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Abstract

In this article an algorithm for numerically solving the non-linear system of partial differential equations (PDEs)
that model the dynamics of martensitic phase transitions in one-dimensional Shape Memory Alloys is presented.
The algorithm is based upon a state-space formulation of the equations. The approximations are defined in
terms of the eigenvalues and eigenvectors of the operator associated to the linear part of the resulting semilinear
Cauchy problem. For the alloy Aus3;CusoZns; numerical results are shown under the effect of different external

distributed actions and for several initial conditions.

1 Introduction

In this article we consider the following one-dimensional non-
linear initial-boundary value problem (IBVP):

putt — ﬂpuzzt + YUgzze =
flz,t) + (20@(0 —6)u, — 4a4u3 + 60¢6ui)z ,
ze(0,1),0<t<T, (1)

Cypby — kO = g(x,t) + 2000upugr + ﬂpuit,
ze(0,1),0<t<T, (2)

u(z,0) = up(x), u(x,0) =wvo(z), O(x,0) = 0(z),
z€(0,1), (3)

w(0,t) = u(1,t) = uge(0,) = ugze(1,8) =0,
0<t<T, (4)

0.(0,t) =6,(1,t)=0, 0<t<T (5)
where the subscripts “x” and “t” denote partial derivatives.
Equations (1) to (5) arise from the conservation laws govern-
ing the thermomechanical processes taking place in a one-
dimensional unit-length Shape Memory Alloy (SMA). These
processes are characterized by solid—solid phase transitions
(martensitic transformations). Equations (1) and (2) reflect
the conservation of linear momentum and energy, respec-
tively. The functions and variables present in Eqns. (1) to (5)
have the following physical meaning: w(x,t) = transverse
displacement, §(z,t) = absolute temperature, p = mass den-
sity, C, = specific heat, k = thermal conductivity coefficient,
B = viscosity constant, f(x,t) = distributed loads (input),

I

depend on the material being considered and they appear
in the free energy potential which is taken in the Landau-
Ginzburg form

U(e, €,,0) = —C,01n <0£> +C,0+C

2

+az(0 — 01)e? — aget + age® + %ei, (6)
where € = u, is the linearized shear strain. The constants 6;
and 6 in Eqn. (6) are two critical temperatures and C repre-
sents a fixed energy reference level. The body is assumed to
be a simply supported unit-length beam thermally insulated
at both ends.

The PDEs (1) and (2) are coupled and nonlinear due to the
terms coming from the partial derivatives of the free energy.
For a detailed account of the origin of these equations see
the work by Spies (1995) and the referenes therein.

Although there are several representations for the free en-
ergy potential of SMA materials (Falk 1980, 1983; Songmu,
1989; Songmu and Sprekels, 1989; Sprekels, 1989a), the form
of Eqn. (6) seems to be the simplest one which is able to re-
produce several phenomena -such as hysteresis, shape mem-
ory and superelasticity- observed in real SMA materials un-
der different external thermomechanical actions. For values
of 6 close to 01, ¥ is a nonconvex function of € and the stress-
strain laws obtained from Eqn. (6) are strongly temperature-
dependent (see Fig. 1). At low temperatures these curves
exhibit an elasto-plastic behavior at small loads and a sec-
ond elastic branch at large loads, which permits the body
to withstand forces beyond the plastic yield, after which,
subsequent unloading produces residual deformation. In the
intermediate temperature range the behavior is superelas-
tic, also called pseudoelastic. Here, a plastic yield is also
found. However, loading beyond this plastic yield followed
by complete unloading does not lead to residual deformation.



beyond a certain critical value. Finally, in the high tem-
perature range the behavior is almost linearly elastic with
a modulus of elasticity which increases with temperature.
Hysteresis loops are observed in the stress-strain curves at
low and at intermediate temperatures (Spies, 1995, and the
references therein).

