
Finite Element Methods for Surfa
e Di�usionEberhard B�ans
h, Pedro Morin, and Ri
ardo H. No
hettoAbstra
t. Surfa
e di�usion is a (4th order highly nonlinear) geometri
 drivenmotion of a surfa
e with normal velo
ity proportional to the surfa
e Lapla
ianof mean 
urvature. We present a novel variational formulation for the para-metri
 
ase, develop a �nite element method, and propose a S
hur 
omplementapproa
h to solve the resulting linear systems. We also introdu
e a new graphformulation and state an optimal a priori error estimate. We 
on
lude withseveral signi�
ant simulations, some with pin
h-o� in �nite time.Keywords: Surfa
e di�usion, fourth-order paraboli
 problem, �nite elements,a priori error estimates, S
hur 
omplement, smoothing e�e
t, pin
h-o�.AMS subje
t 
lassi�
ation: 35K55, 65M12, 65M15, 65M60, 65Z05.
1. Surfa
e Di�usion and Mixed FormulationThe overall goal of this work is to devise eÆ
ient numeri
al tools for simulatingmorphologi
al 
hanges in stressed epitaxial �lms and thereby study their 
ompli-
ated nonlinear dynami
s. To model the mis�t between the 
rystalline stru
tureof the substrate and epitaxial �lm, the �lm may be thought of as subje
ted tome
hani
al stresses. This 
auses a plasti
 deformation of the free surfa
e of the�lm. This morphologi
al instability of the free surfa
e may eventually lead to 
ra
kformation and fra
ture, an issue of paramount importan
e in Materials S
ien
e;see for instan
e [1, 4, 14℄ and also the list of referen
es in [2℄.The dynami
s of the free surfa
e � in Rd is governed byV = ��S(�+ "); (1)whi
h is a 4th order highly nonlinear PDE. Hereafter, d 2 f2; 3g, V and � are the(s
alar) normal velo
ity and mean 
urvature of �, respe
tively, rS is the surfa
egradient, �S = divSrS the Lapla
e-Beltrami operator and " is the elasti
 energydensity of the bulk 
(t) en
losed by �(t). In this paper, we take " = 0 throughout.A number of issues arise, from existen
e, well posedness and regularity toe�e
tive algorithms for (1). The 
hief mathemati
al and numeri
al diÆ
ulties arisefrom the 4th order nonlinear operator �S� and the fa
t that one 
annot workdire
tly with the 
urvature ve
tor ~� as in [8℄. In 
ontrast to [5, 10℄, we havebeen able to derive, from a suitable semi-impli
it time dis
retization, a variational�nite element formulation for surfa
es in Rd whi
h involves the 4 unknowns s
alar
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urvature �, 
urvature ve
tor ~�, normal velo
ity ~V , and (s
alar) normal velo
ityV as follows: ~� = �S ~X; � = ~� � ~�; V = ��S�; ~V = V ~�; (2)where ~� denotes the unit normal ve
tor to �, pointing outward of the bulk en
losedby �. In view of thismixed formulation, whi
h involves only se
ond order operators,our �nite element method solely requires 
ontinuity of the dis
rete fun
tions; inparti
ular we do not need C1 elements to handle 
urvature but 
an a

