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Abstract: In this article, an abstract nonlinear evolution equation with a parameter appearing in the nonlinear part is
considered. Using the theory of analytic semigroups and a generalization of Gronwall’s lemma for singular kernels, sufficient
conditions to ensure differentiability of the solution with respect to the parameter are derived in terms of the smoothness of
the nonlinear part of the equation. The results are applied to a nonlinear system of PDE’s modeling the dynamics of shape
memory alloys.

1. Introduction

Let Z and Q be two Banach spaces, A the infinitesimal generator of an analytic semigroup 7T'(t) on Z, D
a subset of Z, Q an open subset of @, T > 0 and F : Q x [0,T] x D — Z. We shall consider the following
nonlinear Cauchy problem in Z:

2(t) = Az(t) + F(q,t,2(¢)), te(0,7)
(1.1)
z(0) = 2.

The spaces Z and Q will be referred to as the state-space and the parameter space, respectively, while Q
will be called the admissible parameter set.

For the application of quasilinearization algorithms in parameter identification for systems like (1.1) and
other similar types of equations ([5], [7], [9]) it is essential to obtain conditions under which the solution is
differentiable with respect to the parameter q.

In [6] this differentiability problem was analyzed in the context of linear abstract Cauchy problems of the
type

(1) = Alg)z(t) +ul®),  2(0) =2 (1.2)

in which A(q) generates a strongly continuous semigroup and can be written in the form A(q) = A + B(q)
where B(q) is bounded. Later on ([4]), the same problem was studied under weaker assumptions. Here, the
parameter ¢ was not restricted to appear in a bounded term of the operator A(q).

In the present article we shall prove the ¢-differentiability of the solution of system (1.1). Several problems
in diverse areas like in the study of flexible and smart structures, Geology, Ecology, Chemical Engineering,
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Biology, etc. (see [3], [9]) originate problems whose abstract formulation result in nonlinear systems in which
the unknown vector parameter appears in the nonlinear term. In these and many other practical problems it
is very important to have a mathematical framework in which the identification of the parameter be possible
from experimental and laboratory data.

The quasilinearization methods for identification ([5],[7]) provide practical mathematical tools for achieving
this goal. However, their application require not only that the solution depends continuously on the unknown
parameter but also that an explicit formula for the derivative of the solution with respect to that parameter
be derived.

The organization of the article is as follows. In Section 2 the g¢-differentiability of the solution of (1.1)
is studied and sufficient conditions are given under which that property holds. In Section 3 a regularity
result for that derivatives is obtained. The latter result is required in order to prove convergence of the
quasilinearization algorithms previously mentioned while the former is required for the algorithm to be well-
defined. In Section 4 an application example is considered in the context of a mathematical model for shape
memory alloys. The partial differential equations that model the dynamics of these materials result in an
abstract Cauchy problem in which the unknown parameters defining the free energy potential arise in the
nonlinear terms. Theorems of Sections 2 and 3 are used in this particular case to show that the solution
depends smoothly on the unknown vector parameter.

2. Parameter differentiability of the solution of (1.1)

In this section we will prove the Fréchet differentiability of the solution of (1.1) with respect to the
parameter q. We first recall some properties of analytic semigroups and make some general assumptions on
the nonlinear part of the equation.

Let 0(A) denote the spectrum of the operator A. Since A generates an analytic semigroup, the type of
A, defined as w = sup {Re(\) : A € 0(A)} is finite and for any A € C with Re(\) > w, the fractional powers
(M — A)? of A\I — A are closed, linear and invertible operators in Z for any 6 € [0, 1] (see [10]). In what
follows, A will be fixed, Re(\) > w and Z; shall denote the space D ((AI — A)°) imbedded with the norm of
the graph of (Al — A)°. Due to the fact that Re(\) > w, one has that A € p(A), the resolvent set of A, and
the graph norm is equivalent to the norm ||z]|s = || (M — A)62||Z.

Counsider the following standing hypothesis.

(H1). There exists 6 € (0,1) such that Zs C D and F : Q x [0,T] x Zs — Z is locally Lipschitz continuous
int and z, i.e., for any ¢ € Q and any bounded subset U of [0,T] x Zs there exists a constant L = L(q,U)
such that

1F(q,t1,21) — F(q,t2,22)[lz < Lty — to| + [[21 — 22lls) . V(ti,20) € U.

where the constant L can be chosen independent of ¢ on any compact subset Q¢ of Q.
The following result follows immediately from Theorem 6.3.1 in [10].

