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Abstract. Surface diffusion is a (4th order highly nonlinear) geometric driven
motion of a surface with normal velocity proportional to the surface Laplacian
of mean curvature. We present a novel variational formulation for the para-
metric case, develop a finite element method, and propose a Schur complement
approach to solve the resulting linear systems. We also introduce a new graph
formulation and state an optimal a priori error estimate. We conclude with
several significant simulations, some with pinch-off in finite time.
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1. Surface Diffusion and Mixed Formulation

The overall goal of this work is to devise efficient numerical tools for simulating
morphological changes in stressed epitaxial films and thereby study their compli-
cated nonlinear dynamics. To model the misfit between the crystalline structure
of the substrate and epitaxial film, the film may be thought of as subjected to
mechanical stresses. This causes a plastic deformation of the free surface of the
film. This morphological instability of the free surface may eventually lead to crack
formation and fracture, an issue of paramount importance in Materials Science;
see for instance [1, 4, 14] and also the list of references in [2].

The dynamics of the free surface I' in R? is governed by

V=-As(k +¢), (1)

which is a 4th order highly nonlinear PDE. Hereafter, d € {2,3}, V and & are the
(scalar) normal velocity and mean curvature of T, respectively, Vs is the surface
gradient, Ag = divgVs the Laplace-Beltrami operator and € is the elastic energy
density of the bulk Q(t) enclosed by I'(¢). In this paper, we take e = 0 throughout.

A number of issues arise, from existence, well posedness and regularity to
effective algorithms for (1). The chief mathematical and numerical difficulties arise
from the 4th order nonlinear operator Agx and the fact that one cannot work
directly with the curvature vector & as in [8]. In contrast to [5, 10], we have
been able to derive, from a suitable semi-implicit time discretization, a variational
finite element formulation for surfaces in R? which involves the 4 unknowns scalar
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curvature k, curvature vector &, normal velocity V', and (scalar) normal velocity
V' as follows:

R=AgX, k=R -7, V=-Agk, V=Vi, (2)

where 7/ denotes the unit normal vector to I', pointing outward of the bulk enclosed
by I'. In view of this mized formulation, which involves only second order operators,
our finite element method solely requires continuity of the discrete functions; in
particular we do not need C'' elements to handle curvature but can accommodate
any polynomial degree. A Schur complement approach, with a symmetric and
positive definite operator, is used to reduce the system (2) to the single unknown
V. This allows for an efficient solution technique via preconditioned CG.

This paper is organized as follows. We introduce the time discretization and
natural variational formulation in §2, and present its finite element discretization
in §3. We discuss the ensuing algebraic problem along with a Schur complement
approach to its solution in §4. We present in §5 the graph formulation together
with an error estimate. We document the performance of parametric and graph
methods in §6 via several simulations which exhibit singularities in finite time.

2. Time Discretization and Variational Formulation

We now consider a semi-implicit time discretization of first order with time-step
T, representing the next surface I *! in terms of the current surface I'® as follows:

T = $ 7 3)

This time discretization implies that all geometric quantities such as v/ are eval-
uated on the current surface I'". Consequently, if Ag denotes now the Laplace-
Beltrami operator on I' = I'"| then the only modification to (2) is as follows:

R—TAsV = AgX". (4)

To derive a weak formulation to (2) and (4), we simply multiply them by test
functions and integrate. If V(T') := H'(I') and X(I') is the subspace of V(I') of
functions with mean value zero, we thus seek V € V(I'),x € V(I),% € (') and
V € X(T") such that

(7o) +7 (WY, Vo) = - (WX, ) ¥ped(D), (5)
(na¢>_<ﬁ'ﬁa¢>:0 V¢EVF)7 (6)
(V,0) = (Vs5,V50) =0 Ve X(I), (7)
(Vio) = (Vi) =0 ¥pe VD). (8)

