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tIn this arti
le an algorithm for numeri
ally solving the non-linear system of partial di�erential equations (PDEs)that model the dynami
s of martensiti
 phase transitions in one-dimensional Shape Memory Alloys is presented.The algorithm is based upon a state-spa
e formulation of the equations. The approximations are de�ned interms of the eigenvalues and eigenve
tors of the operator asso
iated to the linear part of the resulting semilinearCau
hy problem. For the alloy Au23Cu30Zn47 numeri
al results are shown under the e�e
t of di�erent externaldistributed a
tions and for several initial 
onditions.1 Introdu
tionIn this arti
le we 
onsider the following one-dimensional non-linear initial-boundary value problem (IBVP):�utt � ��uxxt + 
uxxxx =f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;x 2 (0; 1); 0 < t < T; (1)Cv�t � k�xx = g(x; t) + 2�2�uxuxt + ��u2xt;x 2 (0; 1); 0 < t < T; (2)u(x; 0) = u0(x); ut(x; 0) = v0(x); �(x; 0) = �0(x);x 2 (0; 1); (3)u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0;0 � t � T; (4)�x(0; t) = �x(1; t) = 0; 0 � t � T (5)where the subs
ripts \x" and \t" denote partial derivatives.Equations (1) to (5) arise from the 
onservation laws govern-ing the thermome
hani
al pro
esses taking pla
e in a one-dimensional unit-length Shape Memory Alloy (SMA). Thesepro
esses are 
hara
terized by solid{solid phase transitions(martensiti
 transformations). Equations (1) and (2) re
e
tthe 
onservation of linear momentum and energy, respe
-tively. The fun
tions and variables present in Eqns. (1) to (5)have the following physi
al meaning: u(x; t) = transversedispla
ement, �(x; t) = absolute temperature, � =mass den-sity, Cv = spe
i�
 heat, k = thermal 
ondu
tivity 
oeÆ
ient,� = vis
osity 
onstant, f(x; t) = distributed loads (input),g(x; t) = distributed heat sour
es (input), T = pres
ribed�nal time. The positive 
onstants �2, �4, �6, �1 and 


depend on the material being 
onsidered and they appearin the free energy potential whi
h is taken in the Landau-Ginzburg form	(�; �x; �) = �Cv� ln� ��2�+ Cv� + C+ �2(� � �1)�2 � �4�4 + �6�6 + 
2 �2x; (6)where � = ux is the linearized shear strain. The 
onstants �1and �2 in Eqn. (6) are two 
riti
al temperatures and C repre-sents a �xed energy referen
e level. The body is assumed tobe a simply supported unit-length beam thermally insulatedat both ends.The PDEs (1) and (2) are 
oupled and nonlinear due to theterms 
oming from the partial derivatives of the free energy.For a detailed a

ount of the origin of these equations seethe work by Spies (1995) and the referenes therein.Although there are several representations for the free en-ergy potential of SMA materials (Falk 1980, 1983; Songmu,1989; Songmu and Sprekels, 1989; Sprekels, 1989a), the formof Eqn. (6) seems to be the simplest one whi
h is able to re-produ
e several phenomena -su
h as hysteresis, shape mem-ory and superelasti
ity- observed in real SMA materials un-der di�erent external thermome
hani
al a
tions. For valuesof � 
lose to �1, 	 is a non
onvex fun
tion of � and the stress-strain laws obtained from Eqn. (6) are strongly temperature-dependent (see Fig. 1). At low temperatures these 
urvesexhibit an elasto-plasti
 behavior at small loads and a se
-ond elasti
 bran
h at large loads, whi
h permits the bodyto withstand for
es beyond the plasti
 yield, after whi
h,subsequent unloading produ
es residual deformation. In theintermediate temperature range the behavior is superelas-ti
, also 
alled pseudoelasti
. Here, a plasti
 yield is alsofound. However, loading beyond this plasti
 yield followedby 
omplete unloading does not lead to residual deformation.This is due to the existen
e of an intermediate elasti
 bran
hwhi
h the body rea
hes by 
reeping ba
k after the load falls