Theorem 2.1. Let ¢ € Q and zo € Zs and assume F satisfies hypothesis (H1). Then there exists t;

t1(g,20) > 0 such that (P), has a unique classical solution on [0,t1), i.e., there exists a function z(-) €
C°([0,t1) : Zs) N CL((0,t1) : Z) such that

Az(t) + F(q,t, 2(t)), t € (0,t1)

—
N W
—~ o~
S
T
N
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The function z(t) satisfies the integral equation
t
2(t) =T (t)z0 + / T(t—s)F(q,s,z(s))ds, Vt € [0,t1).
0

Also, t, can be chosen positive independent of ¢ on any compact subset Q¢ of Q.

Let us denote by z(t; ¢) the solution z(t) of (1.1).
The following generalization of Gronwall’s Lemma for singular kernels, whose proof can be found in [8§]
(Lemma 7.1.1), will be essential for the main result of this section.
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Lemma 2.2. Suppose L >0, 0 < <1 and a(t) is a nonnegative, locally integrable function on 0 <t <T.
Let u(t) be a real valued function defined on [0,T] satisfying

u(t) < at) + L/o ﬁu(s) ds

on this interval. Then, there exists a constant K = K(0) such that

u(t) < a(t) —f—KL/Ot (ta_(ss))a ds for 0<t<T.

The following theorem states a result relating the regularity of F' and the Lipschitz continuity of z(t;q)
with respect to g.

Theorem 2.3. Suppose F(q,t,z) satisfies hypothesis (H1) for some 6 € (0,1). If the mapping g — F(q,-,z)
from Q into L>°(0,T : Z) is locally Lipschitz continuous for all z € Zs with Lipschitz constant independent of
z on Zs-bounded sets, then the mapping ¢ — z(-;q) is locally Lipschitz continuous from Q into L*°(0,T : Zs).

Proof. Let t € [0,T] and ¢q1,¢2 € Q. Then

2(t;q1) = T(t)z0 + / T(t - $)F (q1, 5, 2(s;01)) ds,

2(t;q2) = T'(t)zo + /OtT(t —5)F (g2, 5, 2(s;q2)) ds
and therefore
() = 2 = [ T ) IF 00,0,2(650) ~ F 05,5, (65)] s
-/ T 5) [F (a1,5,2(530) — F (42,5, 2(55 )] ds
b [ 1) 1 02051000 — 0,25 00)

Hence, if 6 € (0, 1) is such that (H1) holds, then it follows that

lettian) = 252)ls < [ s IF (5,25 00) = F (@ 2(s) |

tC
n /0 W||F (g2, 8, 2(8:q1)) — F (g2, 8, 2(55¢2)) ||

— S
0 L CL
< — . _ .
<Cilln =l {5+ [ =g (e = s(s)l; ds

Y CL
<Clla —@ll+ | 5 lz(s5qm) — 2(s5¢2)|]5 ds.
o (t—s)
Applying Lemma 2.2 we obtain

l2(t;q1) — 2(tq2)lls < Ki [l — gol| €27

for some constants K7, K. The theorem then follows. [ ]

Next, sufficient conditions on F' are given that ensure differentiability of the mapping g — z(¢; q).
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Theorem 2.4. Assume (H1) holds for some 6 € (0,1) and the mapping (q,2(-)) = F(q,-,2(-)) from
Q x L*(0,T : Zs) into L>=°(0,T : Z) is Fréchet differentiable in both variables. Assume also that the
mapping (¢,2(-)) = Fy(q,,2(-)) from Q x L*(0,T : Zs) into L™ (O,T L (Q, Z)) is locally Lipschitz
continuous with respect to q and z.

Then the mapping ¢ — z(-;q) is Fréchet differentiable from Q — L>®(0,T : Zs) and for any h € Q,
zq(t;q)h is the solution vy (t) of the linear IVP

0n(t) = Av(t) + F2 (g, 8, 2(5,9))on(t) + Fy(q, 8, 2(8,9))h, £ €(0,T)
Uh(O) =0.
Proof. Let t € [0,T] be fixed and § € (0,1) as in (H1). Then for any h € Q such that ¢ + h € Q we have
t
a4 W) =T+ [ 1= 9F(g+hs,2(sig+ ) ds
0

2(tiq) = T(t)z0 + / T(t — 5)F(q, 5, 2(5;q)) ds
and .
on(t) = / T(t  5) [F- (g, 5, 2(5:0))on(5) + Fy(g, 5, (5 )] ds.

