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Abstract

We present an adaptive finite element method (AFEM) of any polynomial degree for the
Laplace-Beltrami operator on C1 graphs Γ in Rd (d ≥ 2). We first derive residual-type a
posteriori error estimates that account for the interaction of both the energy error in H1(Γ)
and the surface error in W 1

∞(Γ) due to approximation of Γ. We devise a marking strategy to
reduce the total error estimator, namely a suitably scaled sum of the energy, geometric, and
inconsistency error estimators. We prove a conditional contraction property for the sum of
the energy error and the total estimator; the conditional statement encodes resolution of Γ in
W 1
∞. We conclude with one numerical experiment that illustrates the theory.

Keywords. Laplace-Beltrami operator, graphs, adaptive finite element method, a posteriori
error estimate, energy and geometric errors, bisection, contraction.
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1 Introduction

We consider a surface Γ ⊂ Rd described as the graph of a function z(x) defined on a bounded
polygonal/polyhedral region Ω ⊂ Rd−1, d ≥ 2, i.e.,

Γ :=
{

(x, z(x)) ∈ Rd | x ∈ Ω ⊂ Rd−1
}
,

where z : Ω → R is a C1 function. In contrast to the works by Demlow and Dziuk [13, 10, 9], we
do not need C2 regularity. In fact, we may even allow z to be Lipschitz with discontinuities of ∇z
in Ω aligned with the initial mesh. We will not dwell on this matter but instead refer to §5, where
we allow z to be piecewise smooth.

We consider the Dirichlet boundary value problem for the Laplace-Beltrami operator ∆Γ on Γ

−∆Γu = f on Γ, u = 0 on ∂Γ, (1.1)

with f ∈ L2(Γ). For simplicity we consider homogeneous Dirichlet data, but a non-zero Dirichlet
or Neumann boundary condition can be treated as well; see [18].
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Elliptic partial differential equations (PDE) on surfaces are ubiquitous from geometry and
relativity theory to applications in phase transitions, materials science, and image processing.
They are typically governed by the Laplace-Beltrami operator ∆Γ, but more general operators
arise as well. We refer to Dziuk [13] for the formulation of FEM for the Laplace-Beltrami operator
on parametric surfaces and corresponding a priori error analysis, as well as to Demlow and Dziuk
[10] for a posteriori error analysis, both for linear finite elements; we also mention Demlow [9] that
extends the a priori error analysis of [13] to any polynomial degree and the L∞-norm. In contrast
to [10], our approach does not use a level set function (such as xd − z(x) = 0) nor the distance
function to represent Γ, and is valid for any polynomial degree. In this vein, this paper presents a
constructive and flexible building block that extends to parametric surfaces without requiring the
distance function [5]. As in [10], we show a posteriori error estimates that consist of two parts:
the energy and geometric error estimators; this is a dual version of the a priori error estimates in
[13]. However, as opposed to [10, 13], our geometric error estimator is of the same order as the
energy error estimator because we cannot exploit special orthogonality properties associated to the
distance function. This is the price to pay for flexibility in describing the surface.

In addition, we design an AFEM, prove reduction properties for the estimator, geometric error
and surface estimator, and use them to show a conditional contraction property of AFEM. The
latter appears to be the first result for the Laplace-Beltrami operator.

We next introduce the weak formulation, the FEM, and give an outline of the paper along with
our main result.

1.1 Variational Formulation

Given a function v : Γ→ R we define its lift ṽ : Ω× R→ R as the obvious extension

ṽ(x, xd) := v(x, z(x)), ∀x ∈ Ω, xd ∈ R. (1.2)

We denote by ∇ṽ ∈ Rd the gradient of ṽ, arranged as a row vector, by q the elementary surface
area, and by ν the unit normal vector to Γ again arranged as a row vector, namely,

q :=
√

1 + |∇z|2, ν :=
1
q

(−∇z, 1). (1.3)

We indicate with ∇Γv ∈ Rd the tangential gradient of v on Γ, which is the component of ∇ṽ
tangent to Γ:

∇Γv = ∇ṽ − (∇ṽ · ν)ν = ∇ṽ(I− νT ν). (1.4)

Likewise, the tangential divergence of a vector field q : Ω× R→ Rd is given by

divΓq = div q− νDq νT , (1.5)

where Dq stands for the differential matrix of q; hence, we have

∆Γv = divΓ∇Γv = ∆ṽ − (∇ṽ · ν)(div ν)− νD2ṽνT , (1.6)

where D2ṽ ∈ Rd×d is the Hessian of ṽ and div ν = divx(∇zq ) is the mean curvature of Γ.
To formulate (1.1) weakly, we now introduce Sobolev spaces on the surface Γ:

H1(Γ) :=
{
v ∈ L2(Γ) | ∇Γv ∈ L2(Γ)

}
, H1

0 (Γ) :=
{
v ∈ H1(Γ) | v has zero trace on ∂Γ

}
.

The weak formulation of (1.1) is thus

u ∈ H1
0 (Γ) :

∫
Γ

∇Γu ∇TΓ v =
∫

Γ

fv ∀ v ∈ H1
0 (Γ). (1.7)

This problem admits a unique solution due to Lax-Milgram’s lemma and the fact that L2(Γ)
belongs to the topological dual space of H1

0 (Γ).
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1.2 The Finite Element Method on Graphs

To approximate (1.7) via the FEM we proceed as follows. Given an initial conforming partition
T0(Ω) of Ω into simplices, we consider a sequence of conforming nested refinements Tk(Ω) into shape
regular simplices using bisection. We next let Vk(Ω) be the finite element space over Tk(Ω) consist-
ing of C0 piecewise polynomial functions of degree n ≥ 1; this yields Vk(Ω) ⊂ Vk+1(Ω) for all k. We
let zk ∈ Vk(Ω) be the Lagrange interpolant of z in Vk(Ω); the image Γk := {(x, zk(x)) : x ∈ Ω}
is thus a piecewise polynomial approximation to Γ. This induces a one-to-one correspondence
between elements T̂ ∈ Tk(Ω) and elements T ∈ Tk(Γk), T̃ ∈ Tk(Γ) defined by

T =
{

(x, zk(x)) : x ∈ T̂
}

T̃ :=
{

(x, z(x)) : x ∈ T̂
}
. (1.8)

The space Vk(Γk) is simply the lift of Vk(Ω) via (1.2) where z is replaced by zk, and V̊k(Γk) :=
Vk(Γk) ∩H1

0 (Γk). Note however that Vk(Γk) is no longer a subspace of Vk+1(Γk+1). This lack of
consistency must be accounted for in the error analysis.

We are now ready to introduce the FEM for the Laplace-Beltrami operator on graphs. If
Fk ∈ L2(Γk) is a suitable approximation of f , then the finite element function Uk : Γk → R solves

Uk ∈ V̊k :
∫

Γk

∇ΓkUk ∇TΓkV =
∫

Γk

FkV ∀ V ∈ V̊k. (1.9)

This yields a symmetric positive definite (SPD) linear system which can be solved with standard
linear algebra tools. We note that (1.9) can be thought of as a linear elliptic PDE with variable
coefficients in Ω; see Remark 2.1. However, in view of implementation issues and generalizations
to parametric surfaces, carried out in [5], we prefer to think of (1.9) as defined on Γk.

1.3 Main Result and Outline

The main purpose of this paper is to design an AFEM for (1.1), prove a contraction property
and thus convergence of AFEM, and document performance of AFEM computationally. We now
briefly state our main result and provide an outline of the paper.

