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Abstract: An approach to quasilinearization for parameter identification in nonlinear abstract Cauchy problems in
which the parameter appears in the nonlinear term, is presented. This new approach has two main advantages over the
classical one: it is much more intuitive and the derivation of the algorithm is done without need of the sensitivity equations
on which classical quasilinearization is based upon. Sufficient conditions for the convergence of the algorithm are derived
in terms of the regularity of the solutions with respect to the parameters. A comparison with the standard approach is
presented and an application example is shown in which the non-physical parameters in a mathematical model for shape
memory alloys are estimated.

1. Introduction
Let Z and Q be two Banach spaces, A the infinitesimal generator of an analytic semigroup T'(t) on Z,
D a subset of Z, Q a subset of Q and F': Q x [0,T] x D — Z. We shall consider the following nonlinear
Cauchy problem in Z:
Z(t) = Az(t) + F(q,t,2(t)), te€ (0,7)

(P)q
z(0) = zp.

The spaces Z and Q will be referred to as the state-space and the parameter space, respectively, while
Q will be called the admissible parameter set.

Let Y be a Hilbert space and C a bounded linear operator from Z into Y, C € £(Z,Y). We shall refer
to C as the “observation operator”. Let Z; € Y, be “observations” at times t;, i = 1,2,--- ,m of the
process described by the IVP (P),. The “parameter identification problem” (ID problem in the sequel)
associated to (P), and the observations {z;};-, is:

(ID) : find ¢ € Q that minimizes the error criterion

T@ =33 less0) - (1)

where z(t; ¢) denotes the unique solution of (P), in the interval [0, T]. In the next section we will provide
sufficient conditions for the existence and uniqueness of solutions.

There are two general approaches to ID problems. The first one, frequently used in linear problems,
is the so called indirect approach. Here, the identification algorithm starts with a finite dimensional
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approximation of the infinite dimensional problem, after which an optimization algorithm based on
these approximations is implemented. The second approach, called the direct approach, consists of
applying an optimization algorithm to the infinite dimensional problem (P), and using finite dimensional
approximations when needed to solve the resulting infinite dimensional subproblems. Depending on the
problem being considered, one method may be more efficient than the other. Methods based on the
indirect approach are usually easier to implement computationally, however in general, they require that
the dynamic equations be solved a greater number of times than direct methods do. For this reason,
in practical problems the use of indirect methods is mainly restricted to linear problems. Also, for
indirect methods, no more than subsequential convergence can be obtained while “full” convergence can
be proved for certain direct methods.

The convergence issue in ID problems is very important. Although direct methods usually generate
much more efficient algorithms and quite often full convergence can be shown, they have the drawback
that they require the solution of the system to be smooth with respect to the parameters. In many cases
this smoothness does not exist or it may be difficult to prove.

Identification problems arise often in many physical, geological, chemical and biological systems. It is
for that reason that a great amount of attention has been devoted to the study of identification methods
for linear and nonlinear distributed parameter systems.

In particular, the quasilinearization approach to ID problems has been studied by several authors for
different type of problems. Brewer, Burns and Cliff ([4]) have worked on many identification issues that
arise in the study and application of quasilinearization methods for nonhomogeneous linear systems of
the type 2(t) = A(q)z(t) + u(t), where the dependence on the unknown parameter ¢ comes through
the linear operator A(g). Later on, Hammer ([6]) applied these tools to nonlinear problems of the type
2(t) = A(q)z(t)+ f(t, z), where f(t,z) is nonlinear in z but it does not depend on the unknown parameter
q. Banks and Groome ([2]) considered a quasilinearization approach for ID problems arising in the study
of general nonlinear problems of the type z(t) = g(t, z(t), ¢), but their work is valid in finite dimensional
state spaces only, i.e., z(t) € R"” and it does not extend to the infinite dimensional context. ID problems
for systems of the type (P), have never been studied previously.

The organization of this article is as follows. In Section 2 the quasilinearization algorithm for parameter
identification in an abstract context is derived. In Section 3 sufficient conditions for the convergence the
algorithm are given. In Section 4 a comparison is made between the approach presented here and the
standard approach to quasilinearization. In Section 5 an application is presented in which the parameters
that define the free energy in a model for Shape Memory Alloys are identified.

2. Quasilinearization Algorithm

In this section we will introduce the algorithm, but first we need to recall some properties of analytic
semigroups and make some assumptions on the nonlinear part of the equation.