ommodateany polynomial degree. A S
hur 
omplement approa
h, with a symmetri
 andpositive de�nite operator, is used to redu
e the system (2) to the single unknownV . This allows for an eÆ
ient solution te
hnique via pre
onditioned CG.This paper is organized as follows. We introdu
e the time dis
retization andnatural variational formulation in x2, and present its �nite element dis
retizationin x3. We dis
uss the ensuing algebrai
 problem along with a S
hur 
omplementapproa
h to its solution in x4. We present in x5 the graph formulation togetherwith an error estimate. We do
ument the performan
e of parametri
 and graphmethods in x6 via several simulations whi
h exhibit singularities in �nite time.2. Time Dis
retization and Variational FormulationWe now 
onsider a semi-impli
it time dis
retization of �rst order with time-step� , representing the next surfa
e �n+1 in terms of the 
urrent surfa
e �n as follows:~Xn+1 = ~Xn + � ~V : (3)This time dis
retization implies that all geometri
 quantities su
h as ~� are eval-uated on the 
urrent surfa
e �n. Consequently, if �S denotes now the Lapla
e-Beltrami operator on � = �n, then the only modi�
ation to (2) is as follows:~�� ��S ~V = �S ~Xn: (4)To derive a weak formulation to (2) and (4), we simply multiply them by testfun
tions and integrate. If V(�) := H1(�) and X (�) is the subspa
e of V(�) offun
tions with mean value zero, we thus seek ~V 2 ~V(�); � 2 V(�); ~� 2 ~X (�) andV 2 X (�) su
h thath~�; 'i+ � DrS ~V ;r'E = �DrS ~X;rS'E 8 ' 2 ~X (�); (5)h�; �i � h~� � ~�; �i = 0 8 � 2 V(�); (6)hV; �i � hrS�;rS�i = 0 8 � 2 X (�); (7)D~V ; 'E� hV; ' � ~�i = 0 8 ' 2 ~V(�): (8)Hereafter the symbol h�; �i stands for the L2 s
alar produ
t over the 
urrent surfa
e� = �n, whi
h is des
ribed by the ve
tor fun
tion ~X = ~Xn; we thus suppress thesupers
ripts n and n+1 sin
e no 
onfusion arises. Sin
e V 2 X (�) has mean valuezero, we realize that volume is preserved in the sense R� V = 0.
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e Di�usion 33. Finite Element Dis
retizationLet T be a regular but possibly graded mesh of triangular �nite elements over thesurfa
e �, whi
h from now on is assumed to be polyhedral. Let h denote the lo
almeshsize of T . Let T 2 T be a typi
al triangle and let ~�T = (�kT )dk=1 be the unitnormal to T pointing outwards. We denote by ~� the outward unit normal to �,whi
h satis�es ~�jT = ~�T for all T 2 T , and is thus dis
ontinuous a
ross �T .Let f�igIi=1 be the set of 
anoni
al basis fun
tions of the �nite element spa
eVh(�) of pie
ewise linear fun
tions over �; this is a 
onforming approximation ofV(�). If ~Id 2 Rd�d is the identity matrix, 
onsider the following matrix entriesMij := h�i; �ji ; Aij := hrS�i;rS�ji ; (9)~Mij :=Mij ~Id; ~Nij := 
�i; �j�k�dk=1 ; (10)and 
orresponding mass and sti�ness matri
esM := (Mij)Ii:j=1; ~M := ( ~Mij)Ii:j=1; ~N := ( ~Nij)Ii:j=1; (11)A := (Aij)Ii:j=1; ~A := ( ~Aij)Ii:j=1: (12)We point out that ~M; ~A and ~N possess matrix-valued entries and therefore thematrix-ve
tor produ
t is understood in the following sense~M ~V = � IXj=1 ~Mij ~Vj�Ii=1;be
ause ea
h 
omponent of ~V = (~Vi)Ii=1, as well as of ~M ~V , is itself a ve
tor in Rd .The ve
tor of nodal values of a �nite element fun
tion is written in boldfa
e, namely V = (Vi)Ii=1 2 V := RI is equivalent to V = PIi=1 Vi�i 2 Vh(�).Let Xh(�) be the subspa
e of Vh(�) of fun
tions with mean value zero, and letX = fV 2 V : V �M1 = 0g be the 
orresponding subspa
e of V with 1 := (1)Ii=1:V = IXi=1 Vi�i 2 Xh(�) , V = (Vi)Ii=1 2 X: (13)Upon expanding the fun
tions V , �, ~V , ~� in terms of the basis fun
tionsf�igIi=1 and testing against the latter, a dis
retization of system (5){(8) 
an bewritten in matrix form as follows: �nd ~V 2 ~V; ~� 2 ~V; ~K 2 ~X;V 2 X su
h that2664� ~A 0 ~M 00 �A 0 M~M 0 0 � ~N0 M � ~NT 0 37752664 ~VK~KV 3775 = 2664� ~A ~X0~00 3775 : (14)We dis
uss the solvability of (14) and propose an algorithm for its solution in x4.
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hetto4. S
hur Complement Approa
hConsider the following ve
tor equation with a (possibly singular) square blo
k A:�A BC D� �UQ� = �FG� :Let A be symmetri
 with (nontrivial) kernel ker(A). Then the range Y of A isthe orthogonal 
omplement of ker(A). Let S : Y ! Y be the right inverse of A:AS = Id on Y. If P denotes the orthogonal proje
tion onto ker(A), we haveSAV = V � PV = (Id� P )V 8 V 2 RI : (15)The S
hur 
omplement equation for Q then reads(�CSB +D)Q+ CPU = G� CSF : (16)Solvability of this system depends on the stru
ture of the two terms on the lefthand-side of (16). We intend to apply this splitting to (14), whi
h involves dealingwith the blo
k 
ontaining ~A and A on the diagonal.Sin
e the kernel of A in (12) is Z = spanf1g, with 1 = (1)Ii=1, the range ofA is Y = Z?. Then the spa
es X, de�ned in (13), and Y are related as follows:V 2 X , MV 2 Y: (17)Let S : Y ! Y be the right inverse of A and P : V ! Z be the orthogonalproje
tion into Z, thereby satisfying (15) with P = 1
11�1 .Applying (16) to (14) with ve
tors U = [~V ;K℄T and Q = [ ~K;V ℄T , weobtain the symmetri
 system� 1� ~M ~S ~M ~N~NT �MSM� � ~KV � = �� 1� ~M ~S ~A ~X + ~M ~P ~VMPK � : (18)We observe that ~S ~A ~X makes sense be
ause ~A ~X 2 ~Y; this 
ould be viewed as a
ompatibility 
ondition. To investigate the solvability of (18), we note that both
omponents of Q satisfy ~K 2 ~X and V 2 X or, in view of (17), ~M ~K 2 ~Y, andMV 2 Y. Sin
e the upper left blo
k of (18), ~M ~S ~M : ~X ! ~M~Y, is nonsingularwith inverse ~M�1 ~A ~M�1, we 
an apply (16) again to arrive at�� ~NT ~M�1 ~A ~M�1 ~N +MSM�V +MPK = � ~NT ~M�1 ~A ~X: (19)Let � := Id � M1
M1M1�M1 be the orthogonal proje
tion onto X. Sin
e MPK 2span fM1g = X?, applying � to (19) yields the �nal form of the S
hur 
omple-ment : ��� ~NT ~M�1 ~A ~M�1 ~N +MSM��V = �� ~NT ~M�1 ~A ~X; (20)be
ause �V = V . The ensuing matrix of this redu
ed system is nonsingular be-
ause �MSM� : X! X is symmetri
 and positive de�nite, and the �rst term in(20) is symmetri
 and positive semi-de�nite.The method a
tually implemented 
onsists of �rst solving for V using (20),next solving ~M ~V = ~NV for ~V and �nally updating ~X via ~X + � ~V .
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e Di�usion 55. Graph Formulation and Error AnalysisWe now dis
uss the 
ase of � being a graph. To this end let 
 � IRd�1 witht 2 [0; T ℄ for some T > 0, d 2 f2; 3g and �(t) := f(x; u(t; x)) j x 2 
g � IRd.If Q(u) := p1 + jruj2 denotes the elementary surfa
e area, then we have thefollowing formulas for the geometri
 quantities �; � and V :� = 1Q(u) (�ru; 1)T ; � = r � � ruQ(u)�; V = �tuQ(u) ; (21)with r = (�x1 ; : : : ; �xd�1)T . A