Let (V̊k(Γk), Tk(Γk))∞k=1 be a sequence of space-mesh pairs created via the following loop

SOLVE→ ESTIMATE→ MARK→ REFINE (1.10)

as described below in §3. We start with the usual interior and jump residual indicators

R(Uk)
∣∣
T

:= (Fk + ∆ΓkUk)
∣∣
T

∀T ∈ Tk(Γk), (1.11)

J (Uk)
∣∣
S

:= (∇ΓkUk)
∣∣
T+ · n+

S + (∇ΓkUk)
∣∣
T−
· n−S ∀S ∈ Sok , (1.12)

where Sok denotes the set of interior sides of Tk(Γk), and J (Uk)
∣∣
S

= 0 if S is a boundary side.
Given S ∈ Sok , n+

S and n−S denote the outward unit normals to S with respect to the adjacent
elements T+, T− ∈ Tk(Γk) sharing S and tangent to them, respectively. For any polynomial
degree n ≥ 1, n+

S (resp.n−S ) results from lifting, via by the map (2.1) below, the unit normal vector
to T̂+ (resp. T̂−) to the tangent plane to T+ (resp. T−) at the corresponding point of S, followed
by normalization to unit size. Therefore, for n = 1, n+

S (resp.n−S ) is a constant vector along S, but
this is not the case for n > 1.

We define the usual energy error indicator ηk(T ) by [1, 21]

η2
k(T ) := h2

T ‖R(Uk)‖2L2( bT ) + hT ‖J (Uk)‖2L2(∂ bT ) ∀ T ∈ Tk(Γk), (1.13)

where hT := |T̂ |
1
d−1 is the meshsize of T . Since the integrals are computed over T̂ and ∂T̂ , which

are contained in Ω, we commit a slight abuse of notation in writing the integrands as R(Uk), J (Uk)
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instead of the corresponding lifts R̃(Uk), J̃ (Uk) given by (1.2). Note that b bisections of T reduce its
meshsize by a factor 2−

b
d−1 . We then let the energy error estimator be ηk :=

(∑
T∈Tk(Γk) η

2
k(T )

)1/2.
A key novelty for the Laplace-Beltrami operator is the interaction between geometry and PDE

encoded in (1.15) below. To quantify the approximation of Γ by Γk in W 1
∞, we let the surface

estimator be λk := maxT∈Tk(Γk) λk(T ), where

λk(T ) := ‖ν − νk‖L∞( bT ) ∀ T ∈ Tk(Γk), (1.14)

and the unit normals ν and νk to Γ and Γk are defined according to (1.3); note that λk accumulates
in `∞(Tk(Γk)). We next introduce the geometric estimator ζk :=

(∑
T∈Tk(Γk) ζ

2
k(T )

)1/2, where

ζk(T ) := λk(T ) ‖∇ΓUk‖L2( eT ) ∀ T ∈ Tk(Γk), (1.15)

and observe that its accumulation is in `2(Tk(Γk)). Moreover, we point out that the second factor
in (1.15) is evaluated on Γ. Similarly, we define the energy error to be

ek := ‖∇Γ(u− Uk)‖L2(Γ) , (1.16)

where the integral is on Γ and so employs ∇Γ along with the lift (1.2) for Uk. Finally, to quantify
the lack of consistency of the right-hand side with the discrete surface, we define the local quantity

ρ2
k(T ) := λ2

k(T )h2
T ‖f‖2L2(T ) ∀ T ∈ Tk, (1.17)

and the corresponding inconsistency estimator ρ2
k :=

∑
T∈Tk ρ

2
k(T ).

We are now ready to state the main result of this paper, the conditional contraction property
between consecutive iterates of the adaptive loop (1.10) proved in §4:

Let (Γ0, T0) be an arbitrary initial surface-mesh pair of Γ. There exist positive constants
γ0, β1, β2,Λ, and α < 1, solely depending on (Γ0, T0), shape regularity and the user’s
parameters of AFEM, such that if the total estimator employed by AFEM is given by

E2
k := η2

k + β1ζ
2
k + β2ρ

2
k,

and λk ≤ Λ, then
e2
k+1 + γ0E2

k+1 ≤ α
(
e2
k + γ0E2

k

)
.

Note that the condition λk ≤ Λ encodes suitable resolution of Γ for AFEM to be contractive. This
result extends to the Laplace-Beltrami operator on graphs the contraction property for symmetric
elliptic PDE recently proved by Cascón et al [4], but a few new geometric ingredients are added.

The rest of the paper is organized as follows. We start in §2 with a review of differential geometry
on graphs. We discuss the procedures SOLVE, ESTIMATE, MARK and REFINE, along with AFEM
in §3. We prove several basic properties of AFEM in §4.1 and its contraction property in §4.2.
We conclude in §5 with a numerical experiment that sheds light on the theory and documents the
performance of AFEM on graphs.

To avoid confusion with constants, we write a . b to denote a ≤ Cb for some constant C
depending only on shape regularity of the mesh Tk(Ω) and the Lipschitz regularity of the surface Γ
through ‖∇z‖L∞(Ω); we also write a ≈ b to indicate b . a . b. We use the notation ek(ω), ηk(ω),
λk(ω), ζk(ω) and ρk(ω) to indicate restrictions of these quantities to a subset ω of Γk. Finally, we
abbreviate V̊k(Γk) and Tk(Γk) with V̊k and Tk.
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2 Differential Geometry on Graphs

According to the lifting (1.2), a function v : Γ → R induces a function v̂ : Ω → R upon setting
v̂(x) = v(x, z(x)) = ṽ(x, xd). Therefore, ∇ṽ = (∇xv̂, 0) and (1.4) becomes

∇Γv = ∇ṽ D̃ = ∇xv̂ D, (2.1)

where D̃ ∈ Rd×d and D ∈ R(d−1)×d are the matrices

D̃ := Id×d − νT ν, D = [I(d−1)×(d−1) 0] + q−2∇zT (−∇z, 1); (2.2)

we see that D results from D̃ upon eliminating its last row and their 2-norms satisfy |D| = |D̃| = 1.
When no confusion is possible, we will refer to the three functions v, ṽ, v̂ just as v. In view of (2.1),
we can express (1.7) as an elliptic PDE with variable coefficients in Ω:∫

Γ

∇Γu ∇TΓ ϕ =
∫

Ω

∇xu
(
qDDT

)
∇Txϕ. (2.3)

Moreover, a simple calculation shows that DDT is SPD and has the form

DDT = I(d−1)×(d−1) − q−2(∇zT∇z). (2.4)

To write a sort of inverse formula to (2.1), we let ti(x) = (ei,
∂z(x)
∂xi

)T ∈ Rd be the tangent

(column) vectors to Γ with {ei}d−1
i=1 the canonical basis of Rd−1. If

T(x) := [t1(x), t2(x), . . . , td−1(x)] =
[
I(d−1)×(d−1)

∇z

]
∈ Rd×(d−1),

then |T(x)| = q(x) and the chain rule applied to v̂(x) = ṽ(x, z(x)) yields the relations

∇xv̂(x) = ∇v(x, z(x))T(x) = ∇Γv(x, z(x))T(x) ∀ x ∈ Ω. (2.5)

It is easy to verify by simple matrix multiplication that D and T are pseudo-inverses, namely,

DT = I(d−1)×(d−1), TD = Id×d − νT ν; (2.6)

note that (TD)2 = TDDTTT = TD. Similar results also apply elementwise to zk in place of
z, that is, Dk,Tk, and qk are defined for each T ∈ Tk(Ω) using zk instead of z, and the same
equalities (2.5) and (2.6) hold for them.

Remark 2.1. (PDE with variable coefficients) If A := qDDT and F := qf , then (1.7) becomes

−div (A∇Tu) = F in Ω, u = 0 on ∂Ω.