beyond a 
ertain 
riti
al value. Finally, in the high tem-perature range the behavior is almost linearly elasti
 witha modulus of elasti
ity whi
h in
reases with temperature.Hysteresis loops are observed in the stress-strain 
urves atlow and at intermediate temperatures (Spies, 1995, and thereferen
es therein).It is known that 
ertain alloys exhibit a mu
h more 
om-pli
ated behavior. For example, 
ertain CuZnAl alloys showstrain hardening and nested hysteresis loops (Muller and Xu,1991). Although these phenomena 
an be 
aptured in anisothermal and stati
 setting (Spies, 1996), it is not yet 
learhow they 
an be in
luded into the dynami
 equations (1)and (2).Due to their unique 
hara
teristi
s SMA have found abroad spe
trum of appli
ations su
h as orthodonti
 andother dental devi
es, heat engines, temperature swit
hes andfuses, pipe 
oupling devi
es (Funakubo, 1987), hybrid 
om-posites (Rogers et al., 1989) and several interesting appli
a-tions in Medi
ine (Castleman et al., 1976; Funakubo, 1987;S
hmerling et al., 1975).Sin
e the dis
overy of NiTinol (a Nikel-Titanium alloy) byBuehler (Malloy, 1990) in 1962 several mathemati
al mod-els were proposed and studied (A
henba
h and Muller, 1982,1983; Falk 1980, 1983; Muller, 1979; Muller and Villaggio,1977; Muller and Wilmanski, 1980; Wilmansky, 1983). Mostof this models, however, were stati
 and did not take intoa

ount the strong 
oupling between the me
hani
al andthermal properties, whi
h is one of the distinguishing fea-tures possessed by SMA. It was not until re
ent years thatmathemati
al models were able to deal with most of the un-usual properties of SMA and, at the same time, to allowfor the in
lusion of boundary and distributed external a
-tions that 
an be used as 
ontrol variables (Niezgodka andSprekels, 1988, 1991; Songmu, 1989; Songmu and Sprekels,1989; Spies, 1995; Sprekels, 1989a, 1989b). This arti
lefollows a state-spa
e approa
h introdu
ed re
ently (Spies,1995).2 State-Spa
e Formulation and Pre-liminariesIn this se
tion we shall formulate the initial-boundary valueproblem of Eqns. (1) to (5) as an abstra
t semilinear Cau
hyproblem in an appropriate Hilbert spa
e, and we shall brie
yre
all some preliminaries whi
h will be needed later on.We de�ne the state spa
e Z as the Hilbert spa
eH10 (0; 1)\H2(0; 1)� L2(0; 1)� L2(0; 1) with the inner produ
t*0�uv�1A ;0�~u~v~�1A+ := 
 Z 10 u00(x)~u00(x) dx+ � Z 10 v(x)~v(x) dx+ Cvk Z 10 �(x)~�(x) dx:Next, the operator A on Z is de�ned byD(A) = 8>>>><>>>>:0�uv�1A����������u 2 H4(0; 1);u(0) = u(1) = u00(0) = u00(1) = 0v 2 H10 (0; 1) \H2(0; 1)� 2 H2(0; 1); �0(0) = �0(1) = 0 9>>>>=>>>>; ;

and for z = 0�uv�1A 2 D(A),A0�uv�1A := 0� 0 I 0�
�D4 �D2 00 0 kCvD21A0�uv�1A ;where Dn := �n�xn .We assume that the fun
tions f(x; t) and g(x; t) satisfythe following hypothesis.(H1) For ea
h �xed t � 0, the fun
tions f(x; t) andg(x; t) are in L2(0; 1) and there exist nonnegativefun
tions Kf (x) and Kg(x) 2 L2(0; 1) su
h thatjf(x; t1)� f(x; t2)j � Kf (x)jt1 � t2j;and jg(x; t1)� g(x; t2)j � Kg(x)jt1 � t2j;for all x 2 (0; 1), and t1; t2 2 [0; T ℄.We also de�ne z0(x) = 0�u0(x)v0(x)�0(x)1A and F (t; z) : R+0 �Z ! Zby F (t; z) = 0� 0f2(t; z)f3(t; z)1A ;where�f2(t; z)(x) = f(x; t)+ �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;Cvf3(t; z)(x) = g(x; t) + 2�2�uxvx + ��v2x:With the above notation, the IBVP of Eqns. (1) to (5) 
an beformally written as the following semilinear Cau
hy problemin the Hilbert spa
e Z:(P)8<: ddtz(t) = Az(t) + F (t; z); 0 � t � T;z(0) = z0 : (7)The following results follow immediately from theo-rems 3.7 and 3.11 of Spies (1995) with only slight modi�-
ations a