ording to (21), (1) 
an be written as the system�tuQ(u) = ��S�; � = r � �ruQ �: (22)This system has to be supplied with suitable initial and boundary 
onditions. Werestri
t ourselves to periodi
 boundary 
onditions for ease of presentation, butNeumann and Diri
hlet boundary 
onditions 
an be handled as well [2℄. In thisvein, let 
 be a parallelogram and X be the subspa
e of H1(
) with periodi
boundary values. Then, (22) admits the following variational formulation: �nd uand � with u(t); �(t) 2 X for a.e. t and u(0) = u0 in a suitable sense, ful�llingh�tu;  i � Z�rS� � rS = 0 8  2 X ; (23)h�; 'i+ Z
 ru � r'Q(u) = 0 8 � 2 X ; (24)where h�; �i denotes the L2(
) inner produ
t; 
ompare with x2. Note that, in 
on-trast to the mean 
urvature 
ow of graphs [6, 7℄, (23) does not have the weightQ(u)�1 be
ause the equation is written on �.If Xh is a �nite element subspa
e of X , then a semi spa
e dis
rete s
hemeis obvious from (23) and (24). In parti
ular, upon taking  = 1 2 Xh we dedu
eexa
t volume 
onservation ddt R
 uh = 0. We 
an also prove stability as well as
oer
ivity properties, whi
h are 
ru
ial in deriving the following error estimate [2℄.Theorem 5.1 (A Priori Error Estimate for the Semidis
rete S
heme). Let u; � besuÆ
iently smooth in [0; T ℄, and let k � 1 be the polynomial degree of Xh. Then,there exists a 
onstant C > 0, solely depending on the regularity of u; � and T ,su
h that supt2[0;T ℄�jj(u� uh)(t)jj2L2(
) + Z�h(t) jrSu�rSuh)j2� � C h2k;Z T0 �jj(�� �h)(t)jj2L2(
) + Z�h(t) jrS��rS�hj2� dt � C h2k: (25)Sin
e (25) involve the tangential gradients rSu and rS�, the order of 
onvergen
eO(hk) is optimal. This is 
orroborated by the numeri
al experiments of [2℄, whi
hare obtained via a semi-impli
it time dis
retization similar to [7℄. It 
onsists ofwriting the equations for step n+1 on the 
urrent surfa
e �n, whi
h linearizes thesystem and allows for a S
hur 
omplement solver similar to that in x4.
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hetto6. Implementation and SimulationsIn this se
tion we explain brie
y the implementation of both the parametri
 andgraph formulations within ALBERT [12, 13℄, and do
ument their performan
e.6.1. Mesh Regularization
Figure 1. Pathologi
al ear formation in the evolution of a 4� 1� 1prism by surfa
e di�usion. Surfa
e at time t = 0 and t = 0:07.