Convergence of AFEM for this type of PDE with variable coefficients A is studied by Mekchay
and Nochetto [15], who in turn exploit an idea of Chen and Feng [6]; see also Morin, Nochetto and
Siebert [16, 17] for piecewise constant A. A quasi-optimal convergence rate is derived by Cascón
et al [4]. However, we prefer to view the surface Γ as a geometric object to be discretized, and the
PDE to be formulated directly on Γ and Γk. This is consistent with the a priori analysis of Dziuk
[13] (see also [9]), and extends naturally to parametric surfaces [10, 5].

Remark 2.2. (Quadrature) We could regard the approximation of Γ by Γk as quadrature in that
the coefficient matrix A of Remark 2.1 is replaced by Ak := qkDkDT

k . This is not, however,
interpolatory quadrature because A is not evaluated at preassigned points: the value of Ak within
an element depends on all the values of z(x) at its nodes. To get intuition about the structure of
the error committed in replacing A by Ak, let uk ∈ H1

0 (Ω) be the solution of the PDE

−div (Ak∇Tuk) = F, in Ω.
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The error e = u− uk ∈ H1
0 (Ω) thus satisfies for all v ∈ H1

0 (Ω)∫
Ω

∇eA∇T v =
∫

Ω

∇uk(Ak −A)∇T v =
∫

Ω

∇uk(Ak −A)A−
1
2 A

1
2∇T v,

whence for v = e ∫
Ω

∇eA∇T e ≤
∫

Ω

∇uk
(

(Ak −A)A−1(Ak −A)
)
∇Tuk.

This is responsible for the structure of the geometric estimator (1.15). We will see below how to
bound Ak −A in terms of the difference of unit normals ν − νk, and thus the surface estimator
(1.14).

Lemma 2.1. (Consistency error) If Ek ∈ Rd×d is given by

Ek :=
1
q
T(qkDkDT

k − qDDT )TT , (2.7)

then for all v, w ∈ H1(Ω)∫
Γk

∇Γkv ∇TΓkw −
∫

Γ

∇Γv ∇TΓ w =
∫

Γ

∇Γv Ek ∇TΓ w. (2.8)

Proof. If T ∈ Tk(Γk), T̂ ∈ Tk(Ω), and T̃ ∈ Tk(Γ) are related according to (1.8), then we have with
some abuse of notation

∫
T
vw =

∫bT qkvw =
∫eT qk

q vw. Hence, in view of (2.1) and (2.5), we obtain∫
T

∇Γkv ∇TΓkw =
∫

bT qk∇xvDkDT
k ∇Txw =

∫
eT
qk
q
∇Γv(TDkDT

kTT )∇TΓ w. (2.9)

Likewise, using (2.6) and the orthogonality of ∇Γv and ν, namely ∇ΓvTD = ∇Γv, we get∫
eT ∇Γv ∇TΓ w =

∫
eT ∇Γv TDDTTT ∇TΓ w. (2.10)

Subtracting these two expressions gives (2.8).

Lemma 2.2. (Basic geometric estimates) The following pointwise estimates are valid for all k ≥ 0

|q − qk| ≤ qqk|ν − νk|,
∣∣∣1
q
∇zT∇z − 1

qk
∇zkT∇zk

∣∣∣ ≤ 3qqk|ν − νk|.

Proof. It follows from (1.3) that
∣∣∣ 1q − 1

qk

∣∣∣ ≤ |ν − νk|, whence |q − qk| ≤ qqk|ν − νk|. To get the last
estimate, we write

∇zT∇z
q

− ∇zk
T∇zk
qk

= (q − qk)

(
∇z
q

T ∇z
q

)

+ qk

[
∇z
q

T (∇z
q
− ∇zk

qk

)
+
(
∇z
q
− ∇zk

qk

)T ∇zk
qk

]
,

and note that (1.3) implies
∣∣∣∇zq − ∇zkqk ∣∣∣ ≤ |ν − νk| and

∣∣∣∇zq ∣∣∣ , ∣∣∣∇zkqk ∣∣∣ ≤ 1.

Lemma 2.3. (Comparing q and qk) If q|ν − νk| ≤ 1
2 , then

qk ≤ 2q ≤ 3qk. (2.11)
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Proof. It suffices to write ±(qk − q) ≤ |qk − q| and use Lemma 2.2.

The condition ‖q(ν−νk)‖L∞(Ω) ≤ 1
2 entails a minimal degree of surface resolution, and is compatible

with the threshold λk ≤ Λ leading to the contraction property of Theorem 1. Moreover, the
equivalence qk ≈ q is valid asymptotically with constant as close to 1 as desired.

Lemma 2.4. (Estimate of Ek) Let Ek be defined in (2.7) and λk in (1.14). Then, if q|ν−νk| ≤ 1
2 ,

‖Ek‖L∞(T ) ≤ Q‖ν − νk‖L∞( bT ) = Qλk(T ), ∀ T ∈ Tk. (2.12)

with Q := 8‖q‖3L∞(Ω).

Proof. In view of (2.4), we can write

qkDkDT
k − qDDT = (qk − q)I−

( 1
qk
∇zTk∇zk −

1
q
∇zT∇z

)
.

Since |T| = q, the assertion follows from the definition (2.7) and Lemmas 2.2 and 2.3.

Remark 2.3. (Order of Ek) The formal order of both Ek and the energy error is the same, namely
the polynomial degree n ≥ 1. If z were represented via the distance function, as in [9, 10, 13],
then the formal order of Ek would be n + 1. This is due to the fact that T would then be a
small perturbation of the orthogonal projection onto the tangent plane to z, whereas our T is
just a mapping onto it. This fact is compensated by flexibility in describing the surface and is
instrumental in [5].

Lemma 2.5. (Perturbation of D) The following pointwise estimate holds for all k

|D−Dk| ≤ 5q|ν − νk|. (2.13)

Proof. Use the definition (2.2) to write

D−Dk =
(

1
q
− 1
qk

)
∇zT

q
(−∇z, 1) +

1
qk

(
∇zT

q
(−∇z, 1)− ∇z

T
k

qk
(−∇zk, 1)

)
and estimate each term separately using Lemma 2.2.

Lemma 2.6. (Equivalence of norms) Let Γk be a piecewise polynomial approximation of Γ as
described above. For all lifted functions v : Ω×R→ R, we have the following equivalences of local
(semi)norms

‖v‖L2( bT ) ≈ ‖v‖L2(T ) ≈ ‖v‖L2( eT ) , ‖∇v‖L2( bT ) ≈ ‖∇Γkv‖L2(T ) ≈ ‖∇Γv‖L2( eT ) ,

which lead to the following equivalences of the global (semi)norms

‖v‖L2(Ω) ≈ ‖v‖L2(Γk) ≈ ‖v‖L2(Γ) , ‖∇v‖L2(Ω) ≈ ‖∇Γkv‖L2(Γk) ≈ ‖∇Γv‖L2(Γ) ,

with equivalence constants depending only on the Lipschitz constant ‖∇z‖L∞(Ω) of z.