ounting for the slightly di�erent boundary 
ondi-tions being 
onsidered here. Sin
e the modi�
ations neededare trivial we do not give details here.Theorem 2.1. (Spies, 1995) Let A : D(A) � Z ! Z aspreviously de�ned. Then the set of eigenvalues �p(A) of theoperator A is given by�p(A) = ��+n	1n=1 [ ���n 	1n=1 [ f�ng1n=0 ;where�+;�n = p�n ��r �pr2 � 1� ; �n = � kCv n2�2and �n = 
n4�4� and r = �p�2p
 :The 
orresponding eigenve
tors in Z are, respe
tively,0� sin(�nx)�+n sin(�nx)0 1An=1;2;��� ; 0� sin(�nx)��n sin(�nx)0 1An=1;2;��� ;and 0� 00
os(�nx)1An=0;1;��� :



Also, the operator A generates an analyti
 semigroup of 
on-tra
tions T (t) on Z.Theorem 2.2 (Lo
al existen
e of solutions). (Spies,1995) Let A be as de�ned above. Then, for any ini-tial data z0 2 D(A), there exists t1 = t1(z0) su
hthat the IVP (P) has a unique 
lassi
al solutionz(t) 2 C ([0; t1) : Z) \ C1 ((0; t1) : Z).3 Finite Dimensional Approxima-tionsIn this se
tion �nite-dimensional modal approximations tosolutions of problem (P) are de�ned. For �xed N 2 N let�Nn (x) := 0� sin�nx�+n sin�nx0 1A ; �NN+n(x) := 0� sin�nx��n sin�nx0 1A ;and �N2N+n(x) := 0� 00
os�(n� 1)x1A ;for n = 1; 2; � � � ; N , where �+;�n are as in Theorem 2.1, andlet us de�ne ZN to be the span of �̂N := ��Nn (x)	3Nn=1 en-dowed with the Z-norm. Then 1[N=1ZN is dense in Z and,sin
e the �Nn 's are eigenve
tors of A, it follows that ZN isinvariant under A. Note also that ZN is itself a Hilbertspa
e.Next, we de�ne the �nite-dimensional approximatingproblem �PN� in ZN , as follows:�PN�8<: ddtzN(t) = ANzN (t) + FN(t; zN (t)); 0 � t � TzN(0) = PNz0 ;where PN : Z ! ZN is the orthogonal proje
tion of Zonto ZN , AN is the restri
tion of A to ZN and FN (t; z) :=PNF (t; z). The density of 1[N=1ZN in Z implies the strong
onvergen
e of PN to the identity.Sin
e ZN has �nite dimension, the operator AN on ZN isbounded and linear, and a fortiori, it generates a uniformly
ontinuous semigroup of bounded linear operators TN(t) onZN .The following results on lo
al existen
e of solutions ofproblem �PN� and their 
onvergen
e to the solution of (P)
an be found in the work by Morin and Spies (1996).Theorem 3.1. (Morin and Spies, 1996) Let z0 2 Z. Then,for any positive integer N, there exists tN1 > 0 su
h that�PN� has a unique 
lassi
al solution on [0; tN1 ).Theorem 3.2. (Morin and Spies, 1996) Let z0 2 D (A).Suppose that zN(t) and z(t) are solutions of �PN� and (P),respe
tively, and let [0; t1) be the maximal interval of exis-ten
e of z(t). Then, for any t01 < t1, there exists a 
onstantN0 su
h that zN (t) exists on [0; t01℄ for every N � N0 andkzN(t)� z(t)kZ ! 0 for every t 2 [0; t01℄.Next we shall �nd the representation of the approximatingproblem �PN� in the basis �̂N of ZN . For this purpose, letwN be the ve
tor whose 
omponents are the 
oeÆ
ients ofthe solution zN (t) = 0�uN(t)vN (t)�N (t)1A of �PN� in the basis �̂N .