Figure 2. Steps towards the pathologi
al formation of ears. Zoominto a vertex of the initial prism with surfa
es at t = k � 10�3 for0 � k � 9. After 6 time steps some triangles 
ollapse into segments,thereby making the mesh degenerate and produ
ing numeri
al artifa
ts.The geometri
 
ow by parametri
 surfa
e di�usion is not as gentle as the 
orre-sponding mean 
urvature 
ow [8℄, and leads to severe mesh distortions. Even if theparametri
 formulation of x3 allows 
orners and edges, whi
h are rather singularfor surfa
e di�usion, they give rise to fast node motion and mesh distortion. Thisis illustrated by the 
reation of ears during the evolution of a 4 � 1 � 1 prismin Figs. 1 and 2 towards a ball. This is 
learly a numeri
al artifa
t and 
annotbe 
ured by mesh re�nement and/or 
oarsening. We use mesh regularization in-stead, whi
h 
onsists of repla
ing ea
h node by the proje
tion onto the surfa
e of
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e Di�usion 7a weighted average of the nodes belonging to its �nite element star, see also [11℄.This regularization is equivalent to one time step of the dis
retized (tangential)heat equation. Its bene�
ial e�e
t is re
e
ted in the subsequent simulations ofFigs. 3-6, all 
omputed with for
ing term � = 0.6.2. Example 1: Smoothing E�e
tWe illustrate the evolution of a 4�1�1 prism towards a ball with the same volumein Fig. 3, thereby showing the smoothing e�e
t of surfa
e di�usion.
t = 0 t = 0:02 t = 0:04