Since A generates an analytic semigroup, w = sup {Re()) : A € 0(A4)} is finite and for any complex A
with Re(\) > w, the fractional powers (AI — A)° of A\I — A are closed, linear and invertible operators
in Z for 0 € [0,1] (see [8]). From now on, A will be fixed and Re(A) > w, Z;s shall denote the space
D ((AI — A)°) imbedded with the norm of the graph of (AI — A)°. Due to the fact that Re(\) > w, one

has A € p(A) and this norm is equivalent to the norm ||z||s = ||(/\I - A)JZHZ.
Consider the following standing hypothesis.

(H1). There exists 6 € (0,1) such that Zs C D and F : Q x [0,T] x Zs — Z ‘s locally Lipschitz
continuous in t and z, i.e., for any q € Q and any bounded subset U of [0,T] x Zs there exists a constant
L =1L(q,U) such that

||F(q7tlazl) - F(q7t27z2)||Z S L (|t1 - t2| + ||Z1 - 22“5) ) v(tlazz) S U
where the constant L can be chosen independent of ¢ on any compact subset Q¢ of Q.

The following theorem follows immediately from Theorem 6.3.1 in [8].

Theorem 1. Let g € Q and 29 € Zs. If F satisfies (H1), then there exists t1 = t1(q,20) > 0 such
that (P), has a unique classical solution on [0,t1). i.e., there exists a function z(:) € C°([0,t1) :
Zs)NCH((0,t1) : Z) such that
{ i(t) = Az(t) + Fq,t,2(t),  t€(0,t1)
2(0) = zp.



The function z(t) satisfies the integral equation
t
z(t) = T'(t)zo0 +/ T(t—s)F(q,s,z(s))ds, Vt € [0,t1).
0

Also, t1(q,20) > 0 can be chosen independent of ¢ on compact subsets of Q.

Let us denote by z(t;¢) the solution z(t) of (P),.

Consider now the parameter estimation problem (ID). In order to obtain the algorithm, we assume
from now on, that for each fixed ¢ € [0, 1) the mapping g — z(t;¢) is Fréchet differentiable. Sufficient
conditions on F' that guarantee this assumption can be found in [5]. Assume for the time being that
there exists a unique minimizer ¢* € Q of J(gq). The following algorithm is proposed.

Step 1: Given an estimate ¢* of ¢*, approximate z(t; ¢) by its first order Taylor expansion about ¢*, i.e
let 2M1(t;q) = 2(t;¢%) + 24(t; ¢%) (¢ — ¢*) where z4(t;¢) denotes the Fréchet derivative of z(t;¢) with
respect to q.

Step 2: Define the modified error criterion by

T =5 Yl ) -
i=1
1 & .
=g e Bttty + maltsd) (1= )] - 1y

i=1

Step 3: Next, define ¢! to be a minimizer of the modified error criterion J*(g). In order to find ¢**+!,
differentiate J*(q), set the result equal to zero and solve for ¢. Finally, call this solution ¢**!, replace k
with k£ + 1 and repeat Step 1.

Observe that, unless z,(t;;¢%) = 0, for all i = 1,2,--- ,m the functional J*(q) is strictly convex and
therefore, there exists only one solution of Dq(J’“( )) = 0 and this solution is a minimizer. Also, the
condition D,(J*(g)) = 0 is satisfied if and only if

Z <C [zq(tzqu)h] 7C [zq(tizq )(q - q Z zq tz: :| Cz(yz; ) - 21>Y

for every h € 0. 3
Assume for the moment that Q is finite dimensional and {g; : j = 1,2,---, s} is an orthonormal basis
of Q. Then, the equation above is equivalent to

m m
Z Zq tla )g]] C [Zq(tz,q )(q_q Z ] Cz(yla ) _2i>ya (2]‘)
=1 i=1
forj=1,2,---,s R
Since {g;} is an orthonormal basis, ¢ € Q iff there exists a unique @ = (a1, @2, -+ , @5) € R® such that
q= Z;zl a;g; and ||g||g = |a|. Therefore the parameter identification problem can be reformulated

in terms of the coefficients of ¢ as follows. Define R*(Q) = {a € R® : ¢, = Z;Zl ajg; € Q). Given
af € R*(Q) (¢* € Q) determine o**! € R*(Q) by solving equations 2.1 for g.
More precisely, for each «, let g, denote the expression 2;21 ajg;j, and

m

D(a)y =Y M(ti;qa)" [M(ti;qa)y], 7 E€FR,

i=1

where for each g € Q, t € [0,T], M(t;q) : R® — Y is defined by
aq
a2

Mt q)a = [Cz(ti)gr Czy(t;q)g2 -+ Czy(t;q)gs ]

g
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and M (t;¢)* : Y — R® denotes the adjoint operator of M(t;q).
With this notation o#*! can be computed as

Mt = ol — [D(ak)rl ZM(ti;qak)* [C2(ti;qar) — 2

= E (o)

whenever [D(o/“)]_1 exists.