Then wN (t) is the solution of the IVP� ~PN�( _wN (t) = ~ANwN (t) + ~FN �t; wN (t)�wN (0) = wN0 ;with ~AN = �QN��1KN ;~FN (t; w) = �QN��1RNF �t; QNw�= �QN��1RN 0� 0f2(t; QNw)f3(t; QNw)1A ;wN0 = �QN��1RN 0�u0u1�01A ;where the matri
es QN , KN and the mapping RN : ZN !R3N are de�ned by�QN�i;j = h�Ni ; �Nj i; �KN�i;j = h�Ni ; AN�Nj i;�RNz�i = h�Ni ; zi:i; j = 1; 2; � � � ; 3N .4 Des
ription of the AlgorithmIn this se
tion the matri
es QN , KN and the mapping RN :ZN ! R3N are 
onstru
ted. We will later use them toevaluate the linear and nonlinear part of the equation.The matrix QN turns out to beQN = 24QN1 QN2 0QN3 QN4 00 0 QN5 35where QNk , k = 1; 2; � � � ; 5 are all N �N diagonal matri
esand, for every n = 1; 2; � � � ; N�QN1 �n;n = 
n4�4 + � j�+n j22 ;�QN2 �n;n = 
n4�4 + ��+n ��n2 ;�QN3 �n;n = �QN2 �n;n ;�QN4 �n;n = 
n4�4 + �j��n j22 ;and QN5 = diag�1; 12 ; 12 ; � � � ; 12� :Taking into a

ount that, being �Nn eigenfun
tions of A,for n = 1; 2; : : : ; 3,A�Nn = �+n�Nn ;A�Nn+N = ��(n)�Nn+N ;A�Nn+2N = � kCv (n� 1)2�2�Nn+2N ;it turns out that KN = QNEN , where EN is a 3N � 3Ndiagonal matrix whose elements are given by�EN�n;n = �+n ;�EN�n+N;n+N = ��(n);�EN�n+2N;n+2N = � kCv (n� 1)2�2;



n = 1; 2; : : : ; N . In parti
ular, sin
e ~AN = �QN��1KN wehave that ~AN = EN .To evaluate the nonlinear term ~F (t; w) of the equation, we�rst re
onstru
t u, ux, uxx, v, vx, � and �0 from the ve
torof 
oeÆ
ients w on a 101-point regular grid and evaluate f2and f3 on that grid.The 
omputation of �RNz�n = h�Nn ; zi, is made throughnumeri
al integration using the Simpson's rule with a step-size of 10�2.We �rst used an expli
it fourth order Runge-Kuttamethod. Due to the nonlinearities of the system this methodwas found to be very unstable and ineÆ
ient. The eÆ
ien
yof the numeri
al algorithm was greatly improved using a hy-brid impli
it-expli
it Euler method whi
h ensures stabilityfor mu
h larger step sizes. Basi
ally, this method 
onsists ofapproximating the linear part of ddtz(t) in an impli
it waywhile an expli
it form is used for the nonlinear part. Morepre
isely, the following time dis
retization s
heme was used:wN0 = 
N ;1�t �wNk+1 � wNk � = ~ANwNk+1 + ~FN �k�t; wNk � ;k = 0; 1; : : : .5 Numeri
al ExperimentsIn this se
tion numeri
al results obtained using the �nite di-mensional approximating s
heme introdu
ed in the previousse
tions are presented. We shall make use of the parametervalues reported by Falk (1980) for the alloy Au23Cu30Zn47:�2 = 24 J 
m�3K�1, �4 = 1:5 � 105 J 
m�3, �6 = 7:5 �106 J 
m�3K�1, �1 = 2080K, Cv = 2:9 J 
m�3K�1, k =1:9w 
m�1K�1, � = 11:1 g 
m�3, � = 1, 
 = 10�12 J 
m�1.Figure 1 shows the stress-strain 
urves obtained from thepotential de�ned by Eqn. (6) used with these parametervalues. The doted lines indi
ate the unstable parts of the
urves, while the horizontal lines indi
ate possible hysteresisloops.For the numeri
al results presented below we used thehybrid method des
ribed above withN = 32 and �t = 10�5.5.1 Experiment 1: Low-temperaturesteady-stateFor this experiment we took f = g � 0, �0(x) � 2000 K andu0(x) = PNh(x), whereh(x) = (0:05x; if 0 � x � 0:5;0:05(1� x); if 0:5 � x � 1;and v0 � 0. Thus, the beam is initially in the low tem-perature range 
omposed of two segments of martensites,namely, martensite M+ on 0 � x < 12 and martensite M�on 12 < x � 1 (5% initial strain). The evolution of displa
e-ment and temperature 
an be observed in Figs. 2a and 2b,respe
tively. This evolution is due to the fa
t that the ini-tial 
ondition z0(x) = 0�u0(x)v0(x)�0(x)1A does not 
orrespond to asteady-state of the system of Eqns. (1) to (5). The systemevolves until a steady-state 
orresponding to two symmetri
segments of martensites M+ and M� (�= 11:25% strain) andto a 
onstant temperature � �= 2220 K is rea
hed. Figure 2
shows in more detail the displa
ement pro�le during the �rst250 millise
onds.
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(a)
(b)
(
)Figure 2: Low temperature steady-state. Evolution of dis-pla
ement (a, 
) and temperature (b) from an unsteady lowtemperature initial 
ondition.