t = 0:08 t = 0:16 t = 0:32Figure 3. Smoothing e�e
t of surfa
e di�usion. Evolution of a 4 �1� 1 prism towards a ball with equal volume at various time instants.6.3. Example 2: Pin
h-O� in Finite Time
t = 0 t = 0:32t = 0:08 t = 0:36t = 0:16 t = 0:38Figure 4. Pin
h-o� in �nite time. Evolution of an 8� 1� 1 prism atvarious time instants leading to a dumbbell and 
usp formation.
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hettoSurfa
e di�usion is not always a regularizing 
ow and may in fa
t 
reate sin-gularities in �nite time depending on the initial 
on�guration. This is depi
tedin Figs. 4-6 whi
h 
orrespond to prisms with larger aspe
t ratios than before.Figs. 4-5 display the evolution of an 8� 1� 1 prism towards a dumbbell and 
uspformation in �nite time. In
reasing the aspe
t ratio of the prism seems to be ane�e
tive me
hanism to produ
e several simultaneous 
usps as reported in Fig. 6.
t = 0:390 t = 0:394 t = 0:398 t = 0:402 t = 0:404Figure 5. Detailed view of the pin
h-o� for the 8 � 1 � 1 prism.Mesh regularization appears to 
ure mesh distortion until the momentof pin
h-o� when the elements are rather elongated but not degenerate.

t = 0 t = 0:48t = 0:16 t = 0:64t = 0:32 t = 0:72Figure 6. Evolution of a 12� 1� 1 prism towards two simultaneous
usps revealing that the number of singularities depends on the aspe
tratio of the initial prism.6.4. Example 3: Mushroom FormationWe 
onsider the graph formulation of x5 of a 
urve in 2d starting from the initial
ondition u0(x) = 1 + Æ(x), where Æ is a steep perturbation with zero meanvalue(see Figure 7). Sin
e the slope seems to be
ome verti
al around t = 4:8� 10�5 inFig. 7, the 
lassi
al solution might 
ease to exist in �nite time.To investigate the formation of singularities in �nite time, we use the para-metri
 formulation with the same initial data upon embedding the graph of u0into a 
losed 
urve (see Figure 8 top left). For the time s
ale of Fig. 7, the e�e
t of
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e Di�usion 9this extension is negligible. Fig. 8 displays a sequen
e of solutions obtained for thesame eight time instants of Fig. 7. It is worth noti
ing the striking similarity ofthe solutions obtained with both methods. Even though the parametri
 solutiondevelops a mushroom shape at t = 9:6� 10�5, and thus the solution to the graphformulation is questionable thereon, they still exhibit an ex
ellent quantitativeagreement for t > 9:6� 10�5 (
ompare the last two plots of Figs. 8 and 7).
t = 0 t = 8� 10�6 t = 16 � 10�6 t = 24 � 10�6

t = 4:8� 10�5 t = 9:6� 10�5 t = 19:2 � 10�5 t = 38:4 � 10�5Figure 7. Evolution of a graph in 2d starting from u0(x) = 1+ Æ(x)with a steep perturbation Æ(x). In all plots for various times t, thex-axis ranges from �1 to 1, and the y-axis ranges from 0 to 1:5.
t = 0 t = 8� 10�6 t = 16 � 10�6 t = 24 � 10�6

t = 4:8� 10�5 t = 9:6� 10�5 t = 19:2 � 10�5 t = 38:4 � 10�5Figure 8. Mushroom formation. Parametri
 evolution of a 
urve in2d with the same initial 
ondition and the same times of Fig. 7. There
tangles in thin lines are [�1; 1℄ � [0; 1:5℄. The e�e
t of embeddingthe graph of Fig. 7 into a 
lose 
urve (see top-left pi
ture) is negligiblefor the time s
ale of this evolution.
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