3. Convergence of the quasilinearization algorithm

In this section we shall deal with the convergence of the algorithm which was introduced in the previous
section. Two results will be presented giving sufficient conditions for the algorithm to converge. The
following two preliminary lemmas will be needed.

Lemma 2. Lett € [0,T] be fized and M (t;q) be defined as above. If the mapping q — z(t;q) from Q —
Zs has a locally Lipschitz continuous Fréchet derivative, then the mapping a — M(t;q.) is continuous
from R*(Q) — L(R®)Y). Moreover, for any a € R°(Q), there exist positive constants 1, and Ly,
depending on t such that

||M (t;qa)_M(t;q&)“ S*Ca |Oé—C~M|, Va e B(Oéﬂ?a)-

The same result holds for the mapping o — M (t;qn)*.
Proof. Let t € [0,T] be fixed. By hypothesis, for all a € R*(Q) there exist 5, > 0, L, such that
l24(t; qa) — Zq(tﬂld)”[;(gz) < Lq ||lga — qal| for every & € B(a,1n,). It follows that

IM (t;q0) — M (t;qa)|l = sup  ||[M (t;q0) — M (t;9a)]7Ily

v€ERs, [v]=1

sup  [|IC24(t; 90 )y — C24(t;9a)aH |ly
Y€ERs, [v]=1

IN

||C||L(Z7y) weRssuEy\:l {||zq(t; o) — 2¢(t; Q&)Hg(gz) ||CI’Y||Q}

< Cllz(zy) Laa lga — galls
= IClle(zy) Lol = @] = La o = &

for every & € B(a,1)4)- [ ]

Lemma 3. Under the same hypothesis of Lemma 2, the mapping o — D(«) is locally Lipschitz contin-
wous from R®*(Q) — L(R®,R?).

Proof. The result easily follows from Lemma 2. In fact, observe that

[D(a) — D(a)]y = ZM(ti;Qa)*M(ti;QaW - ZM(ti;Q&)*M(ti;Q&W

= M(ti;qa)" [M(t:; ga) — M(ts;qa)] v
+ Z [M(ti;q0)" — M(ti;qa)"] M (ti;qa)7-

Before stating our main results concerning the convergence of the quasilinearization algorithm (QA),
we will need to introduce the concept of point of attraction. We give its definition below as well as a
sufficient condition for an iteration mapping on a Banach space to have a point of attraction.



Definition 4. Let U be an open subset of a Banach space X and E : U C X — X. We say that =* is a
point of attraction of the iteration £*t' = E(a*) if there exists an open neighborhood S of x* such that
S C U and for any 2° € S, the iterates «* € U, for all k > 1 and z* — z* as k — oo.

Lemma 5. (Contraction mapping theorem). Let U be an open subset of a Banach space X,
E:UCX — X, z* € U and suppose there is a ball B = B(z*,n) CU and a € (0,1) such that

|1E(z) —a*|| < alle —2™||,  VzeB.

Then x* is a point of attraction of the iteration z*+' = E(z*).

Proof. Whenever z° € B, we have that ||z — z*|| = | E(z°) — 2*|| < «||2® — 2*||, from which z! € B.
By induction ||z*™ —z*| = ||E(z*) — 2*|| < a||2* — 2*|| < o* ||2° — 2*|| and oFF! ||2° —2*|| = 0
as k — oo.

Theorem 6. (Local convergence of the QA under exact fit-to-data assumption). Assume the
hypothesis of Lemma 2 holds. Assume also that there exist an open set U C R*(Q) and o* € U such
that [D(a*)]™" emists and J(qq-) = 0. Let E be the iteration mapping defined at the end of the previous
section. Then, for every € > 0, there exists a constant § > 0 so that |a — a*| < § implies

|E(a) — a*| < Kla — a** + €la — o

where K is a constant depending only on «* (not on €). In particular, o is a point of attraction of the
iteration oft1 = E(a*).