It is known that certain alloys exhibit a much more com-
plicated behavior. For example, certain CuZnAl alloys show
strain hardening and nested hysteresis loops (Muller and Xu,
1991). Although these phenomena can be captured in an
isothermal and static setting (Spies, 1996), it is not yet clear
how they can be included into the dynamic equations (1)
and (2).

Due to their unique characteristics SMA have found a
broad spectrum of applications such as orthodontic and
other dental devices, heat engines, temperature switches and
fuses, pipe coupling devices (Funakubo, 1987), hybrid com-
posites (Rogers et al., 1989) and several interesting applica-
tions in Medicine (Castleman et al., 1976; Funakubo, 1987;
Schmerling et al., 1975).

Since the discovery of NiTinol (a Nikel-Titanium alloy) by
Buehler (Malloy, 1990) in 1962 several mathematical mod-
els were proposed and studied (Achenbach and Muller, 1982,
1983; Falk 1980, 1983; Muller, 1979; Muller and Villaggio,
1977; Muller and Wilmanski, 1980; Wilmansky, 1983). Most
of this models, however, were static and did not take into
account the strong coupling between the mechanical and
thermal properties, which is one of the distinguishing fea-
tures possessed by SMA. It was not until recent years that
mathematical models were able to deal with most of the un-
usual properties of SMA and, at the same time, to allow
for the inclusion of boundary and distributed external ac-
tions that can be used as control variables (Niezgodka and
Sprekels, 1988, 1991; Songmu, 1989; Songmu and Sprekels,
1989; Spies, 1995; Sprekels, 1989a, 1989b). This article
follows a state-space approach introduced recently (Spies,
1995).

2 State-Space Formulation and Pre-
liminaries

In this section we shall formulate the initial-boundary value
problem of Eqns. (1) to (5) as an abstract semilinear Cauchy
problem in an appropriate Hilbert space, and we shall briefly
recall some preliminaries which will be needed later on.

We define the state space Z as the Hilbert space H¢(0,1)N
H?(0,1) x L?(0,1) x L?(0,1) with the inner product

/\
> e
T 2

> iy/olu”(x)ﬁ”—(x)dx-l-P/OlU(x)@dx
+ %/010(93)%61%

Next, the operator A on Z is defined by

u € H*(0,1),

(u) u(0) = u(l) = u"(0) = u"(1) =0
ve HH0,1) N H?(0,1) ’

u
and for z = | v | € D(4),
0

u 0 I 0 u
Alv]=[-2D* 8D* 0 v,
4 0 0 &D?) \#

where D™ = 08 —.
T

We assume that the functions f(z,t) and g(z,t) satisfy
the following hypothesis.

(H1) For each fixed t > 0, the functions f(z,t) and
g(z,t) are in L?(0,1) and there exist nonnegative
functions Kf(z) and K,(z) € L*(0,1) such that

[f (e, t1) = f(w, t2)] < Ky (@)t — o,

and
|g(m,t1) - g(£7t2)| < K!](x)|t1 - t2|’
for all z € (0,1), and ¢, t2 € [0,T].

uo(z)
We also define zg(z) = | vo(z) | and F(t,2) : Rf xZ — Z

bo ()

by
0
F(t,Z) = fg(t,Z) )
f3(t7 Z)

where

pfa(t, z) (@) = f(z, 1)
+ (202(6 — 61)up — dagud + 6a6ui)z ,
C,f3(t,2)(z) = g(x,t) + 2a20u v, + Bpv?.
With the above notation, the IBVP of Equs. (1) to (5) can be

formally written as the following semilinear Cauchy problem
in the Hilbert space Z:

d
(P){ dt”
z(0) = zo

()= A=) + F(t,2), 0<e<T,

The following results follow immediately from theo-
rems 3.7 and 3.11 of Spies (1995) with only slight modifi-
cations accounting for the slightly different boundary condi-
tions being considered here. Since the modifications needed
are trivial we do not give details here.