Proof. Let T ∈ Tk(Γk), T̂ ∈ Tk(Ω) and T̃ ∈ Tk(Γ) satisfy (1.8). The first equivalence holds trivially
from the change of variables leading to∫

bT qk|v|
2 =

∫
T

|v|2 =
∫

eT
qk
q
|v|2

and the fact that 0 < c ≤ qk
q ≤ qk ≤ C for constants c, C depending only on ‖∇z‖L∞(Ω). To prove

the second equivalence, we resort to (2.9) to write∫
T

|∇Γkv|2 =
∫

eT
qk
q
∇Γv(TDkDT

kTT )∇TΓ v ≤
∫

eT
qk
q

(
1 + 5q2|ν − νk|

)2|∇Γv|2,
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because TDk = TD + T(Dk −D) and Lemma 2.5, and analogously∫
eT |∇Γv|2 =

∫
T

q

qk
∇Γkv(TkDDTTT

k )∇TΓkv ≤
∫
T

q

qk

(
1 + 5q2

k|ν − νk|
)2|∇Γkv|2,

These inequalities, in conjunction with the identities (2.1) and (2.5), and the fact that |D| = 1 and
|T| = q ≤ 1 + ‖∇z‖L∞(Ω), yield the second (local) equivalence. The global equivalences are easily
obtained by adding.

We now establish inverse estimates for discrete unit normals νk, νk−1. The derivation is rather
technical because discrete unit normals are not piecewise polynomials. We exploit the fact that
they are written in terms of derivatives of zk, zk−1, which are piecewise polynomials and thus allow
for inverse estimates. A salient feature is that we only assume Lipschitz regularity of Γ.

Lemma 2.7 (Inverse inequalities for discrete unit normals). If k ≥ 1 and T ∈ Tk, then

‖Dνk‖L∞(T ) .
1
hT

, ‖D(νk − νk−1)‖L∞(T ) .
1
hT
‖νk − νk−1‖L∞(T ), (2.14)

where the constants involved in . depend on the mesh regularity of Tk(Ω) and ‖∇z‖L∞(Ω).

Proof. Observe first that for x, y ∈ T̂ ,

|νk(x)− νk(y)| ≤
∣∣∣∣ 1
qk(x)

− 1
qk(y)

∣∣∣∣+
∣∣∣∣∇zk(x)
qk(x)

− ∇zk(y)
q(y)

∣∣∣∣
≤
∣∣∣∣qk(y)− qk(x)
qk(x)qk(y)

∣∣∣∣+
∣∣∣∣qk(y)∇zk(x)− qk(x)∇zk(y)

qk(x)qk(y)

∣∣∣∣
≤
∣∣qk(y)− qk(x)

∣∣
qk(x)qk(y)

+

∣∣∇zk(x)−∇zk(y)
∣∣

qk(x)
+

∣∣qk(y)− qk(x)
∣∣∣∣∇zk(y)

∣∣
qk(x)qk(y)

.

(2.15)

Since the mapping v →
√

1 + |v|2 from Rd−1 → R is globally Lipschitz, and qk =
√

1 + |∇zk|2∣∣qk(y)− qk(x)
∣∣

|x− y|
.

∣∣∇zk(y)−∇zk(x)
∣∣

|x− y|
≤ ‖D2zk‖L∞( bT ) .

‖∇zk‖L∞( bT )

hT
.

1
hT

, (2.16)

by an inverse inequality for zk and the fact that ‖∇zk‖L∞( bT ) . ‖∇z‖L∞(Ω) . 1. Combining (2.15)
with (2.16) and using again that ‖∇zk‖L∞( bT ) . 1 and qk ≥ 1, we conclude that

sup
x,y∈T

|νk(x)− νk(y)|
|x− y|

.
1
hT

, (2.17)

and the first assertion in (2.14) follows.
In order to prove the second assertion, we denote δ[v](x) = vk(x) − vk−1(x) for a generic

function v such as ν, z, q, q−1, and observe that for x, y ∈ T̂

|δ[ν](x)− δ[ν](y)| ≤
∣∣∣∣δ[1

q

]
(x)− δ

[
1
q

]
(y)
∣∣∣∣+
∣∣∣∣δ[∇zq

]
(x)− δ

[
∇z
q

]
(y)
∣∣∣∣ . (2.18)

For the first term on the right-hand side we have∣∣∣∣δ[1
q

]
(x)− δ

[
1
q

]
(y)
∣∣∣∣ ≤ ∣∣∣∣δ[q](x)qk(y)qk−1(y)− δ[q](y)qk(x)qk−1(x)

qk(x)qk(y)qk−1(x)qk−1(y)

∣∣∣∣
≤ 1
qk(x)qk(y)qk−1(x)qk−1(y)

×
{∣∣δ[q](x)

∣∣∣∣qk(y)− qk(x)
∣∣ qk−1(y)

+
∣∣δ[q](x)

∣∣ qk(x)
∣∣qk−1(y)− qk−1(x)

∣∣
+ |δ[q](x)− δ[q](y)| qk(x)qk−1(x)

}
.

(2.19)
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Now, by the first inequality of Lemma 2.2 (with qk−1 instead of q) and (2.16)∣∣δ[q](x)
∣∣∣∣qk(y)− qk(x)

∣∣ . ∥∥δ[ν]
∥∥
L∞(T )

∣∣qk(y)− qk(x)
∣∣ . ∥∥δ[ν]

∥∥
L∞(T )

|x− y|
hT

, (2.20)∣∣δ[q](x)
∣∣∣∣qk−1(y)− qk−1(x)

∣∣ . ∥∥δ[ν]
∥∥
L∞(T )

∣∣qk−1(y)− qk−1(x)
∣∣ . ∥∥δ[ν]

∥∥
L∞(T )

|x− y|
hT

. (2.21)

Besides,

|δ[q](x)− δ[q](y)| ≤ |y − x|
∫ 1

0

∣∣∇δ[q]((1− t)x+ ty)
∣∣ dt.

Now notice that ∇qk = 1
qk
∇zkD2zk, and δ

[
D2z

]
= D2δ[z], δ[∇z] = ∇δ[z], which only involve

derivatives of the discrete approximations zk and zk−1, but no derivatives of z which is only
assumed to be C1. Therefore at any point in T̂ ,

|∇δ[q]| = |δ[∇q]| =
∣∣∣∣δ[1

q
∇zD2z

]∣∣∣∣
≤
∣∣∣∣δ[1

q

]∣∣∣∣ |∇zk−1|
∣∣D2zk−1

∣∣+
∣∣∣∣ 1
qk

∣∣∣∣ |δ[∇z]|
∣∣D2zk−1

∣∣+
∣∣∣∣ 1
qk

∣∣∣∣ |∇zk| ∣∣δ[D2z
]∣∣

. ‖δ[ν]‖L∞(T )

‖∇zk−1‖2L∞(T )

hT
+
‖∇zk−1‖L∞(T ) + ‖∇zk‖L∞(T )

hT
‖δ[∇z]‖L∞(T ),

where in the last inequality we have used inverse inequalities for zk, zk−1, δ[z], and that qk ≥ 1.
Using again the first inequality of Lemma 2.2, and (2.16), gives

‖δ[∇z]‖L∞(T ) = ‖δ[qν]‖L∞(T ) ≤ ‖δ[q]νk‖L∞(T ) + ‖qk−1δ[ν]‖L∞(T ) . ‖δ[ν]‖L∞(T ), (2.22)

whence the three previous estimates yield∣∣δ[q](x)− δ[q](y)
∣∣ . ‖δ[ν]‖L∞(T )

hT
|x− y|. (2.23)

Inserting (2.20), (2.21) and (2.23) into (2.19) we obtain∣∣∣∣δ[ 1
q

]
(x)− δ

[
1
q

]
(y)
∣∣∣∣

|x− y|
.