Let € > 0. We will show that there exists 4 > 0 such that if A € Q and ||h]| < 7 then ||z(¢; ¢+ h) — z(t; q) —
vp(t)||s < €]|h|]- For this purpose, observe that

z2(t;q + h) — z(t; q) — va(?)
-/ Tt ) [Fa+ by, 250 + ) — F(g, s 2(5:0))] ds
-/ T 3) [F(a,5, (53 0)n(s) + Falg, 2055 )] ds
-/ T 5) [F(q + By, (530 + 1) — F(q + hy s, 2(550)] ds
+ /Ot T(t—s)[F(g+h,s,z(s;9) — F(g,s,2(s3q9)) — Fy(q,s,2(s;9))h] ds
+ Tt 5) [Fg, 5,205, + ) = Flg,,2(5:0)) — (5,055 ))on(s)] ds
+ Tt 5) [Fg,5,2(5 ) — Flg, 5,253+ )] d

=L+ 1L+ 13+ 14

where I;, 1 = 1,2, 3,4 denotes the ith term in the order given above.
Since F' is Fréchet differentiable with respect to z, there exists 3 > 0 such that if ||z(¢ + h;-) —

2(¢; )lLe=(0,1:25) < 71, then
113]]s
t
< / Y \F(g,5,2(5:0 + h)) — F(g,5,2(5:0))
o (t—1s)
—F.(q,5,2(5;9)) (2(s;q + h) — z(s;9))|| , ds

" /0 ﬁ 1= (q,8,2(5:9)) (2(s;0 + h) — 2(s30) — va(s))l, ds

< [ G5 letsas ) = sl ds+ [ G letsat ) - 2(si0) = (o)l ds
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Now, by virtue of Theorem 2.3, there exist constants v2, K > 0 such that ||2(;;¢ + h) — 2(-;¢)|| L (0,1:25) <
K||h|| < 71 whenever ||h]| < 72. Hence, if ||h]| < 72, we obtain

CKe

t t
c
sl < [ s Il s [ o2 et ) = 2(ss) = (o)l .

Also, since F' is Fréchet differentiable with respect to ¢, there exists y3 > 0 such that if ||h|| < 73, then

bCe
1ol < [ =5kl s

On the other hand, observe that I; + I, can be written as

T
L +1, :/0 T(t—s)[F(q+h,s,z(s;q+ h)) — F(q,s,z(s;q + h))] ds
T
- [ 7= 1P+ s (si0) - Flass(s0)] ds
= /Ot T(t—s)Fy(q+ai(h)h;s,z(s;q+ h)) hds

— /0 T(t—s)Fy (g + az(h)h;s,z(s;q)) hds

where 0 < ay (h), az(h) < 1. Consequently, by the Lipschitz continuity of F;, we have that

t
c
111 + 1af|s < /0 =) 1Fy(q + ar(h)h, s,2(s;q + h)) = Fy(q+ ar(h)h, s, 2(s;9)) || , [|b]] ds
tC
+/0 (= 1Fq(q + ar(h)h, s,2(s;q)) — Fy(q + a2 (h)h, s, 2(s;9))l , [|hl| ds

e

< ||h||/0 T (L1llz(s;q + h) = 2(s;9)|ls + La|aa (h) — ax(B)] [|Al]) ds

S C3 ||h||2 )

where the last inequality follows by virtue of Theorem 2.3.
Summarizing, there exist constants v*, K1, Ky > 0 such that whenever ||h|| < v* one has

t;q+h) — 2(t;q) — on(t)

Il
T s) ds.

t
Iattsa+1) = =(t:0) = (O, < Ko [l + s | =
1]

The above inequality together with Lemma 2.2 imply the existence of a constant K such that
lz(t;q +h) = 2(t;q) = vn()ll; < K [|hlle,  provided [[h]| <77,

and the theorem follows. [ |

3. Lipschitz continuity of the Fréchet derivative

In order to prove convergence of the quasilinearization algorithms it is necessary not only that solutions
be differentiable with respect to the unknown parameter ¢ but also that the corresponding derivative be
smooth. The next result provides sufficient conditions for the Lipschitz regularity of z,.
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Theorem 3.1. Let the hypotheses of Theorem 2.4 hold. Assume also that the mapping (¢,2(-)) = F.(q,-, 2(+))
from Qx L>(0,T : Zs) into L>(0,T : L(Zs, Z)) is locally Lipschitz continuous with respect to both variables
q and z(-). Then, the mapping g — z4(-;q) from Q — L*>(0,T : £(Q, Z)) is locally Lipschitz continuous.