Proof. By definition
E(a) = a — [D(a)]™ {Emj (i3 4a)" (C2(ti; 4a) —z-)}
whenever [D(a)] " exists. Hence we have that
E(@)—a* =a—| {ZM (ti;q0)* (C2(ti; o) —zz)} o
= [D(a)]™ {D(a) (@ —a®) - i M(ti5qa)™ (C2(ti; o) — z)}

i=1

= [D(a)]71 {ZM( zaqa) [M( zaqa) (a - a*) - Cz(tqua) + ét]}

= [D()]™" {Z M(ti;qa)* [M(ti; qa) — M(ti; qa-)] (o — a*)}

i=1

{

Since J (go+) = 0, the third term on the right hand side equals zero. Also, since [D(a*)]™" exists, by

m

M z;‘]a [CZ( z;Qa) Cz(tiQQa*)_M(tiQQa*)(a_a*)]}

i Mg i

tz:‘]oz Cz(tz;qoz )_éz]}

continuity there exist positive constants d; and D so that for o —a*| < 01, we have that ‘[D(a)]fl‘ <D.

From Lemma 2 there exists M such that ||M (t;;94)*|| < M for i =1,2,--- ,m, whenever |a — a*| < d;.
Consequently,

|B(a) —a*| S DM Y [I[M (t50a) = M (t:;qa)] (@ — )|

i=1

+ DM Y |IC2(ti; ga) — C2(ti; qar) — M (ti; qa-) (0 — @)
i=1

=A+B.
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By Lemma 2, if | — a*| < g+, then A < DMmL,- |a — a*|2. Also, since

M (ti; qa-) (@ — @) = Czy(ti; gar ) (o — Gar) »

from the definition of the Fréchet derivative z4(t; q), for every € > 0, there exists d2 = d2(e, *) > 0 such
that |a — a*| < 0 implies

IC2(ti; qa) — C2(ti; qar) — M (ti; qar) (@ — )| < €llga — qa

=¢€la—a”|,

i=1,2---,m.
Summarizing, we note that

|E(a) —a*| < DMm [Ea* la — a*]* + €|a — a*|]
for any « such that |a — a*| < 6* = min {d1,02, 74+ }. By Lemma 5, @* is a point of attraction of the
iteration af*tt = E(ak). [ |

It is important to note that in Theorem 6 we have assumed an exact fit-to-data at the minimizer o*.
In practice, when working with real parameter identification problems, this is not a realistic assumption
due to possible observation, measuring and modelling errors. In the next theorem we weaken this exact
fit-to-data assumption.

Theorem 7. (Local convergence of the QA with noisy data). Assume the hypothesis of Lemma
2 holds. Assume also that there ezist an open set U C R°(Q) and o* € U such that D(a*) is nonsingular

and o = E(a*) (fized point). Let D = sup{|D(a)|_1 ta—af| < 51} as in Theorem 6 and L the
smallest constant satisfying

||M(ti;QQ)*_M(ti;qa*)*”S£|a_a*|7 V|a_a*|<617 i:172;"';m;
and suppose

" 1
i:zl IC2(ts; qax) — Zil| < DL

Then o* is a point of attraction of the iteration oft! = E (a’“).

Proof. Following the same steps as in the proof of Theorem 8, we find that

|E(a) —a*| < DMm [£|a—a*|2 -|-e|a—a*|]

+|[[D()] ™! Z M(ti; qa)* [C2(tiqa) — 24| - (3.1)
But,
Z M(ti; o)™ [C2(ti;qar) — 2] = 0, (3.2)

since, by assumption, a* = E(a*). Combining (3.1) and (3.2) we obtain
|E(a) —a*| < DMm [E la —a*” +€e|a - a*|]

+D

Z [M(ti;qa)™ — M(ti; qa=)"] [C2(ti; g ) — 2i]

< DMm [£|a—a*|2 +e|a—a*|]

m
+DL|a - o Z IC2(ti; qar) — Zill

i=1

=DMm [£|a—a*|2+e|a—a*|] +7|a—a”



where 7 < 1 by hypothesis. This concludes the proof. |

4. A comparison with the standard approach to quasilinearization

In the standard literature ([4], [6]), the quasilinearization algorithm is introduced in a rather different
manner than the one shown in the previous sections. For the sake of completennes, we briefly present here
this standard, although less intuitive approach. In spite of the fact that at a first glance, the methods
look completely dissimilar, we shall show that they both lead to the same iterative process.