Hereafter the symbol (-, -) stands for the L? scalar product over the current surface
' =T, which is described by the vector function X=X ™. we thus suppress the
superscripts n and n + 1 since no confusion arises. Since V' € X(T') has mean value
zero, we realize that volume is preserved in the sense fr V =0.
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3. Finite Element Discretization

Let 7 be a regular but possibly graded mesh of triangular finite elements over the
surface I', which from now on is assumed to be polyhedral. Let kA denote the local
meshsize of 7. Let T € T be a typical triangle and let #r = (v5)%_, be the unit
normal to T pointing outwards. We denote by © the outward unit normal to T,
which satisfies 7|p = Up for all T € T, and is thus discontinuous across 07 .

Let {¢;}._, be the set of canonical basis functions of the finite element space
Vi (T') of piecewise linear functions over I'; this is a conforming approximation of
yI). If Id € R¥? is the identity matrix, consider the following matrix entries

M;j = (s, 95) , Aij = (Vs0i, Vs 95) , 9)
d

M;; == My;1d, Ny = (Gi, div"),_, s (10)

and corresponding mass and stiffness matrices
M := (Mij)ijmy, M :=(My){;—,  N:= Ny, (11)
A= (Al o, A=Al (12)

We point out that M ,ff and N possess matrix-valued entries and therefore the
matrix-vector product is understood in the following sense

1
. N
MV:(E:M-V-) ,
j=1 Y=

because each component of V = (ﬁ)le, as well as of MV, is itself a vector in R?.

The vector of nodal values of a finite element function is written in bold
face, namely V = (V;)L_, € V := R! is equivalent to V = Efil Vigi € Vi(T).
Let X, (T") be the subspace of V(') of functions with mean value zero, and let
X ={V €V:V-M1=0} be the corresponding subspace of V with 1 := (1)L_;:

I
V=) Visie () & V=) eX (13)

i=1

Upon expanding the functions V, &, 17, R in terms of the basis functions
{¢:}L_, and testing against the latter, a discretization of system (5)-(8) can be
written in matrix form as follows: find V € VK € V, K € X,V € X such that

—

0 —A M
M 0 -N
0 M —NT 0

A 0 M 0
0
0 (14)

<R <

~A
0
0
0

We discuss the solvability of (14) and propose an algorithm for its solution in §4.
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4. Schur Complement Approach

Consider the following vector equation with a (possibly singular) square block A:

A B||U| _|F
C D||Q| |G|’
Let A be symmetric with (nontrivial) kernel ker(A). Then the range Y of A is

the orthogonal complement of ker(A4). Let S : Y — Y be the right inverse of A:
AS = Id on Y. If P denotes the orthogonal projection onto ker(A), we have

SAV=V -PV=(Id-P)V VVcR. (15)
The Schur complement equation for @ then reads
(-CSB+D)Q+CPU =G — CSF. (16)

Solvability of this system depends on the structure of the two terms on the left
hand-side of (16). We intend to apply this splitting to (14), which involves dealing
with the block containing A and A on the diagonal.
Since the kernel of A in (12) is Z = span{1}, with 1 = (1)!_,, the range of
Ais Y = Z*. Then the spaces X, defined in (13), and Y are related as follows:
VeX & MV eY. (17)

Let S : Y — Y be the right inverse of A and P : V — Z be the orthogonal
projection into Z, thereby satisfying (15) with P = 1&L.