Proof. By Theorem 2.4, z,(t; ¢)h coincides with the solution of the initial value problem

{ bg,n(t) = Avgn(t) + G(a,t,v4,n, k) + Fy(a,t, 2(6 0)h
’U,Lh(O) =0.

where G(g,t,v,h) = F.(q,t,2(t;q9))v + Fy(q,t, 2(t; q))h. Now, let Q¢ be a compact subset of ¢ and ¢1,¢2 €
Qc. Then, for v € Zs and ¢ € [0, T, there follows that

||G(q1,t,'l),h) - G(qZ;tavah)Hz S ||Fz(Q1;t;Z(t§Q1)) - Fz(qZ;taZ(t;qZ))”ﬁ(ZJ,Z) ||’U||Z§
+ ||Fq(q17t7 Z(t, ql)) - Fq(q2:t: Z(t, q2))||£(Q7Z) ||h||Q
< Luflz(ta1) = 2(5 )iz, llollz, + L2 llar — a2l [IAllo

< (Lullvll, + Lo lIAllg ) llay = aello

where, in the third inequality the fact that z(¢; q) is locally Lipschitz continuous with respect to ¢ was used
(Theorem 2.3). Therefore, the mapping ¢ — G(q,-, v, h) is locally Lipschitz continuous and the Lipschitz
constant can be chosen independent of v and of h on compact subsets of Z; and Q, respectively. Hence
G(q,t,v, h) satisfies the hypothesis of Theorem 2.3 and the mapping ¢ — z,(-; ¢)h is locally Lipschitz con-
tinuous. Moreover, since the Lipschitz constant of G is independent of k on O-bounded sets, it follows
immediately from the proof of Theorem 2.3 that the Lipschitz constant of the mapping ¢ — 2,(-,¢)h can
also be chosen independent of i on O-bounded sets. The theorem is then proved. |

4. An application

In this section we consider an example in which parameter differentiability is proved in the following
system of nonlinear partial differential equations:

Put — Bpupet + YVppwe = f(x,t) + (20@(9 —01)uy — dagul + 6a6u2)$ , z€(0,1),0<¢t<T

(4.1a)
Cop — kbpp = g(x,t) + 2000uuyy + BpuZ,, x€(0,1),0<t<T (4.1b)
u(x,0) = uo(x), ut(x,0) =wvo(x), 8(x,0) =0y(x), =€ (0,1) (4.1c)
w(0,t) = u(1,t) = Uz (0,8) = uge(1,8) =0, 0<t<T (4.1d)
0.(0,t) =6,(1,t) =0, 0<t<T. (4.1e)

These equations arise from the conservation laws of linear momentum and energy in a one-dimensional
shape memory body. The functions u and 6 represent transverse displacement and absolute temperature,
respectively. Subscripts “z” and “t” denote partial derivatives and p, Cy, k, 3, v, az, a4, ag, 81 are positive
constants depending on the material being considered. The functions f(z,t) and g(x,t) denote distributed
forces and distributed heat sources, respectively. For a detailed explanation of the model and the meaning
of the parameters involved we refer the reader to [11] and the references therein.

We are interested in determining the differentiability of the solution of these equations with respect to the
parameters as, a4, ag and 6.

The IBVP (4.1) can be written as an abstract nonlinear Cauchy Problem like (1.1) in an appropriate Ba-
nach Space. For this purpose let the admissible parameter set be defined as Q = {q = (a2, a4, 06,601) |g € RY },

the state space Z as the Hilbert space H}(0,1) N H?(0,1) x L?(0,1) x L?(0,1) with the inner product

/\
S =
T

>ﬁfy/olu"(:n)ﬂ”—(:n)daz—kp/olv(m)mdx+%/019(33)%@:.