5.2 Experiment 2: High-temperaturesteady-stateHere we took �0(x) � 6000 K and u0, v0, f and g as in Ex-periment 1. The evolution of displa
ement and temperatureis shown in Fig. 3a and 3b, respe
tively. The beam os
il-lates until the steady-state de�ned by a zero deformationand a 
onstant temperature � �= 505:60 K is rea
hed. Thisis in agreement with the fa
t that above the austenite-�nishtemperature � = Af (in this 
ase Af �= 2830 K) the steady-states satisfy the Eqns. u � 0 and � � 
onst. Due to thehigh-temperature unsteady initial 
ondition the beam imme-diately bends downward approa
hing the state u � 0 whilethe temperature de
reases slightly, originating the dampedos
illations observed in Figs. 3a and 3b. The os
illations ofthe middle-point of the beam are shown in Fig. 3
.
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ementpro�le; (b) temperature pro�le; (
) middle-point displa
e-ment.5.3 Experiment 3: Pulse at lowtemperatureIn this experiment we studied the e�e
ts of a distributedfor
e 
onsisting of a pulse around the middle-point of thebeam when the initial temperature is below the martensite



�nish temperature � = Mf �= 2080 K. We took u0(x) =v0(x) � 0, �0(x) � 2000 K, g(x; t) � 0 andf(x; t) = 8><>:5� 104; if 0:4 � x � 0:6and 0 < t < 0:5� 10�3;0; otherwise.Initially, points around the 
enter move upward while thee�e
t of the pulse propagates to the endpoints of the beam(Figs. 4a and 4
). At exa
tly the time at whi
h this e�e
trea
hes the endpoints, the middle-point de
e
tion rea
hes amaximum. Then, small damped os
illations begin to takepla
e (Fig. 4
) around the �nal equilibrium state whi
h 
or-responds to two symmetri
 segments of martensites M+, M�(�= 11:05% strain) and to a 
onstant temperature � �= 2260K (Fig. 4b).

(a)
(b)
(
)Figure 4: Pulse at low temperature. (a), (
) displa
ementpro�le; (b) temperature pro�le.5.4 Experiment 4: Pulse at hightemperatureIn this 
ase we investigated the e�e
ts of a pulse aroundthe middle-point of the beam, whi
h was set initially at a
onstant temperature above Af . We took �0(x) � 6000 Kand u0, v0, f and g as in Experiment 3. At the beginning, thebeam bends upward until the pulse is swit
hed o� (Fig. 5
).Immediately afterwards, damped os
illations begin to o

ur.

These os
illations take pla
e around the �nal equilibriumstate de�ned by u � 0 and by a 
onstant temperature � �=6020 K (Figs. 5a and 5b). Re
all that above the austenite�nish temperature the only unloaded steady-state is u � 0.