∥∥δ[ν]
∥∥
L∞(T )

hT
. (2.24)

We bound the second term in the right-hand side of (2.18) as follows∣∣∣∣δ[∇zq
]
(x)− δ

[
∇z
q

]
(y)
∣∣∣∣

≤
∣∣∣∣δ[∇z](x)
qk−1(x)

− δ[∇z](y)
qk−1(y)

∣∣∣∣+
∣∣∣∣∇zk(x)δ

[
1
q

]
(x)−∇zk(y)δ

[
1
q

]
(y)
∣∣∣∣

≤
∣∣∣∣δ[∇z](x)− δ[∇z](y)

qk−1(x)

∣∣∣∣+ |δ[∇z](y)|
∣∣∣∣ 1
qk−1(x)

− 1
qk−1(y)

∣∣∣∣
+ |∇zk(x)|

∣∣∣∣δ[1
q

]
(x)− δ

[
1
q

]
(y)
∣∣∣∣+ |∇zk(x)−∇zk(y)|

∣∣∣∣δ[1
q

]
(y)
∣∣∣∣ .

(2.25)

We now bound all the terms on the right-hand side of (2.25). An inverse inequality for δ[z]
and (2.22) lead to the following bound for the first term:∣∣∣∣δ[∇z](x)− δ[∇z](y)

qk−1(x)

∣∣∣∣ . ‖δ[D2z
]
‖L∞(T )|x− y| .

‖δ[∇z]‖L∞(T )

hT
|x− y| .

‖δ[ν]‖L∞(T )

hT
|x− y|,
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where we have used again that δ
[
D2z

]
= D2δ[z] and δ[∇z]= ∇δ[z]. In view of (2.22) and (2.17),

the second term on the right-hand side of (2.25) is bounded as follows:

|δ[∇z](y)|
∣∣∣∣ 1
qk−1(x)

− 1
qk−1(y)

∣∣∣∣ . ‖δ[ν]‖L∞(T )|νk−1(x)− νk−1(y)| .
‖δ[ν]‖L∞(T )

hT
|x− y|.

By (2.24), the third term satisfies

|∇zk(x)|
∣∣∣∣δ[1

q

]
(x)− δ

[
1
q

]
(y)
∣∣∣∣ . ‖δ[ν]‖L∞(T )

hT
|x− y|.

Finally, the fourth term satisfies

|∇zk(x)−∇zk(y)|
∣∣∣∣δ[1

q

]
(y)
∣∣∣∣ . ‖D2zk‖L∞( bT ) |x− y| ‖δ[ν]‖L∞(T ) .

‖δ[ν]‖L∞(T )

hT
|x− y|,

by an inverse inequality for zk. Inserting the above estimates into (2.25) we obtain∣∣∣δ[∇zq ](x)− δ
[
∇z
q

]
(y)
∣∣∣

|x− y|
.
‖δ[ν]‖L∞(T )

hT
. (2.26)

Combining (2.18) with (2.24) and (2.26), and recalling the definition of δ[·] we obtain

sup
x,y∈T

∣∣[νk(x)− νk−1(x)]− [νk(y)− νk−1(y)]
∣∣

|x− y|
.
‖νk − νk−1‖L∞(T )

hT
,

which readily implies the second assertion in (2.14).

3 AFEM: Main Modules and Algorithm

In this section we discuss the main modules in the adaptive loop (1.10) along with AFEM.

3.1 Procedure SOLVE

This procedure solves the SPD linear system resulting from (1.9). We employ either a direct solver
or any standard iterative solver, such as conjugate gradient (CG) with hierarchical basis or BPX
preconditioning. Given an approximate surface-mesh pair (Γk, Tk), a forcing function Fk, and an
initial guess for the solution Uk−1, SOLVE computes the discrete solution

Uk := SOLVE(Γk, Tk, Fk, Uk−1).

We assume, for simplicity, exact linear algebra and quadrature in computing Uk.

3.2 Procedure ESTIMATE

This procedure computes a posteriori error estimators that account for both PDE and geometry.
We first need to find an error representation formula. Subtracting the weak formulations (1.7) and
(1.9), and integrating by parts elementwise, we obtain for all v ∈ H1

0 (Γ) and V ∈ V̊k∫
Γ

∇Γ(u− Uk) · ∇Γv = I1 + I2 + I3, (3.1)
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with

I1 :=
∑
T∈Tk

∫
T

R(Uk)(v − V )−
∑
S∈Sok

∫
S

J (Uk)(v − V ),

I2 :=
∫

Γk

∇ΓkUk · ∇Γkv −
∫

Γ

∇ΓUk · ∇Γv =
∫

Γ

∇ΓUkEk∇TΓ v,

I3 :=
∫

Γ

fv −
∫

Γk

Fkv.

To prove an upper bound of the error in terms of the a posteriori error indicators, we need an
H1

0 (Γ)-stable quasi-interpolation operator Ik : H1
0 (Γ) → V̊k, such as those of Clemént or Scott-

Zhang [3, 7]. We proceed as in [8] to construct Ik on Tk(Ω), which is shape-regular, and lift it on
Γ and Γk via (1.2). Lemma 2.6 implies for all v ∈ H1

0 (Γ)

h−1
T ‖v − Ikv‖L2(T ) + h

−1/2
T ‖v − Ikv‖L2(∂T ) . ‖∇Γv‖L2(Nk(T )) ∀T ∈ Tk(Γk), (3.2)

where hT denotes the diameter of T and Nk(T ) :=
⋃
{T ′ ∈ Tk(Γk) | T ′ ∩ T 6= ∅}. The constant

behind . depends on the shape regularity of Tk(Ω) and the Lipschitz constant ‖∇z‖L∞(Ω) of z.

Lemma 3.1. (Upper bound) Let the estimators ηk, ζk be given by (1.13) and (1.15), and Fk be

Fk(x, zk(x)) :=
q(x)
qk(x)

f(x, z(x)). (3.3)

Then there exists a constant C1, depending only on the shape regularity of Tk(Ω) and ‖∇z‖L∞(Ω),
such that

e2
k ≤ C1

(
η2
k + ζ2

k

)
. (3.4)

Proof. Since (3.3) implies I3 = 0 in (3.1), it remains to deal with I1 and I2. Taking v = u− Uk ∈
H1

0 (Γ), V = Ikv ∈ V̊k into (3.1), and using (3.2) and (1.13), we arrive at

e2
k .

∑
T∈Tk

η2
k(T ) +

∑
T∈Tk

‖∇ΓUkEk‖2L2( eT ) .

Finally, recalling (1.14) and (1.15), along with (2.12), we end up with (3.4).

We point out that a choice similar to (3.3) is made in [10]; its main purpose is to yield I3 = 0
and thereby simplify the analysis. Other choices of Fk, such as a lifting of f , would introduce
additional oscillation terms that could be handled accordingly.

In contrast to [11, 15, 16, 17, 18], our subsequent convergence analysis does not need a lower
bound, and we thus omit it. However, such a bound may be crucial for optimality [4].

Given an approximate surface-mesh pair (Γk, Tk), a forcing function Fk, and a discrete solution
Uk, (3.4) reveals that the behavior of the energy error ek is governed directly by the two local
error indicators ηk(T ), ζk(T ), and indirectly by λk(T ) due to definition (1.15). The procedure
ESTIMATE computes these quantities, along with ρk(T ) given by (1.17):

{ηk(T ), ζk(T ), λk(T ), ρk(T )}T∈Tk := ESTIMATE(Γ,Γk, Tk, Fk, Uk).

3.3 Procedure MARK

Let β1, β2 be two constants to be determined later, let Ek(T ) be the total error indicator given by

E2
k(T ) := η2

k(T ) + β1ζ
2
k(T ) + β2ρ

2
k(T ), (3.5)
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and set Ek :=
(∑

T∈Tk E
2
k(T )

)1/2. Given a surface-mesh pair (Γk, Tk), MARK enforces the following
marking of Tk: Given the parameter 0 < θ < 1, the set of marked elements Mk must satisfy

Ek(Mk) ≥ θEk(Tk), (3.6)

Marking (3.6) uses Dorfler’s strategy [11, 15, 16, 17, 18] and forces reduction of Ek as shown in
Lemmas 4.2 and 4.1. We refer to this procedure as

Mk := MARK(Tk, {Ek(T )}T∈Tk).

