the Combined Control System).  The system sketched in 
Fig. 2 is internally stable if the elements of the transfer matrix 
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 with : 1/(1 )S c p= +      (5) 

from [d  r]T to [y  w  d1  d2]
T belong to ∞ℜH , for all bounded d(t) and r(t).   

Note that requiring internal stability to the feedback loop is not sufficient for the combined 
system.  To make sure internal stability it is also necessary that cf(s) and pd(s) being stable 
plants.  Furthermore, if this condition is satisfied the internal stability of the feedback loop is 
not affected since; (i) all the input signals to the feedback loop are bounded and (ii) the 
feedforward controller is not included in the characteristic equation.   

In order to generalize the analysis, let us assume that this plant can be described by two 
families of models which are defined using the classic multiplicative uncertainty, 
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Πu and Πd stand for the families, ( )ulm ω  and ( )dlm ω  are the upper bounds for the 
multiplicative uncertainty modulus ( )ulm jω  and ( )dlm jω  respectively.  Thus, any member 
of the families of plants Πu and Πd can be represented as 0( ) ( )(1 ( ))up s p s lm s= +  and 

0( ) ( )(1 ( ))d d dp s p s lm s= +  respectively and, p0(s) and pd0(s) are the nominal plants according 
to the designations in Fig. 1.   

Then, using the sensitivity function 1/(1 )S cp= +  and substituting p(s) and pd(s) in the 
expression (2) gives, 

[ ] [ ]{ }0 0

( )
( ) ( ) 1 ( ) ( ) ( ) 1 ( )

( )
d d f u

y s
S s p s lm s c s p s lm s

d s
= + − +    .            (8) 

Based on the right side of this expression, a functional denoted Iff is defined as follows: 

[ ] [ ]0 0( ) : ( ) 1 ( ) ( ) ( ) 1 ( )ff d d f uI s p s lm s c s p s lm s= + − +    .             (9) 

Note that if, ( ) ( )ffS j I jω ω γ≤  for all 0 ω≤ < ∞  then, according to previous definition 
and Eqn. (2), it ensures that, )()( ωγω jdjy ≤ .   

It is important to remark that, i) S(s) does not depend of feedforward controller parameters 
and, ii) an acceptable disturbance attenuation in the output variable is reached if γ << 1.  That 
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is, the appropriate design of both feedforward and feedback controllers should be such that a γ 
<< 1 be reached.  Furthermore, according to the comments following to definition 2, c(s) 
should assure stability of the feedback loop and cf(s) should be stable.   

If the nominal plant satisfies the performance objectives, the system reaches the nominal 
performance.  This idea can be expressed for the feedforward-feedback control loop based on 
the expression (2) as, 0 0 1p ffW S I

∞
≤ , where 

∞
 denotes the H infinity norm based on the 

classical definition, S0 is the nominal sensitivity function defined as 0 0: 1/(1 )S cp= + , 

0 0 0:ff d fI p c p= −  and Wp is a weight of the input signal included for a more general 
formulation.   

On the other hand, ( ) ( )ffS j I jω ω γ≤  is a robust performance condition for the 
feedforward-feedback control system if the parameter γ is chosen less than one and the closed-
loop system is robustly stable.  This condition can be formalized as follows, 1p ffW S I

∞
≤   . 

Lemma 1.  Let p(s) and pd(s) be plants that belong to the families (6) and (7) respectively, 
then, the feedforward-feedback control system reaches robust performance if the following 
condition is satisfied: 

0 0( ) ( ) ( ) ( ) ( ) 1p ffW j S j I j T j lm jω ω ω ω ω+ ≤    0 ω∀ ≤ < ∞    .            (10) 

The proof, given in Adam and Marchetti (2001), starts from the condition 1p ffW S I
∞

≤  
and consequently each element of the set (6) and (7) satisfies Eqn. (10).   

3.  Feedforward Controller Design 

3.1.  The Standard Design Problem 

The feedforward controller can be synthesized according to the following equation: 

{ }0 00 ( ) / ( ) *( ) df p s sc s p=    ,                (11) 

where pd0(s) and p0(s) are nominal transfer functions and {}* denotes a polynomial ratio such 
that it does not include: i) the zeros of p0(s) that belong to left hand side plane, ii) the unstable 
poles of pd0(s) and iii) positive time delay that might result from the difference θd0(s) - θ0(s) 
where, θd0(s) and θ0(s) are the nominal plant delays of pd0(s) and p0(s) respectively.   