The operator A on Z is defined by

u u€ H*0,1), u(0) =u(l) =u"(0) =u"(1) =0
D(A) = v ]| €Z|ve H}0,1)NH?*0,1)
0 6 € H*(0,1),6'(0) =6'(1) =0
u
and for z = | v | € D(4),
0
u 0 I 0 u
Alwv | = —%D4 BD? 0 v,
G 0 0 &p*/ \#
where D™ = 8‘9;" .
uo(x)
Define also zo(z) = | vo(z) | and F(q,t,2z): Q@ x [0,T] x D — Z by
Bo(x)
0
F(qat;z) = f2(q;t;Z) ’
f3(q,t,Z)

where

pfa(q,t,2)(x) = f(x,t) + (2a2(9 —01)u, — daqud + 6a6ui)w ,
Cvf3(q7t7 Z)(I) = g(ﬁ?,t) + 2a20u$v$ + /pr.i

and D = HL(0,1) N H2(0,1) x H'(0,1) x H'(0,1).
With the above notation, the IBVP (4.1) takes the form

Az(t) + F(q,t,2), z(t)eZ, 0<t<T,

Assume the following standing hypothesis.

(H2). For each fized t > 0, the functions f(z,t), g(x,t) are in L?(0,1) and there exist nonnegative functions
K¢(z), Ky(z) € L*(0,1) such that

|f(£L",t1) - f(xat2)| S Kf(m)|t1 - t2|a |g(az,t1) —g(ﬂf,tz)| S Kg($)|t1 - t2|

for all x € (0,1), t1,t2 € [0,T].

The following result can be easily derived from theorems 3.7 and 3.11 in [12] with only slight modifica-
tions in order to take into account for the different boundary conditions being considered here. Since the
modifications needed are trivial and not relevant for the goals pursued by this article, we do not give details
here.

Theorem 4.1. ([12]) Let the operator A and the mapping F be as defined above. Then A generates an
analytic semigroup T (t) in Z and, if (H2) holds, then F satisfies (H1) for any 6 € (2,1) and by Theorem
2.1 has a unique classical solution z(t;q).

The following theorem and its corollary show that the operator A and the function F' satisfy certain
regularity conditions, which, in view of Theorems 2.4 and 3.1, ensure differentiability of the mapping ¢ —
z(+;¢) and the Lipschitz continuity of its Fréchet derivative.
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Theorem 4.2. Let Z, A and F(q,t,z) be as defined above and assume (H2) holds. Then the mapping
(¢,2(+)) = F(q,-, 2()) from Q x L>®(0,T : Zs) into L*>°(0,T : Z) is Fréchet differentiable in both variables.
Also, the mappings (g,2(-)) = Fy(q,-,2(-)) and (g, 2(-)) = F.(q, -, 2(-)) are locally Lipschitz continuous from
QxL>®(0,T : Zs) into L®(0,T : £(Q, Z)) and from Qx L>(0,T : Zs) into L®(0,T : L(Zs,Z)), respectively.

Proof. Tt follows immediately that f2(q,t,2) and f3(q,t,2), as previously defined, are differentiable with
respect to both ¢ and z, and their Fréchet derivatives are given by:

u i
szZ(qat; v ) 12 = f2,ua+f2,vﬁ+f2,90~7
0 0
U U
sz3(q7t; v ) 12) = f3,ua+f3,vﬁ+f3,9é7
0 0
Y 1 2 4
D, f(q,t, Z) )= p [20'u' +2(0 —0)u", =12 (W) ", 30 (u')" u", —2a0u" |,
u) 1
D, fs(q,t, | v |)= = [26u'v",0,0,0],
9 v

where the linear operators f; y, fiv and f; 9, 1 = 2,3 are

1 .
fou =~ {2a29'D + 2020 — 6,)D? — 24au'u" D — 1204 (u')z D?
p
+12006 (u')* u"' D + 30ag (u')* D2} ,
f2,v =0

1
f2,0 = ; {2a0u'D + 2a5u"" }
1
f3,u = C_ {20&29’0’1)}
1
f3,0= IR {2a20u'D + 28pv' D},
1
f30 = ro {2apu'v'} .

Corollary 4.3. Under the same hypotheses of Theorem 4.2, the mapping ¢ — z(-;q) is Fréchet differentiable
and the mapping ¢ — z4(-;q) is locally Lipschitz continuous from Q into L™ (O,T : L(Q, Z))

Proof. The proof is an immediate consequence of Thoeorems 4.2, 2.4 and 3.1. |

5. Conclusions

In this article we have considered an abstract nonlinear evolution equation with an unknown parameter
appearing in the nonlinear term. By employing the theory of analytic semigroups and a generalization of
Gronwall’s lemma for singular kernels we have derived sufficient conditions under which the solutions are
differentiable with respect to the unknown parameter ¢ with Lipschitz continuous Fréchet derivative. This
condition is required for the convergence of the quasilinearization algorithms for identification of ¢ from
experimental data.
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