Applying (16) to (14) with vectors U = [V, K]% and Q = [K, V], we
obtain the symmetric system

1pMSM N K| _ [-1MSAX + MPV (18)
NT  —MSM| |V| ™~ MPK '

We observe that SAX makes sense because AX € §'; this could be viewed as a
compatibility condition. To investigate the solvability of (18), we note that both
components of Q satisfy K € X and V € X or, in view of (17), MK €Y, and
MV € Y. Since the upper left block of (18), MSM : X = MY, is nonsingular
with inverse M 1AM !, we can apply (16) again to arrive at

(TNTM—lA'M—lN + MSM) V + MPK = -NTN'AX. (19)
Let IT := Id — %11%1\)[/"11 be the orthogonal projection onto X. Since MPK €

span {M1} = X+, applying II to (19) yields the final form of the Schur comple-
ment:

H(TNTJ\ZI—%M—W + MSM)HV = -IINTM ' AX, (20)
because IIV = V. The ensuing matrix of this reduced system is nonsingular be-
cause IIMSMTI : X — X is symmetric and positive definite, and the first term in
(20) is symmetric and positive semi-definite.

The method actually implemented consists of first solving for V' using (20),
next solving MV =NV for V and finally updating X via X +1V.
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5. Graph Formulation and Error Analysis

We now discuss the case of I' being a graph. To this end let @ C R with
t € [0,T] for some T' > 0, d € {2,3} and ['(t) := {(z,u(t,z)) | € Q} C IR".
If Q(u) := y/1+|Vu|? denotes the elementary surface area, then we have the
following formulas for the geometric quantities v, x and V:

1

Vu 8tu
v = —vu,1)t, k=V- , = , 21
Qv (qw) V= aw 2y
with V = (84, .-, 0, ,)T. According to (21), (1) can be written as the system
o _ o (T
QW Agk, k=V ( 0 ) (22)

This system has to be supplied with suitable initial and boundary conditions. We
restrict ourselves to periodic boundary conditions for ease of presentation, but
Neumann and Dirichlet boundary conditions can be handled as well [2]. In this
vein, let 2 be a parallelogram and X be the subspace of H'(Q) with periodic
boundary values. Then, (22) admits the following variational formulation: find u
and k with u(t), k(t) € X for a.e. t and u(0) = up in a suitable sense, fulfilling

(Oyu, ) — /F Yok -Vsth =0 Vi€ X, (23)

Vu-Ve

where (-, -) denotes the L?(Q) inner product; compare with §2. Note that, in con-
trast to the mean curvature flow of graphs [6, 7], (23) does not have the weight
Q(u)~! because the equation is written on T'.

If X}, is a finite element subspace of X, then a semi space discrete scheme
is obvious from (23) and (24). In particular, upon taking ¢ = 1 € X}, we deduce
exact volume conservation % fQ up, = 0. We can also prove stability as well as
coercivity properties, which are crucial in deriving the following error estimate [2].

Theorem 5.1 (A Priori Error Estimate for the Semidiscrete Scheme). Let u,x be
sufficiently smooth in [0,T], and let k > 1 be the polynomial degree of X},. Then,
there ezists a constant C > 0, solely depending on the regularity of u,x and T,
such that

sup (= wn) Oy + [ Vou = Voun)) < €,
te[0,T] Ty (t)

T
(s = BRI 2oy + [ [V = Vsmal?) dt < Ch2*.
0 @) Ca(t)

Since (25) involve the tangential gradients Vsu and Vsk, the order of convergence
O(h*) is optimal. This is corroborated by the numerical experiments of [2], which
are obtained via a semi-implicit time discretization similar to [7]. It consists of
writing the equations for step 7+ 1 on the current surface I'y,, which linearizes the
system and allows for a Schur complement solver similar to that in §4.

(25)
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6. Implementation and Simulations

In this section we explain briefly the implementation of both the parametric and
graph formulations within ALBERT [12, 13], and document their performance.

6.1. Mesh Regularization
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o
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FIGURE 1. Pathological ear formation in the evolution of a4 x 1 x 1
prism by surface diffusion. Surface at time ¢ = 0 and ¢t = 0.07.

o
b

FIGURE 2. Steps towards the pathological formation of ears. Zoom
into a vertex of the initial prism with surfaces at ¢ = k x 1072 for
0 < k < 9. After 6 time steps some triangles collapse into segments,
thereby making the mesh degenerate and producing numerical artifacts.