Theorem 2.1. (Spies, 1995) Let A : D(A) C Z — Z as
previously defined. Then the set of eigenvalues o,(A) of the
operator A is given by

op(4) = {N L VG Vantale s

where
k. .
X7 = (—r +/r2— 1) . oy = ——n’n?

and

Hn =

4, 4
LS v/ )
P 27

The corresponding eigenvectors in Z are, respectively,

sin(mna) sin(mn)
Al sin(mna) , A, sin(mnzx) ,
0 0

n=1,2,---

0

n=1,2,---



Also, the operator A generates an analytic semigroup of con- Then w™ (¢) is the solution of the IVP
tractions 7'(t) on Z.

Theorem 2.2 (Local existence of solutions). (Spies,

o wN (0) = w) ’
1995) Let A be as defined above. Then, for any ini-
tial data zp € D(A), there exists &1 = ti(z) such with
that the IVP (P) has a unique classical solution R .
2(t) € C([0,t1) : Z)NCL((0,t1) : Z). AN = (@) T KN,
FN(tw) = (QV) " RNF (t,QVw)
3 Finite Dimensional Approxima- X 0
. _ (HNY~! pN N
tlons = (Q ) R fZ(t;Q w) )
fa(t, QN w)
In this section finite-dimensional modal approximations to Ug
solutions of problem (P) are defined. For fixed N € N let wl = (QN)—l RN [ |,
6
sin Tnx sin Tnx °
BN(z) = | Afsinmnz |, ,B%HL(@") = | A, sinmnz |, where the matrices @V, K and the mapping RY : ZV —
0 0 R3N are defined by
0 N N gN N N 4NN
.. = - - K .. = . A -
and ﬂéVN_i_n(x) - 0 , (Q )17] ( [ 75] >7 ( )17] < T ﬂj )7
cosm(n — 1)z (RNz)i: (B, 2).
forn =1,2,---, N, where \}»~ are as in Theorem 2.1, and ~ %J =1,2,---,3N.
let us define ZV to be the span of By = {ﬁfl\’(:ﬂ)}izl en-

dowed with the Z-norm. Then U Z" is dense in Z and, 4 DeSCI'lptIOH of the Algorlthm

N=1
since the BN’s are eigenvectors of A, it follows that ZV is
invariant under A. Note also that ZV is itself a Hilbert

In this section the matrices @, KV and the mapping R" :
ZN — RN are constructed. We will later use them to
evaluate the linear and nonlinear part of the equation.

space. e ON
Next, we define the finite-dimensional approximating The matrix Q7 turns out to be
problem (PN) in ZN, as follows: {Q{V QY 0 '|
) @¥=|Qy o o
(PM) EzN(t):ANzN(t)+F1\’(t,z1\’(t)), 0<t<T |_ 0 0 Q5J
ZN(0) = PNz where QF, k =1,2,--- 5 are all N x N diagonal matrices

and, for every n =1,2,--- | N
where PN : Z — Z% is the orthogonal projection of Z )
onto ZN, AN is the restriction of A to ZN and FN(t,z) = N ntrt 4 p A
(Ql )mn - 2 )

PNFE(t,z). The density of ZN in Z implies the stron —
(t,2) Y U P 8 _oantrt 4 pAF AR

N V=1 (@2") :
convergence of P* to the identity. n,n 2
Since Z" has finite dimension, the operator A on ZV is @) = (Qﬁv) :
n,n nn

bounded and linear, and a fortiori, it generates a uniformly

continuous semigroup of bounded linear operators TV (t) on N _oantrt 4 pIA )2
ZN. (Q4 )len - 2 )