The operation indicated in (11) gives a stable transfer function, in spite of pd0(s) could be 
unstable and p0(s) could have right half zeros, but in many cases a non realizable transfer 
function could result.  Hence, a filter is included in order to obtain realizability.  This gives 

0( ) ( ) ( )f fc s c s f s=    ,                 (12) 

where the filter is defined as follows:   

Definition 3 (Feedforward Filter).  The feedforward filter f(s) is chosen as a rational 
transfer function, 

( ) :
( 1)

f

n

K
f s

sλ
=

+
   ,                 (13) 

with 0 0( ) / ( )(RO) dp s p sn δ   = −   . 

The function δ is defined as, ( ) : 1ROδ δ= =  if 0 0( ) / ( )RO 0dp s p s   <  or ( ) : 0ROδ δ= =  
if 0 0( ) / ( )RO 0dp s p s  ≥   and, RO[•] is an operator that computes the relative order of the 
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polynomial ratio contained inside the brackets.  In other words, it gives the difference between 
the denominator polynomial order and the numerator polynomial order.   

3.2.  Proposed Design Technique 

Since, cf(s) has the gain and the filter time constant as adjusting parameters, the following 
optimization problem in the frequency domain is proposed: 

,
min ( ) ( )    0

f
ff

K
S j I j

λ
ω ω ω

∞
∀ ≤ < ∞                (14) 

s.t.,  0fK >  and 0λ ≥    . 

3.3.  Example 

Consider the boiler with natural recirculation modeled by Adam and Marchetti (1999).  
Adam (1996) demonstrates that for the operative conditions the non-linear dynamic model 
between level drum and the feed-water can be satisfactorily modeled by the linear expression 

4 6.1
0 / (5.72 1)( ) 1.9510 s

e s sp s − − += .  Similarly, the transfer function between the level drum 

and the steam load is 4
0 (75.49 1) / (6.88 1)( ) 1.5810d s s sp s − − += .  According to the 

feedforward controller design proposed in this paper 

( ) 0.810 (75.49 1) /( 1)f fc s K s sλ= − +    .               (15) 

Furthermore, using the extreme plant concept, it is possible to define the multiplicative 

uncertainties lmu(s) and lmd(s) according to Eqn. (6) and (7).  Thus, any plant ( )up s ∈ Π  or 

( )d dp s ∈ Π  is included in the Nyquist plane inside the extreme plants 

4 12.17
/ (1.55 1)( ) 2.1810 s

e s sp s − − +=  or 5
0( ) ( ) s

d dp s p s e−=  respectively.   

Figure 2 shows the ( ) ( )ffS j I jω ω  when a PI feedback controller tuned by the TL method 

(Tyreus and Luyben, 1992) is used (Adam, 1996).  Applying the optimization problem 
proposed in Section 3, the optimal parameters for the feedforward filter are  

Kfot = 2.22 and λ = 3.11 and, 51.05710ffSI −

∞
=  at frequency ω = 0.6136.   

Figure 3 compares the level control performance reached when the feedback and the 
combined scheme are used.  For the last case, two feedforward controller are studied, the first 
one is tuned by the proposed method and the other one is tuned as a static feedforward 
controller calculated for s = 0, according to classic textbook.  In every case, a PI feedback 
controller tuned by the TL method was adopted.  Clearly, it is observed the improvement 
reached on the controlled variable when the proposed feedforward controller is used in 
comparison with the other cases.   
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Fig. 2.  ( ) ( )ffS j I jω ω  using the PI controller 

tuned by TL method. 

Fig. 3.  Level control using the feedback and 
feedforward-feedback with static and proposed 

feedforward controllers.   

4.  Conclusions 

In this work, a study of the feedforward-feedback control configuration is presented.  
Under the framework of the robust control theory, a method is proposed to achieve the 
realizable feedforward controller by including of a low pass filter.  The adjustment of this filter 
is done by a minimization of an objective functional in the frequency domain and based on H∞ 
design concepts that take into account the model uncertainties.   
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