Assume for the time being that the nonlinear term F(q,t,z) is Fréchet differentiable with respect to
q and 2. Given an estimate ¢* € Q of the minimizer ¢* € Q, we define z*(t) = 2(t;¢*) and linearize
problem (P), about (¢*, 2*(t)). This procedure yields the following IVP (P)*

2(t) = AzZM(t) + F(d";t,2%(t))
+Fy (g8, 24 () (g — ¢")
)} FAG() = #4(0) + (50,4 0)(:(0) - 24(0)

z(0) = zo.

Next, we define z¥*(¢; ¢) to be the solution of (P)¥ and choose ¢"** to be a minimizer of the modified

error criterion
k+1
E ||Cz (ti;q) — 2;

Observing (P)¥, we see that v(t) = 2F+!(¢; q) — z*(t) is a solution of the IVP

{ o(t) = Av(t) + F,(¢*;t, 2(t;¢%) (g — ¢*) + Fa(¢";t, 2(t; ¢%))o(t),
v(0) = 0.

(4.1)

This system is known as the “sensitivity equations” associated to the ID problem. In [5], Theorem 2.4,
it is proved that v(t) is the Fréchet g-derivative of 2(t;q) evaluated at ¢* and applied to (¢ — ¢¥), i.e

2Tt q) = 2(6%) + 24(t6") (0 — ¢").
Hence,

ch 2t 0) + 2t ) g — )] = 5y

which is the same error criterion obtalned in Section 2.

As we can see, the classical quasilinearization approach is based upon the linearization of the initial
value problem around the solution corresponding to the guess parameter and its derivation requires
previous knowledge of the sensitivity equations (4.1). On the other hand the method introduced in
Section 2 is based simply upon the linearization of the solution of the IVP (P), around the guess
parameter and for the derivation of the algorithm the sensitivity equations are not necessary. We
emphasize however that in the computational immplementation both methods make use of the derivatives
of the solutions with respect to the unknown parameters and, therefore, of equations (4.1).

5. An application example - Numerical results

In this section we consider an example in which the quasilinearization algorithm is used to solve a
parameter estimation problem in the following system of nonlinear partial differential equations:

pugt — Bpuget + Yuzrer = f(x,t) + (2042(0 —01)uy — dagus + 6a6u2)$ , £€(0,1),0<t<T

(5.1a)
Coby — kbpw = g(,t) + 2000uugy + Bpu’,, = €(0,1),0<t<T (5.1b)
u(x,0) = up(x), ui(x,0) = vo(x), (x,0) =6b(x), € (0,1) (5.1c)
u(0,t) = u(1 ,t)—um(O t) = uz.(1,) =0, 0<¢t<T (5.1d)
6.(0,t) = 0,(1,t) = 0<t<T. (5.1e)
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These equations arise from the conservation laws of linear momentum and energy in a one-dimensional
shape memory body. The functions u and 6 represent displacement and absolute temperature, respec-
tively. Subindex “z” and “t” denote partial derivatives and p, Cy, k, 3, v, as, a4, ag, 01 are positive
constants depending on the material being considered. The functions f(x,t) and g(z,t) denote dis-
tributed forces and distributed heat sources. For a detailed explanation of the model and the meaning
of the parameters involved we refer the reader to [9] and the references therein.

We are interested in using experimental data to estimate the parameters as, a4, ag and ;. We note
here that these are non-physical parameters and therefore they cannot be estimated from laboratory
experiments.

Next, we shall formulate the IBVP (5.1) as an abstract nonlinear Cauchy Problem in an appropriate
Banach Space. In particular we define the admissible parameter set as Q = {q = (a2,04,06,01) |q € ]R‘j_ },

the state space Z as the Hilbert space H(0,1) N H?(0,1) x L?(0,1) x L?(0,1) with the inner product

< Z : > iv/olu"(x)a”(x) dx+p/01v(x)@dx+ %/Olg(x)@dx

The operator A on Z is defined by

S

U u € H*(0,1), (0) =u(l) =u"(0) =u"(1) =0
DA)={ | v ]| ez |veHL01)nH0,1)
0 6 € H?(0,1),6'(0) =0'(1) =0
U
and for z = | v | € D(4),
0
u 0 I 0 u
A v = _%D4 ﬂD2 0 v s
6 0 0 &p? 6
where D™ = 3‘9;” .
uo ()
We also define zp(z) = | vo(z) | and F(q,t,2): Q@ x [0,T] x D — Z by
6o ()
0
F(qat;z) = fZ(qat;z) )
fg(q,t,Z)

where

pfa(q,t,2)(x) = f(x,t) + (20@(0 —61)ug — 4a4u2 + 6a6u2)x ,
Cvf3(q7t;z)( ) g(xat) + 2a29uwvz + ﬁpvi
(

and D = H}(0,1) N H?(0,1) x H'(0,1) x H'(0,1).
With the above notation, the IBVP (5.1a-e) is equivalent to the following abstract Cauchy problem in
the Hilbert space Z:

A~ —

(P){ L2(t) = Az(t) + F(q,t,2), 0<t<T 652

z(0) = 2.
We assume the following standing hypothesis.