The geometric flow by parametric surface diffusion is not as gentle as the corre-
sponding mean curvature flow [8], and leads to severe mesh distortions. Even if the
parametric formulation of §3 allows corners and edges, which are rather singular
for surface diffusion, they give rise to fast node motion and mesh distortion. This
is illustrated by the creation of ears during the evolution of a 4 x 1 x 1 prism
in Figs. 1 and 2 towards a ball. This is clearly a numerical artifact and cannot
be cured by mesh refinement and/or coarsening. We use mesh regularization in-
stead, which consists of replacing each node by the projection onto the surface of
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heat equation. Its beneficial effect is reflected in the subsequent simulations of

Figs. 3-6, all computed with forcing term € = 0.

101.

1sCre

ivalent to one time step of the d

Finite Element Methods for Surface Diffusion

ion is equ

We illustrate the evolution of a 4 x 1 x 1 prism towards a ball with the same volume
Fig. 3, thereby showing the smoothing effect of surface diffus

a weighted average of the nodes belonging to its finite element star, see also [11].

6.2. Example 1: Smoothing Effect
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6.3. Example 2
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Surface diffusion is not always a regularizing flow and may in fact create sin-
gularities in finite time depending on the initial configuration. This is depicted
in Figs. 4-6 which correspond to prisms with larger aspect ratios than before.
Figs. 4-5 display the evolution of an 8 x 1 x 1 prism towards a dumbbell and cusp
formation in finite time. Increasing the aspect ratio of the prism seems to be an
effective mechanism to produce several simultaneous cusps as reported in Fig. 6.
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t =0.390 t =0.394 t =0.398 t = 0.402 t = 0.404

FIGURE 5. Detailed view of the pinch-off for the 8 x 1 x 1 prism.
Mesh regularization appears to cure mesh distortion until the moment
of pinch-off when the elements are rather elongated but not degenerate.
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FIGURE 6. Evolution of a 12 X 1 x 1 prism towards two simultaneous
cusps revealing that the number of singularities depends on the aspect
ratio of the initial prism.

6.4. Example 3: Mushroom Formation
We consider the graph formulation of §5 of a curve in 2d starting from the initial
condition ug(x) = 1 + d(x), where 0 is a steep perturbation with zero meanvalue
(see Figure 7). Since the slope seems to become vertical around ¢ = 4.8 x 107° in
Fig. 7, the classical solution might cease to exist in finite time.

To investigate the formation of singularities in finite time, we use the para-
metric formulation with the same initial data upon embedding the graph of wug
into a closed curve (see Figure 8 top left). For the time scale of Fig. 7, the effect of
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this extension is negligible. Fig. 8 displays a sequence of solutions obtained for the
same eight time instants of Fig. 7. It is worth noticing the striking similarity of
the solutions obtained with both methods. Even though the parametric solution
develops a mushroom shape at t = 9.6 x 107°, and thus the solution to the graph
formulation is questionable thereon, they still exhibit an excellent quantitative
agreement for ¢t > 9.6 x 10~° (compare the last two plots of Figs. 8 and 7).

VANAN VANAN

/ I I J

t=0 t=8x10"° t=16x10° t=24x10°
t=4.8x10"° t=09.6x10"° t=19.2x10°° t=2384x10"°

FIGURE 7. Evolution of a graph in 2d starting from wuo(z) = 1+ d(x)
with a steep perturbation d(z). In all plots for various times ¢, the
x-axis ranges from —1 to 1, and the y-axis ranges from 0 to 1.5.

Av’\ /\/f\ /WUF\ /\Ur\
t=0 t=8x10"° t=16 x 107° t=24x10"°
t=48x107° t=96x10"° t=19.2 x 107° t=2384x%x10"°

FIGURE 8. Mushroom formation. Parametric evolution of a curve in
2d with the same initial condition and the same times of Fig. 7. The
rectangles in thin lines are [—1,1] x [0, 1.5]. The effect of embedding
the graph of Fig. 7 into a close curve (see top-left picture) is negligible

for the time scale of this evolution.