In spite of dealing with scaling constants β1, β2, we avoid separate Dörfler marking by each esti-
mator ηk, ζk, ρk [15, 16, 17, 18]. In fact, this may lead to suboptimal meshes according to [4].

3.4 Procedure REFINE

We start with an approximate surface-mesh pair (Γ0, T0) that is suitably labeled, and use bisection
with precise rules, such as newest vertex bisection for d = 3, to preserve mesh regularity. We thus
bisect an element of the approximate surface Γk and next lift the new node from Γk to Γ along the
(vertical) xd-axis. If (x, zk(x)) ∈ Γk is a new node obtained by refining T ∈ Tk, then it is lifted to
(x, z(x)) ∈ Γ to become a new node of Γk+1; see Figures 1 and 2. The new discrete surface Γk+1

is formed by interpolating new nodes and old nodes via zk+1 = Ik+1z ∈ Vk+1. Since Γ is C1, the
new surface Γk+1 is a better piecewise polynomial approximation of Γ than Γk asymptotically: if
Tk+1(T ) denotes the set of elements T ′ ∈ Tk+1 such that T̂ ′ ⊂ T̂ , then λk+1(T ′) ≤ λk(T ) for all
T ′ ∈ Tk+1(T ), whence λk(T ) is monotone. However, in the pre-asymptotic regime it may happen
that monotonicity fails.

T
x

P(x)

Figure 1: The element T ∈ Tk is bisected thereby
giving rise to the new node x. This node is lifted
(projected) to P (x) ∈ Γ along the vertical axis.

T

T1
T2

P(x)

Figure 2: Two new elements T1 and T2 in Tk+1

are formed joining the new node P (x) ∈ Γ with the
old nodes in Γk.

The design of REFINE takes this observation into account. REFINE bisects each marked element
inMk at least b ≥ 1 times and keeps the mesh conforming. This may lead to additional refinement
of surrounding elements. Moreover, REFINE enforces an increasingly better surface approximation
according to the following two criteria: given a parameter ξ < 1, REFINE guarantees that

λk+1(T ′) ≤ ξλk(T ) ∀ T ∈Mk, ∀ T ′ ∈ Tk+1(T ), (3.7)
λk+1(T ′) ≤ λk(T ) ∀ T ∈ Tk\Mk, ∀ T ′ ∈ Tk+1(T ), (3.8)

to obtain a new (finer) approximate surface-mesh pair (Γk+1, Tk+1). We refer to this procedure as

(Tk+1,Γk+1) := REFINE(Tk,Mk, {λk(T )}T∈Tk).

As a consequence of (3.7) and (3.8), the surface estimator λk satisfies the monotonicity property

λk+1 ≤ λk, ∀ k ≥ 0. (3.9)
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Remark 3.1. (Regularity of Γ) Since Γ is C1, both (3.7) and (3.8) can be achieved in finite steps.
Moreover, if Γ were Cm+1 with 1 ≤ m ≤ n (the polynomial degree), then λk(T ) would reduce
proportionally to hmT , with hT being the diameter of T ∈ Tk.

Remark 3.2. (Choice of ξ) If Γ is Cm+1 with 1 ≤ m ≤ n, then asymptotically we have
λk+1(T ′)/λk(T ) ≈ hmT ′/h

m
T ≤ 2−bm/(d−1), whence ξ ≥ 2−bm/(d−1) gives a natural lower bound

for ξ. With this choice, bisection alone guarantees the validity of (3.7) asymptotically.

Remark 3.3. (Interior node property) This refinement strategy avoids the interior node property
of Morin et al [16, 17, 18, 15]. This is quite convenient for implementation, especially for d = 4
because 6 bisections would be needed otherwise. This substantial improvement has been first
proposed in [4] for flat domains.

3.5 Adaptive Algorithm: AFEM

We choose parameters 0 < θ, ξ < 1, and let U−1 = 0. The adaptive algorithm consists of looping
through the procedures SOLVE, ESTIMATE, MARK, and REFINE as follows:

AFEM

1. Pick an initial approximate surface-mesh pair (Γ0, T0) and set k = 0;

2. Uk = SOLVE(Γk, Tk, Fk, Uk−1);

3. {ηk(T ), ζk(T ), λk(T ), ρk(T )}T∈Tk = ESTIMATE(Γ,Γk, Tk, Fk, Uk);

4. Mk = MARK({ηk(T ), ζk(T ), λk(T ), ρk(T )}T∈Tk);

5. (Tk+1,Γk+1) = REFINE(Tk,Mk, {λk(T )}T∈Tk);

6. Set k = k + 1 and go to Step 2.

4 Convergence of AFEM

In this section we derive several crucial properties of AFEM and use them to prove convergence.
Throughout this section we will use the notation

ek(ω) := ‖∇Γ(u− Uk)‖L2(ω) , Ek(ω) := ‖∇Γ(Uk+1 − Uk)‖L2(ω) ,

for any subdomain ω of Γ made of elements in Tk(Γ), and write ek, Ek whenever ω = Γ.

4.1 Basic Properties of AFEM

Recall first that 0 < θ, ξ < 1 are the user’s parameters of AFEM. We start with a perturbation
result for ζk, which reveals a strict reduction between consecutive steps provided Ek vanishes.

Lemma 4.1. (Reduction of geometric estimator) If µ1 := 1− ξ2 and δ > 0 is arbitrary, then

ζ2
k+1 ≤ (1 + δ)

(
ζ2
k − µ1ζ

2
k(Mk)

)
+ (1 + δ−1)λ2

kE
2
k. (4.1)

Proof. Invoking definition (1.15) and Young’s inequality with parameter δ > 0, we have

ζ2
k+1(T ) :=

∑
T ′∈Tk+1(T )

ζ2
k+1(T ′)

≤ λ2
k+1(T )

(
(1 + δ) ‖∇ΓUk‖2L2( eT ) + (1 + δ−1)E2

k(T̃ )
)
, ∀ T ∈ Tk;

(4.2)
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recall that Tk+1(T ) stands for the set of elements T ′ ∈ Tk+1 such that T̂ ′ ⊂ T̂ . We now fix T ∈ Tk
and distinguish two cases. Suppose first that T ∈Mk and use (3.7) to deduce

ζ2
k+1(T ) ≤ (1 + δ)ξ2ζ2

k(T ) + (1 + δ−1)λ2
k+1E

2
k(T̃ ).

Suppose next that T /∈Mk and use (3.8) to infer that

ζ2
k+1(T ) ≤ (1 + δ)ζ2

k(T ) + (1 + δ−1)λ2
k+1E

2
k(T̃ ).

To obtain (4.1) we simply add over T ∈ Tk and observe that the first terms on the right-hand sides
of the two previous expressions add up to

ξ2ζ2
k(Mk) + ζ2

k(Tk\Mk) = ζ2
k(Tk)− (1− ξ2)ζ2

k(Mk).

The proof is thus complete upon setting µ1 = 1− ξ2.

Lemma 4.2. (Reduction of energy error estimator) If µ2 = 1 − 2
b

d−1 and δ > 0 is arbitrary, then
there exists a positive constant C2 so that

η2
k+1 ≤ (1 + δ)

(
η2
k − µ2η

2
k(Mk)

)
+ (1 + δ−1)C2

(
E2
k + ζ2

k + ρ2
k

)
, (4.3)

where C2 depends on the mesh regularity of Tk(Ω), ‖∇z‖L∞(Ω) and the polynomial degree n.