(a)
(b)
(
)Figure 5: Pulse at high temperature. (a), (
) displa
ementpro�le; (b) temperature pro�le.5.5 Experiment 5: Waiting-HeatingHere, we observed the e�e
ts of heating the beam when itis set initially at an equilibrium state 
orresponding to twosymmetri
 segments of martensites M+ and M�. For this,we took as the initial data the �nal steady-state of Experi-ment 1 (11.25 % initial strain, �0(x) � 2220 K), f(x; t) � 0and the heat sour
e g(x; t) 
onsisting of a uniformly spatiallydistributed heat pulse as followsg(x; t) = (5� 104; if 0:2 < t < 0:25;0; otherwise.The system remains at the initial state until the heatpulse is swit
hed on. At this time the temperature startsto in
rease (Fig. 6b), the martensite 
rystals are 
onvertedinto austenite and the beam bends downward showing smalldamping os
illations around zero deformation (Fig. 6a).These os
illations are qui
kly damped and the beam rea
hesthe steady-state de�ned by u � 0 and � �= 3360 K.



(a)
(b)Figure 6: Waiting-Heating. (a) displa
ement and (b) tem-perature pro�les.5.6 Experiment 6: Heating-Waiting-Cooling (Two-way shape memorye�e
t)For this experiment we took again as initial data the �nalsteady-state of Experiment 1. We also took f(x; t) � 0 andthe distributed heat sour
e g(x; t) 
onsisting of an initialuniformly distributed heat pulse whi
h is swit
hed o� aftert = 0:05 se
. At t = 1:45 se
. the opposite heat pulse isapplied until t = 1:50 se
. when it is swit
hed o�. Morepre
isely,g(x; t) =8><>:8� 103; if t < 0:05;�8� 103; if 1:45 < t < 1:50;0; otherwise.The temperature raises uniformly up to nearly 3360 Kwhile the beam approa
hes the undeformed state. After theheat pulse is swit
hed o�, the temperature remains at about3360 K while the displa
ement shows small damped os
illa-tions around u � 0 due to inertial e�e
ts. The sample isnow 
ompletely in the austenite phase. At t = 1:45, whenthe opposite pulse is applied, the temperature de
reases uni-formly and remains at about 2220 K, while the beam under-goes a pro
ess of reverse transformation. This pro
ess takesthe beam ba
k to the original initial 
on�guration showingthe so-
alled two-way shape memory phenomenon (Figs. 7ato 7d).6 Con
lusionsIn this arti
le, dis
rete spe
tral or modal approximations tothe nonlinear partial di�erential equations that model thedynami
s of thermome
hani
al martensiti
 transformationsin one-dimensional shape memory alloys with non-
onvexLandau-Ginzburg potentials were developed.The numeri
al experiments performed using this s
hemeshow that under di�erent initial 
onditions and distributed

PSfrag repla
ementstime(se
)middle-point displa
ementmiddle-point temperature (a)
PSfrag repla
ementstime(se
)middle-point displa
ementmiddle-point temperature (b)

0 0.5 1 1.5 2 2.5 3
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

PSfrag repla
ements time(se
)middle-pointdi
spla
ement

middle-point temperature (
)

0 0.5 1 1.5 2 2.5 3
180

200

220

240

260

280

300

320

340

PSfrag repla
ements time(se
)middle-point displa
ement middle-pointte
mperature

(d)Figure 7: Heating-Waiting-Cooling. (a) displa
ement pro-�le; (b) temperature pro�le; (
) middle-point displa
ement;(d) middle-point temperature.



external a
tions the model de�ned by Eqns. (1) to (5) isable to produ
e solutions whose qualitative behavior is foundto be in 
lose agreement with laboratory experiments per-formed on Shape Memory Alloys under similar 
onditions.From a pra
ti
al point of view it would be very importantto �nd the values of the parameters that \best �t" experi-mental data for a given alloy. This is 
alled the parameteridenti�
ation problem about whi
h no results are yet known.In this regard the s
heme presented here provides a friendlymathemati
al framework for atta
king this problem. E�ortsin this dire
tion are already underway and results will bepublished in a forth
oming arti
le.A
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