The following results on local existence of solutions of

problem (P%) and their convergence to the solution of (P) and N 11 1
can be found in the work by Morin and Spies (1996). Q5 = diag {1; 5790 5} .
Theorem 3.1. (Morin and Spies, 1996) Let zp € Z. Then, Taking into account that, being 3 eigenfunctions of A,
for any positive integer N, there exists ¢ > 0 such that forn=1,2,...,3,
(PN) has a unique classical solution on [0, ¢]).
ABY = X8,
Theorem 3.2. (Morin and Spies, 1996) Let zy € D (A). ABN—x- gN
Suppose that 2V (t) and z(t) are solutions of (PV) and (P), ntN T )Pt N
respectively, and let [0,¢1) be the maximal interval of exis- ABN. = (n — 1)2728Y
n+2N n+2N>

s

it turns out that KV = QNVEN, where EV is a 3N x 3N
diagonal matrix whose elements are given by

tence of z(t). Then, for any ¢} < t1, there exists a constant
Ny such that 2 (¢) exists on [0,t}] for every N > Ny and
|2V (t) — 2(t)|| 2 — O for every t € [0,¢}].

Next we shall find the representation of the approximating

problem (P%) in the basis By of Zn. For this purpose, let
w® be the vector whose components are the coefficients of (EN) NN = /\( .
n ,n n

U /Ui\i(t)\ . B B A 1.

(EN)n7n = AZ’



n =1,2,...,N. In particular, since AN = (QN)f1 KN we
have that AN = EV,

To evaluate the nonlinear term ﬁ'(t, w) of the equation, we
first reconstruct u, ug, Uzz, U, Vg, 8 and 6’ from the vector
of coefficients w on a 101-point regular grid and evaluate f,
and f3 on that grid.

The computation of (RNz)n = (B3, 2), is made through
numerical integration using the Simpson’s rule with a step-
size of 1072,

We first used an explicit fourth order Runge-Kutta
method. Due to the nonlinearities of the system this method
was found to be very unstable and inefficient. The efficiency
of the numerical algorithm was greatly improved using a hy-
brid implicit-explicit Euler method which ensures stability
for much larger step sizes. Basically, this method consists of
approximating the linear part of %z(t) in an implicit way
while an explicit form is used for the nonlinear part. More
precisely, the following time discretization scheme was used:

wy =",
(s —wf) = Vull, + BY (kA w))
k=0,1,....

5 Numerical Experiments

In this section numerical results obtained using the finite di-
mensional approximating scheme introduced in the previous
sections are presented. We shall make use of the parameter
values reported by Falk (1980) for the alloy Aus3CusoZngy:
ay =24Jem P K™ ay =15 x10°Jem™3, ag = 7.5 %
10Jem 3K 1, 0, =208°K, C, =29Jem 3K, k =
1L9wem K=, p=111gem™3, 8=1,7y=10"2Jem™ L.
Figure 1 shows the stress-strain curves obtained from the
potential defined by Eqn. (6) used with these parameter
values. The doted lines indicate the unstable parts of the
curves, while the horizontal lines indicate possible hysteresis
loops.

For the numerical results presented below we used the
hybrid method described above with N = 32 and At = 1075.

5.1 Experiment 1: Low-temperature
steady-state

For this experiment we took f = g = 0, 6y(z) = 200° K and
ugp(x) = PNh(x), where

0.05z,
he) = {0.05(1 _ 1),

if0<z<0.5,
if0.5<z<1,

and vgp = 0. Thus, the beam is initially in the low tem-
perature range composed of two segments of martensites,
namely, martensite M; on 0 < z < % and martensite M _
on 1 < <1 (5% initial strain). The evolution of displace-
ment and temperature can be observed in Figs. 2a and 2b,
respectively. This evolution is due to the fact that the ini-
uo ()
vo ()
90 (CU)
steady-state of the system of Eqns. (1) to (5). The system
evolves until a steady-state corresponding to two symmetric
segments of martensites My and M_ (= 11.25% strain) and
to a constant temperature 0 = 222° K is reached. Figure 2c¢

tial condition zo(z) = does not correspond to a
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Figure 1: Stress-Strain curves for different temperatures ob-
tained from Eqn. (6) used with the values of aw, a4, ag and
6 reported by Falk (1980). The dotted lines represent un-
stable parts of the curves. Horizontal lines indicate possible
hysteresis loops.