(H2). For each fized t > 0, the functions f(x,t), g(z,t) are in L?(0,1) and there exist nonnegative
functions Ky(z), Ky(z) € L*(0,1) such that
|f(z,t1) = flz, t2)] < Kf(@)|ts — t2],  |g(z,t1) — g(x,12)] < Ky(2)]tr — to
for all z € (0,1), t1,t5 € [0,T].
The following results can be easily derived from theorems 3.7 and 3.11 in [10] with only slight modifi-
cations in order to take into account for the different boundary conditions being considered here. Since

the modifications needed are trivial and not important for the goals pursued by this article, we do not
give details here.
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Theorem 11. The operator A defined above generates an analytic semigroup T'(t) in Z and if (H2)
holds, then the mapping F as defined above satisfies (H1) for any 6 € (2,1).

The following theorem shows that the operator A and the function F' satisfy certain regularity condi-
tions, which, in view of Theorems 2.4 and 3.1 in [5], ensure the existence and Lipschitz continuity of the
Fréchet derivative of the mapping ¢ — z(t; ¢). This result, together with Theorems 6 and 7, will lead to
the local convergence of the quasilinearization algorithm to the optimal parameter.

Theorem 12. Let Z, A and F(q,t,z) be as defined above and assume (H2) holds. Then the mapping
(g,2()) = F(q,-,2()) from QxL>(0,T : Zs) into L>(0,T : Z) is Fréchet differentiable in both variables.
Also, the mappings (q,z(-)) = Fy(q,-,2(-)) and (q,2(-)) = F.(q,-,2()) are locally Lipschitz continuous
from Q x L®(0,T : Zs) into L>°(0,T : £(Q, Z)) and from Q x L>(0,T : Zs) into L=(0,T : L(Zs, Z)),
respectively.

Proof. This result follows immediately observing that f2(q,t,2) and fs5(q,t, 2), as previously defined, are
Fréchet differentiable with respect to ¢ and z. Moreover, these derivatives can be computed explicitely
and are given by:

U U
sz?(qata v ) 12 = f2,ua+f2,vﬁ+f2,90a
0 0
U U ~
sz3(q7t; v ) 12 = f3,ua+f3,vﬁ+f3,907
0 0
u 1 ‘
D, f2(q,t, | v |) = - [29'u' +200 - 00", =12 ()’ u", 30 (u) u", —2a0u”|
0 p
Y 1
qu3(q;t7 v ):_[29’“’1}’70;0;0];
p) O

where the linear operators f; ., fi» and f; g, ¢ = 2,3 are given by
1
f2,u = - {20[20’D + 20[2 (9 — 01)D2 — 24a4u'u”D — ].20[4 (u')2 D2
p
+1200 (u')? w" D + 30cg (u')" D2} :
f27v =0
1 ! n
fo,0 = = {2000’ D + 2c2u" },
p
1
f37u = C_U {20[201}’1)}
1
f3,0= oM {2a20u’'D + 23pv' D},
1
f3,0= c {2a2u/v'} .

In all the examples that follow we make use of the parameter values reported by F. Falk in [FALK] for
the alloy Aus3CusgZngr. These values are: ap =24 Jem™2 K™%, oy =1.5x10° J em ™3 , ag = 7.5 x 108
Jem3 K16, =208K,C, =29 ecm P K k=19wem ! K p=11.1¢gcm? 8 =1 and
v =10712J cm™!. We want to estimate ¢* = (s, a4, ag, 01) = (24, 1.5 x 10°, 7.5 x 10¢, 208).