Proof. This proof is similar to that of Lemma 4.1 with λk(T ) replaced by hT = |T̂ |
1
d−1 . There are,

however, some tricky details due to the fact that the operator changes with refinement. Observe
that if T ′ ∈ Tk+1(T ) then

‖∆k+1Uk+1 + Fk+1‖L2( bT ′) ≤ ‖∆kUk + Fk‖L2( bT ′) +
∥∥∆k+1

(
Uk+1 − Uk

)∥∥
L2( bT ′)

+ ‖∆k+1Uk −∆kUk‖L2( bT ′) + ‖Fk − Fk+1‖L2( bT ′),
Now, recall the expression (1.6) for the Laplace-Beltrami operator, namely

∆k+1V = ∆Ṽ − (∇Ṽ · νk+1)(div νk+1)− νk+1D
2Ṽ νTk+1,

along with the fact that derivatives of Ṽ are either derivatives of V̂ in Ω or zero. Applying this
with V = Uk+1 − Uk, and using an inverse inequality, together with (2.5), and (2.11) we get∥∥∆k+1

(
Uk+1 − Uk

)∥∥
L2( bT ′) .

1
hT ′

Ek(T );

here we have also used the estimate ‖div νk+1‖L∞(T ′) . 1
hT ′

from Lemma 2.7. Again by (1.6)

‖∆k+1Uk −∆kUk‖L2( bT ′) =
∥∥(∆Uk − (∇Uk · νk)(div νk)− νkD2Ukν

T
k

)
−
(
∆Uk − (∇Uk · νk+1)(div νk+1)− νk+1D

2Ukν
T
k+1

)∥∥
L2( bT ′)

.
1
hT ′
‖νk − νk+1‖L∞(T ′)‖∇ΓUk‖L2( eT ) ≤

1
hT ′

ζk(T ′),

due to an inverse inequality for D2Uk, (3.7)–(3.8) and (2.14) from Lemma 2.7. Finally,

‖Fk − Fk+1‖L2( bT ′) =
∥∥( q
qk
− q

qk+1

)
f
∥∥
L2( bT ′)

. ‖νk − νk+1‖L∞(T ′)‖f‖L2( bT ′) . λk(T ′)‖f‖L2( bT ′),
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again by (3.7)–(3.8). We thus obtain the following estimate to be used in conjunction with (1.13)

h2
T ′‖∆k+1Uk+1 + Fk+1‖2L2( bT ′) ≤ (1 + δ)h2

T ′‖∆kUk + Fk‖2L2( bT ′)
+ C(1 + δ−1)

(
E2
k(T̃ ′) + ζ2

k(T ′) + h2
T ′λ

2
k(T ′)‖f‖2

L2( bT ′)
)
. (4.4)

Now, for S′ ∈ Sok+1, we examine the jump term Jk+1(Uk+1)|S′ . If T ′+, T ′−, n+
k+1, n−k+1 denote

the two elements of Tk+1 sharing S′ and their side normals tangent to Γk+1, respectively, then the
expression (1.12) for Jk+1(Uk+1)|S′ can be rewritten as follows for each x ∈ S′:∣∣Jk+1(Uk+1)|S′

∣∣ =
∣∣∇k+1Uk+1|T ′+ −∇k+1Uk+1|T ′−

∣∣.
This is due to the fact that the component of ∇k+1Uk+1 tangential to S′ does not jump because
Uk+1 is globally continuous. Thus∣∣Jk+1(Uk+1)|S′

∣∣ ≤ ∣∣∇k+1(Uk+1 − Uk)|T ′+
∣∣+
∣∣∇k+1(Uk+1 − Uk)|T ′−

∣∣
+
∣∣∇k+1Uk|T ′+ −∇kUk|T ′+

∣∣+
∣∣∇k+1Uk|T ′− −∇kUk|T ′−

∣∣
+
∣∣∇kUk|T ′+ −∇kUk|T ′−∣∣.

Therefore, using a scaled trace theorem and inverse inequalities

‖Jk+1(Uk+1)‖L2(∂ bT ′) ≤ C

h
1/2
T ′

‖∇k+1(Uk+1 − Uk)‖L2(ωk+1( bT ′))
+

C

h
1/2
T ′

‖∇k+1Uk −∇kUk‖L2(ωk+1( bT ′))
+ ‖Jk(Uk)‖L2(∂ bT ′),

with a constant C depending only on mesh regularity of Tk(Ω), ‖∇z‖L∞(Ω), and the polynomial
degree n. Using Young’s inequality with parameter δ > 0 we have that

hT ′‖Jk+1(Uk+1)‖2
L2(∂ bT ′) ≤ (1 + δ)hT ′‖Jk(Uk)‖2

L2(∂ bT ′) + C(1 + δ−1)
(
E2
k(T ) + ζ2

k(T )
)
. (4.5)

Adding (4.4) and (4.5) over T ′ ∈ Tk+1(T ) we obtain

η2
k+1(T ) :=

∑
T ′∈Tk+1(T )

η2
k+1(T ′)

≤
(

max
T ′∈Tk+1(T )

hT ′

hT

)
(1 + δ)η2

k(Uk, T ) + C(1 + δ−1)
[
E2
k(T ) + ζ2

k(T ) + ρ2
k

]
,

with ρ2
k =

∑
T∈Tk λ

2
k(T )hk+1(T )2‖f‖2L2(T ). Since the meshsize obeys MARK and REFINE we see

that for all T ′ ∈ Tk+1(T )

hT ′ ≤

{
2−

b
d−1hT if T ∈Mk,

hT if T ∈ Tk\Mk.

Finally, the argument continues as in Lemma 4.1 and this completes the proof.

Lemma 4.3. (Reduction of inconsistency estimator) If µ3 := 1−ξ22−
2b
d−1 , then the following estimate

holds
ρ2
k+1 ≤ ρ2

k − µ3ρ
2
k(Mk). (4.6)

Proof. The proof is similar to that of Lemma 4.1 and is thus omitted.
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Since the finite element spaces Vk are no longer nested, the usual orthogonality property fails
[11, 16, 17, 18]. Orthogonality is replaced by quasi-orthogonality, very much in the spirit of [15].

Lemma 4.4. (Quasi-orthogonality) If Q = 8‖q‖3L∞(Ω) as in Lemma 2.4, then

e2
k+1 ≤ e2

k −
1
2
E2
k + 2Q2ζ2

k+1. (4.7)

Proof. We first set the bilinear forms

B(u, v) :=
∫

Γ

∇Γu ∇TΓ v and Bk(u, v) :=
∫

Γk

∇Γku ∇TΓkv.

By symmetry of B, we have

e2
k+1 = e2

k − E2
k − 2B(u− Uk+1, Uk+1 − Uk).

Since V := Uk+1 − Uk ∈ V̊k+1, we have

B(u− Uk+1, Uk+1 − Uk) = B(u, V )− B(Uk+1, V ) =
∫

Γ

fV − B(Uk+1, V ).

Invoking (3.3) and (1.9), we can write
∫

Γ
fV = Bk+1(Uk+1, V ). Therefore, (2.8) implies

B(u− Uk+1, Uk+1 − Uk) = Bk+1(Uk+1, V )− B(Uk+1, V ) =
∫

Γ

∇ΓUk+1Ek+1∇TΓ V.

In view of (1.14), (1.15), and (2.12), we see that

‖∇ΓUk+1Ek+1‖L2(Γ) ≤ Q

 ∑
T∈Tk+1

‖ν − νk+1‖2L∞( bT )
‖∇ΓUk+1‖2L2( eT )

1/2

= Qζk+1

and thus

−2B(u− Uk+1, V ) ≤ 2Q2ζ2
k+1 +

1
2
E2
k.