: High-temperature

5.2 Experiment 2

steady-state

600° K and g, vg, f and g as in Ex-

Here we took 6y(x)

periment 1. The evolution of displacement and temperature

is shown in Fig. 3a and 3b, respectively.

The beam oscil-

lates until the steady-state defined by a zero deformation

and a constant temperature 6

505.6° K is reached. This

o~

is in agreement with the fact that above the austenite-finish

temperature § = Ay (in this case Ay

states satisfy the Eqns. u

o

283% K) the steady-

const. Due to the

0 and 0 =

high-temperature unsteady initial condition the beam imme-

diately bends downward approaching the state u

0 while

the temperature decreases slightly, originating the damped
oscillations observed in Figs. 3a and 3b. The oscillations of

the middle-point of the beam are shown in Fig. 3c.
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Figure 2: Low temperature steady-state.

-0.02

temperature initial condition.

()

Figure 3: High temperature steady-state.

(a) displacement

profile; (b) temperature profile; (c¢) middle-point displace-

ment.

Pulse at low

5.3 Experiment 3

temperature

In this experiment we studied the effects of a distributed

.
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o

0.

0 and by a constant temperature 6

These oscillations take place around the final equilibrium

state defined by u
602° K (Figs. 5a and 5b). Recall that above the austenite

finish temperature the only unloaded steady-state is u

and 0 < t < 0.5 x 1073,

0 and
otherwise.

208% K. We took ug(z)

200° K, g(z,t)

~

if04<z<0.6

My

5 x 104,

0,

0, 90(%)

fla,t) = {
Initially, points around the center move upward while the

effect of the pulse propagates to the endpoints of the beam

finish temperature 6
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At exactly the time at which this effect

reaches the endpoints, the middle-point deflection reaches a
maximum. Then, small damped oscillations begin to take
place (Fig. 4c) around the final equilibrium state which cor-
responds to two symmetric segments of martensites M, M_

11.05% strain) and to a constant temperature 6
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222° K), f(z,t)
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-Heat
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Z
if 0.2 <t <0.25,

otherwise.
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is set initially at an equilibrium state corresponding to two

symmetric segments of martensites My and M_.
we took as the initial data the final steady-state of Experi-

ment 1 (11.25 % initial strain, 6o (x)
and the heat source g(x, t) consisting of a uniformly spatially

distributed heat pulse as follows
into austenite and the beam bends downward showing small

damping oscillations around zero deformation (Fig. 6a).

to increase (Fig. 6b), the martensite crystals are converted

Figure 5: Pulse at high temperature.

profile; (b) temperature profile.
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Figure 4: Pulse at low temperature.

profile; (b) temperature profile.
In this case we investigated the effects of a pulse around

the middle-point of the beam, which was set initially at a

constant temperature above Ay. We took y(x)
and ug, vy, f and g as in Experiment 3. At the beginning, the
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file; (b) temperature profile; (c) middle-point displacement;

Figure 7: Heating- Waiting
(d) middle-point temperature.
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In this article, discrete spectral or modal approximations to
the nonlinear partial differential equations that model the

dynamics of thermomechanical martensitic transformations
in one-dimensional shape memory alloys with non-convex

6 Conclus
Landau-Ginzburg potentials were developed.

to 7d).



external actions the model defined by Eqns. (1) to (5) is
able to produce solutions whose qualitative behavior is found
to be in close agreement with laboratory experiments per-
formed on Shape Memory Alloys under similar conditions.

From a practical point of view it would be very important
to find the values of the parameters that “best fit” experi-
mental data for a given alloy. This is called the parameter
identification problem about which no results are yet known.
In this regard the scheme presented here provides a friendly
mathematical framework for attacking this problem. Efforts
in this direction are already underway and results will be
published in a forthcoming article.
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