(1) Sea f una función de clase C^1 en \mathbb{R}^3 . Demostrar que

$$\lim_{(h_1,h_2,h_3)\to(0,0,0)}\frac{1}{h_2\,h_3}\int_{x_3^0}^{x_3^0+h_3}\int_{x_2^0}^{x_2^0+h_2}\frac{f(x_1^0+h_1,x_2,x_3)-f(x_1^0,x_2,x_3)}{h_1}\,dx_2\,dx_3=\frac{\partial f}{\partial x_1}(x_1^0,x_2^0,x_3^0).$$

- (2) Sea $f(\overline{r}) = \frac{1}{r}$ el potencial Newtoniano (Notación: $\overline{r} = x_1\overline{i} + x_2\overline{j} + x_3\overline{k}$ y $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$).
- (a) Calcular el gradiente de f.
- (b) Calcular el laplaciano de f.
- (3) Demostrar que el gradiente de cualquier función escalar φ que tiene derivadas de segundo orden continuas, es un campo vectorial irrotacional. Más precisamente, demostrar que

$$\overline{\nabla} \times \overline{\nabla} \varphi = \overline{0},$$

para cualquier función escalar φ con derivadas de segundo orden continuas.

- $\overline{(4) \operatorname{Sea} \overline{V}(\overline{r}) = -\frac{\overline{r}}{r^3}}.$
- (a) ¿Cuál es el flujo de \overline{V} a través de una superficie cerrada suave a trozos que no deja encerrado al origen de coordenadas? (Nos referimos a cualquier superficie suficientemente suave sobre la que se podría aplicar el teorema de Gauss, como por ejemplo, C^1 a trozos, no piense en fractales o cosas raras).
- (b) Calcular el flujo de \overline{V} a través de la superficie esférica centrada en $\overline{0}=(0,0,0)$ y radio unitario.
- (c) Calcular el flujo de \overline{V} a través de la superficie esférica centrada en $\overline{0} = (0,0,0)$ y radio R (R > 0).
- (d) Calcular el flujo de \overline{V} a través de cualquier superficie cerrada que contenga a $\overline{0}$ en su interior. (Nuevamente, nos referimos a cualquier superficie *suficientemente suave* sobre la que se podría aplicar el teorema de Gauss, como por ejemplo, C^1 a trozos, no piense en *fractales* o cosas raras).
- (5) Sea S una superficie cerrada y suave en el espacio, y sea n_i la i-ésima componente del vector normal exterior a S. Demostrar que entonces

$$\iint_{S} n_i \, d\sigma = 0.$$

(6) Sea S una superficie cerrada y suave en el espacio, sea \overline{n} el vector normal exterior a S, y \overline{r} el vector posición (o función identidad de \mathbb{R}^3). Demostrar que entonces

$$\frac{1}{3} \iint_{S} \overline{r} \cdot \overline{n} \, d\sigma = V,$$

donde V es el volumen de la región rodeada por S.

(7) Sea $\varphi(x_1, x_2, x_3) = \ln(x_1^2 + x_2^2)$. Determinar su dominio y el de su gradiente $\overline{V} = \overline{\nabla} \varphi$. ¿Es \overline{V} conservativo? ¿Es incompresible? ¿Es φ armónico?

- (8) Considerar las coordenadas esféricas y cilíndricas. Para cada caso:
 - Describir $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$;
 - Calcular h_1, h_2, h_3 ;
 - Calcular $d\sigma_{12}$, $d\sigma_{13}$, $d\sigma_{23}$, y dvol
 - Describir los vectores normales \overline{a}_1 , \overline{a}_2 , \overline{a}_3 en coordenadas esféricas y cilíndricas.
- (9) Sea $\overline{V}(x_1, x_2, x_3) = \omega_0(-x_2 \overline{i} + x_1 \overline{j})$ con ω_0 una constante (velocidad angular). Sea

$$C_R = \{ (R\cos t, R\sin t, 0) : t \in [0, 2\pi) \}, \qquad R > 0$$

- (a) Calcular la circulación de \overline{V} a lo largo de C_R .
- (b) Calcular el rotor de \overline{V}
- (c) Calcular directamente la integral de superficie $\iint_S \overline{\nabla} \times \overline{V} \cdot \overline{n} \, d\sigma$ sobre un hemisferio S con ecuador en la curva C_R y \overline{n} con tercera coordenada positiva.
- (d) Calcular la integral del ítem (c) usando el teorema de Stokes.
- (10) Escribir gradiente, divergencia, rotor y Laplaciano en coordenadas esféricas y cilíndricas.
- (11) Estudiar las soluciones de $\overline{\nabla}^2 \varphi = 0$ que sólo dependen de una de las coordenadas generalizadas q_i en coordenadas cartesianas, cilíndricas y esféricas.