Example 1: Ezact data.
For this example we take ug = 0, vg =0, 6 = 200 K, g(z,t) =0,

1x 105, if0.4<z <06,

0, otherwise

e ={
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and T' = 0.01. First, we obtain u(¢,z,¢*) and 6(t,z,q*) by numerically solving the problem. For this
purpose we make use of the spectral method proposed in [7]. The observations are then taken to be

. 9
Zi = {(u(:vj,ti;q*)>} , where t; = 0.001%, ¢+ = 1,2,---,10. We start with an initial estimate

e(wjatl:q ) j=1
q° = (50, 3 x 105, 15 x 10°, 420), approximately equal to twice ¢*. The results of the iterations produced
by the quasilinearization algorithm are shown in Table 1 and Figures 1.a-d. Figure 2b shows a comparison
between u(z,T;q*) and u(x,T;¢*) while in Figure 2b 8(x,T;¢*) and 8(x,T;¢*) are drawn for different
values of k.

k Qs Qy Qg 0, J(qk)

0 50.0000 300000 1.50000e+-07 420.000 1994.6900
1 16.1807 228111 1.40769e+07 459.904 611.1950
2 26.1790 222964 8.71784e+06 33.096 280.8220
3 25.3531 246241 8.83171e+06 126.468 15.3156
4 24.2770 178223 7.87660e+06 181.091 7.1313
) 24.0166 151184 7.51451e+06 206.550 0.6210
6 24.0012 150073 7.50096e+06 207.927 0.0122
7 24.0001 150006 7.50008e+06 207.994 0.0030
8 24.0001 150002 7.50003e+06 207.998 0.0029
9 24.0000 150002 7.50002e+06 207.998 0.0029
10 24.0000 150002 7.50002e+06 207.998 0.0029
11 24.0000 150002 7.50002e+06 207.998 0.0029
12 24.0000 150002 7.50002e+06 207.998 0.0029

Table 1: Values of the parameters and of the error criterion at different iteration steps.

T T T 300000 T T T T T

| 280000 | g
' optimal parameter 260000 | - - - optimal parameter 7
parameter at step K — parameter at step K

240000 | B
81 8- 220000 | g
200000 [ B
180000 | g
) 160000 |- 4

1 1 1 140000 1 1 1 1 1
6 8 10 12 0 2 4 6 8 10 12

iteration number iteration number

(a)



11

1.5e+07 T T T T T 500 T T T T T

1.4e+07 b

1.3e+07 - - - - optimal parameter 1 optimal parameter

parameter at step Kk parameter at step k

1.2e+07 |- 1

81.1e+07 r b 5‘ 250

1le+07 1

T
1

9e+06

8e+06 [~ 1

76+06 L L L L L 0 1 1 L 1 1
0 10 12 0 2 4 6 8 10 12

4 6 8
iteration number iteration number

(?’)gure 1: Evolution of the iterations for Ezample 1. (d)

0.12 " e T 1100 T T T T
7N\,
K \x\
7
K4 %
01r jy t‘ 1 1000
¥ %
7 %
i %

0.08 [ J x% 1 900
g 4 L .
2 0.06 [ 7 \\ 1 2 800
Ioy ,/ \ 5
2 g

/ \
0.04 / \} 1 700
// o data \\
¥ — k=0 &
002f —-k=3 \ 1 600
/ \
...... k:7
o , , . . i . . . .
0 0.2 0.4 0.6 0.8 1 500, 0.2 0.4 0.6 0.8 1

space space

Example 2: Noisy data.

This example is analogous to Example 1, except that now we add random noise to the observa-
tion data in order to simulate measuring errors. More precisely, the observations are taken to be

9
R -t g* . . - . . . .
3 = {(u(az], “q*) t T >} , where r;; and 7;; are random numbers uniformly distributed in
e(mjati; q ) + T j=1

10 9

0 9
_ _ = - . | . - 1 .
(—0.05u,0.057) and (—0.05 0,0.05 0), respectively, with @ = 90 E E |u(z;, ti;¢")| and 8 = 90 E E 0(z;,ti;q%)-

i=1 j=1 i=1 j=1
The initial estimate is again ¢° = (50, 3 x 10%, 15 x 10®, 420). The results of the iterations are shown in
Table 2, and Figure 3. Figure 4a shows a comparison between u(z, T'; ¢*) and u(z, T'; ¢*) while in Figure
4b O(x,T;q*) and §(x,T; ¢*) are drawn for different values of k.
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k (0] (6%} (675 91 J(qk )
0 50.0000 300000 1.50000e+4-07 420.000 1987.240
1 16.5263 251533 1.43413e+4-07 450.975 604.570
2 26.7351 173032 7.92651e+06 77.3584 261.591
3 25.1282 223785 8.54573e+06 148.386 111.619
4 24.2875 176007 7.84280e+06 189.479 111.030
) 24.4436 183683 7.95702e+06 183.663 110.985
6 24.4070 180771 7.91592e+06 186.193 110.977
7 24.4184 181677 7.92857e+06 185.411 110.979
8 24.4151 181408 7.92483e+06 185.645 110.978
9 24.4161 181487 7.92593e+06 185.576 110.979
10 24.4158 181464 7.92560e+06 185.596 110.978
11 24.4159 181471 7.92570e+06 185.590 110.978
12 24.4159 181469 7.92567e+06 185.592 110.978
13 24.4159 181469 7.92568e+06 185.592 110.978

Table 2: Values of the parameters and of the error criterion at different iteration steps.

