- (1) [24 puntos] Hallar las primitivas de las siguientes funciones:
 - (a) $f(x) = x^2 e^{-x}$
- **(b)** $g(x) = \frac{1}{(x^2+1)(x-1)}$
- (c) $h(x) = \frac{\cos(x)}{\sqrt{\sin(x)}}$

- (2) [32 puntos]
 - (a) Calcular el área bajo la curva $y = \frac{1}{x}$ en el intervalo $[1, +\infty)$.
 - (b) Calcular el volumen del sólido de revolución que se obtiene al girar la curva $y = \frac{1}{x}, x \in [1, +\infty)$ alrededor del eje x
 - (c) ¿Qué integral debería calcularse para obtener la longitud de la curva $y = x \operatorname{sen}(x)$ en el intervalo $[0, 3\pi]$? No calcular, sólo dejar expresado como una integral.
 - (d) Si utilizáramos la regla de integración numérica del rectángulo. ¿Cuántos sub-intervalos haría falta utilizar para calcular la longitud del ejercicio anterior con un error menor a 0,01?
- (3) [24 puntos]
 - (a) Hallar el polinomio de Taylor $p_n(x)$ de orden n de $f(x) = \ln(x+1)$ alrededor de x=0.
 - (b) Hallar una cota para el error $|\ln(x+1) p_n(x)|$ para $x \in [-1/2, 1/2]$.
 - (c) Demostrar que si $x \in [-1/2, 1/2]$, entonces $\lim_{n \to \infty} p_n(x) = \ln(x+1)$.
- **(4)** [30 puntos]
 - (a) Demostrar que si una función es creciente y acotada en un intervalo [a, b], entonces es integrable en dicho intervalo.
 - (b) Demostrar que si $f:[a,b]\to\mathbb{R}$ es acotada, entonces la función $F:[a,b]\to\mathbb{R}$ definida por

$$F(x) = \int_{a}^{x} f(t) dt$$

resulta continua.

(c) Demostrar que si $f:[a,b]\to\mathbb{R}$ es continua, entonces existe $c\in(a,b)$ tal que

$$\int_{a}^{b} f(x) dx = f(c) (b - a).$$

Interpretar geométricamente.

(1)			(2)				(3)			(4)			Total
(a)	(b)	(c)	(a)	(b)	(c)	(d)	(a)	(b)	(c)	(a)	(b)	(c)	