10 E. Bénsch, P. Morin, and R. H. Nochetto

Acknowledgments

We would like to thank K. G. Siebert for his assistance in incorporating new data
structures to handle surfaces in R® and curves in R? within ALBERT [12], [13]. We
were all partially supported by the NSF-DAAD international cooperation grant
INT-9910086.

References

[1] R. J. Asaro AND W. A. TILLER, Surface morphology development during stress
corrosion cracking: Part I: via surface diffusion, Metall. Trans., 3 (1972), 1789-1796.

[2] E. BAnscH, P. MoriN, AND R.H. NOoCHETTO, Surface diffusion of graphs: varia-
tional formulation, error analysis and simulations, SIAM J. Numer. Anal. (submit-
ted).

[3] E. BANscH, P. MORIN, AND R.H. NOCHETTO, A finite element method for surface
diffusion: The parametric case, (to appear).

[4] J. CAHN AND J. TAYLOR, Surface motion by surface diffusion, Acta Metall. Mater.,
42 (1994), 1045-1063.

[6] B.D. CoLEMAN, R.S. FALK, AND M. MOAKHER, Space-time finite element methods
for surface diffusion with applications to the theory of stability of cylinders, SIAM J.
Sci. Comp., 17 (1996), 1434-1448.

[6] K. DECKELNICK AND G. Dziuk, Convergence of a finite element method for the
non-parametric mean curvature flow, Numer. Math. 72 (1995), 197-222.

[7] K. DECKELNICK AND G. DzIUK, Error estimates for a semi-implicit fully discrete
finite element scheme for the mean curvature flow of graphs, Interfaces and Free
Boundaries 2, (2000), 341-359.

[8] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), 603-611.

[9] K. DECKELNICK, G. DzIUK, AND C. ELLIOTT, Semidiscrete finite elements for axi-
ally symmetric surface diffusion, CMAIA Research Report No 2002/05 (2002).

[10] U.F. MAYER, Numerical solutions for the surface diffusion flow in three space di-
mensions, Comp. Appl. Math. (to appear).

[11] A. ScuMIDT, Computation of three dimensional dendrites with finite elements, J.
Comput. Physics, 125 (1996), 293-312.

[12] A. ScHMIDT AND K.G. SIEBERT, ALBERT: An Adaptive Hierarchical Finite Element

Toolboz, Documentation, Preprint 06/2000 Universitit Freiburg, 244 p; avaiulable
online from http://www.mathematik.uni-freiburg.de/TAM/ALBERT.

[13] A. ScuMmIDT AND K.G. SIEBERT, ALBERT-Software for scientific computations and
applications, Acta Math. Univ. Comenian. (N.S.), 70 (2001), 105-122.

[14] B.J. SPENCER, S.H. Davis, AND P.W. VOORHEES, Morphological instability in
epitazially-strained dislocation-free solid films: nonlinear evolution, Phys. Rev. B,
47 (1993), 9760-9777.



Finite Element Methods for Surface Diffusion 11

Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstrasse 39, 10117 Berlin,

and Freie Universitéit Berliny GERMANY

E-mail address: baensch@wias-berlin.de

Instituto de Matematica Aplicada del Litoral, Giiemes 3450, 3000 Santa Fe,
and Departamento de Matematica, Facultad de Ingenieria Quimica,
Universidad Nacional del Litoral, Santa Fe, ARGENTINA

Partially supported by CONICET of Argentina and NSF Grant DMS-9971450.
E-mail address: pmorin@math.unl.edu.ar

Department of Mathematics and Institute for Physical Science and Technology,
University of Maryland,

College Park, MD 20742, USA

Partially supported by NSF Grants DMS-9971450 and DMS-0204670.

E-mail address: rhn@math.umd.edu