50 T T T T T T 300000 T T T T T T
i 280000 B
' optimal parameter 260000 [~ optimal parameter 7

parameter at step K —— parameter at step K

240000 B
8] 8- 220000 B
200000 - B
"""""""""""""""" 180000 - =
7 160000 - 1

15 1 1 1 1 1 1 140000 1 1 1 1 1 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

iteration number iteration number
(a)

1.5e+07 T T T T T T 500 T T T T T T
1.4e+07 | 4 450 7]
) 400 . B

1.3e+07 = - - - optimal parameter 7 optimal parameter
parameter at step K 350 — parameter at step Kk i

1.2e+07 A
300 B
. sevor |- | &
250 |+ B
1e+07 B R K
200 F 3
9e+06 A

150 B
8e+06 [~ = 100 -

7e+06 1 1 1 1 1 1 50 1 1 1 1 1 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

iteration number iteration number

(?’)gure 3: Evolution of the iterations for Ezample 2. (d)
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displacement

0.14 T T T T 1100 T T T T
a A
o121 LN 1000
£
£
01f 4 A 1
/ AN 900
/ AN ®
0.08 i » 2
/ AN 2 800l
0.06 [ / A 1 <
/ 3
v g
// \ 700
0.041 / o data \\ 1
002[ 4 —- k=3 \ 600
...... k=7
% 0.2 0.4 0.6 0.8 1 500, 0.2 0.4 0.6 0.8 1
space space

Figure 4: Disp(lmment (a) and Temperature (b) at T = 0.01 for ¢ = qk( 2)— 0,3,7.

Example 3: Comparison between direct and indirect methods.

In this example simultaneously we solve the ID problem using an indirect method and the algorithm
proposed in Section 2. The purpose is to illustrate the different convergence rates of the two approaches.
We take ug =0, vg =0, g = 200, f = g = 0. The indirect method consits of approximating the solution
of the dynamic equations using the algorithm proposed in [7] and applying afterwards the optimization
algorithm of Hooke and Jeeves [3] to solve the resulting optimization problem. We obtain 2; as in Example
1 and start with the initial estimate ¢° = (25, 2 x 10°, 9 x 105, 220). The results of the iterations are
shown in Table 3.

k (65) (67} Qg 01

D I D I D 1 D I
0 25 25 | 200000 |200000 9e+06 9e+06 215 215
12 (24.004 | 24.1250 | 149991 | 176000 | 7500020 | 8865000 |207.999 202.1
40 |24.004 |24.9375 149991 | 161500 | 7500020 | 7537500 |207.999 202.1
100 |24.004 |25.7344 | 149991 | 154000 | 7500020 |6907500 |207.999 202.1
500 |24.004 |24.8140 | 149991 | 149738 | 7500020 | 7333770 |207.999 |206.564
1000 |24.004 |24.4651 | 149991 | 149967 | 7500020 | 7462530 |207.999 |207.355

2000 |24.004 |24.1638 | 149991 | 150040 | 7500020 | 7499950 |207.999 |207.801
3000 |24.004 |24.0651 | 149991 | 150011 | 7500020 | 7500490 |207.999 |207.924

Table 3: Comparison of the convergence speeds between a direct and an indirect method.

6. Conclusions

We have introduced a new approach for identifying the unknown parameter ¢ in nonlinear abstract
Cauchy problems of the type 2(t) = Az(t) + F(q,t, 2(t)). This approach has two main advantages over
classical methods. First of all it is much more intuitive since it is based upon linearization of the solution
about an initial guess parameter rather than the linearization of the whole problem about a particular
solution. Secondly, unlike in the classical setting, the derivation of the algorithm does not rely upon the
sensitivity equations.

We have also derived sufficient conditions for the convergence of the algorithm in terms of the regularity
of the solutions with respect to the unknown parameter.

Finally, an application was considered in which the nonphysical parameters that define the free energy
potential in a mathematical model for shape memory alloys are estimated. Also, several numerical
examples are presented and convergence speeds are compared with those of an indirect method.
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