This shows (4.7), as desired.

4.2 Conditional Contraction Property of AFEM

We are now in a position to prove the main result of this paper.

Theorem 1. (Conditional contraction property of AFEM) If ‖q (ν − νk)‖L∞(Γ) ≤ 1/2 for all k ≥ 0,
then there exist positive constants γ0, β1, β2,Λ and α < 1, depending on the shape regularity of
T0(Ω), the Lipschitz constant ‖∇z‖L∞(Ω) of the function z defining Γ, the polynomial degree n ≥ 1,
and the parameters 0 < θ, ξ < 1 of AFEM so that if Ek is the total error estimator defined in MARK,
namely,

E2
k = η2

k + β1 ζ
2
k + β2 ρ

2
k

and λk ≤ Λ, then

e2
k+1 + γ0 E2

k+1 ≤ α
(
e2
k + γ0 E2

k

)
. (4.8)
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Proof. Let γ0, γ1, γ2 > 0 be parameters to be determined later and µ = min(µ1, µ2, µ3) < 1 with
µ1, µ2, µ3 given in Lemmas 4.1, 4.2 and 4.3. In view of (4.7), (4.1), (4.3), and (4.6) we can write

e2
k+1 + γ0 η

2
k+1 + γ1 ζ

2
k+1 + γ2 ρ

2
k+1 ≤ e2

k

+
(
− 1

2
+
[
γ0 C2 + (γ1 + 2Q2)λ2

k

]
(1 + δ−1)

)
E2
k

+ (1 + δ) γ0

(
η2
k − µ η2

k(Mk)
)

+ (1 + δ) γ1

(
ζ2
k − µ ζ2

k(Mk)
)

+
(
γ0 (1 + δ−1)C2 + (1 + δ) 2Q2

)
ζ2
k

+ (1 + δ) γ2

(
ρ2
k − µρ2

k(Mk)
)

+ γ0 (1 + δ−1)C2 ρ
2
k.

(4.9)

Regrouping terms of the third, fourth, and fifth rows containing the factor µ, and using (3.6), we
obtain

γ0 η
2
k(Mk) + γ1 ζ

2
k(Mk) + γ2 ρ

2
k(Mk) = γ0

(
η2
k(Mk) + β1 ζ

2
k(Mk) + β2 ρ

2
k(Mk)

)
≥ γ0 θ

2
(
η2
k + β1 ζ

2
k + β2 ρ

2
k

) (4.10)

provided
β1 =

γ1

γ0
, β2 =

γ2

γ0
.

We split the term η2
k into two equal pieces and replace one by the upper bound from Lemma 3.1:

η2
k ≥ C−1

1 e2
k − ζ2

k .

Therefore

e2
k+1 + γ0 η

2
k+1 + γ1 ζ

2
k+1 + γ2 ρ

2
k+1 ≤

(
1− µγ0 (1 + δ) θ2

2C1

)
e2
k

+ γ0 (1 + δ)
(

1− µ θ2

2

)
η2
k

+ γ1

(
(1 + δ) (1− µθ2) + (1 + δ)

2Q2

γ1
+
γ0

γ1
(1 + δ−1)C2

(
1 +

δ µ θ2

2C2

))
ζ2
k

+ γ2

(
(1 + δ) (1− µ θ2) +

γ0

γ2
(1 + δ−1)C2

)
ρ2
k

+
(
− 1

2
+ γ0 (1 + δ−1)C2 + (γ1 + 2Q2)(1 + δ−1)λ2

k

)
E2
k.

We now choose the parameters γ0, γ1, γ2, and δ. We start with δ being chosen sufficiently small
so that

(1 + δ)
(

1− µ θ2

2

)
= 1− µ θ2

4
= α1 < 1.

We next choose γ0 in such a way that

1
4

= γ0 (1 + δ−1)C2 ⇒ γ0 (1 + δ) =
δ

4C2
.

Since, as γ1 ↑ ∞,

(1 + δ) (1− µ θ2) +
(1 + δ)2Q2

γ1
+
γ0 (1 + δ−1)C2

γ1︸ ︷︷ ︸
=1/(4γ1)

(
1 +

δ µ θ2

2C2

)
−→ (1 + δ) (1− µ θ2),
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we select γ1 > 0 so that

(1 + δ) (1− µ θ2) +
(1 + δ)2Q2

γ1
+

1
4γ1

(
1 +

δ µ θ2

2C2

)
= 1− µ θ2

4
= α1;

hence the prefactor of ζ2
k becomes α1 γ1. Likewise, we pick the constant γ2 > 0 so that

(1 + δ) (1− µ θ2)︸ ︷︷ ︸
<1−µθ24

+
γ0 (1 + δ−1)C2

γ2︸ ︷︷ ︸
=1/(4γ2)

= 1− µ θ2

4
= α1,

whence the prefactor of ρ2
k is α1 γ2. Finally, the multiplier of ek becomes

1− µ δ θ2

8C1C2
= α0 < 1.

Let now α := max(α0, α1) < 1 and the threshold

Λ :=
1

2
√

(γ1 + 2Q2)(1 + δ−1)
.

Then we find the relation

e2
k+1 + γ0 η

2
k+1 + γ1 ζ

2
k+1 + γ2 ρ

2
k+1︸ ︷︷ ︸

=γ0 E2k+1

≤ α
(
e2
k + γ0 η

2
k + γ1 ζ

2
k + γ2 ρ

2
k︸ ︷︷ ︸

=γ0 E2k

)
+

1
4

(
− 1 +

λ2
k

Λ2

)
E2
k

and conclude that for λk ≤ Λ we obtain a contraction, as asserted.

Remark 4.1. (Simpler proof) This proof does not use the a posteriori lower bound nor the interior
node property of Morin et al. [16, 17, 18]. This is quite convenient for implementation, especially
for d ≥ 4. The analysis is in the spirit of Cascón et al [4], but a few new ingredients are added to
account for geometry.

Remark 4.2. (Polynomial degree) This proof is valid for any polynomial degree n ≥ 1, which does
not enter explicitly because we avoid using a lower bound.

5 Numerical Experiment

To illustrate our main result, we present a numerical experiment based on the AFEM described
above. The algorithm was implemented within the finite element toolbox ALBERTA developed
by Schmidt and Siebert [20], and the graphics were produced with GMV [19].

We use our AFEM to compute approximate solutions of the Laplace-Beltrami operator on Γ
with homogeneous Dirichlet boundary conditions, where Γ is the piecewise smooth graph of

z(x, y) =

{
0.25 sin(2πx) sin(4πy), if xy > 0,
0, otherwise,

over the region Ω := (−0.5, 1.5) × (−1.5, 0.5) \ [0.5, 1, 5) × (−1.5,−0.5], i.e., the usual L-shaped
domain shifted 0.5 to the right and 0.5 downward. The surface Γ has a variable curvature and
exhibits jumps of the normal across the coordinate axes (see Figure 4, top row); Γ is Lipschitz.

The exact solution u is unknown to us but satisfies the boundary value problem:{
−∆Γu = f in Γ,

u = 0 on ∂Γ,
with f(x, y) = 1− 5e−50[(x−0.5)2+(y+0.05)2].
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We thus expect u to exhibit a singularity at the re-entrant corner, plus some interesting behavior
around the (negative) peak of f , namely at (0.5,−0.05), along with large variations (in Ω) where
the surface oscillates, especially near parts of ∂Ω.

We implemented AFEM with polynomial degree n = 1 and parameters:

θ = 0.5, β1 = 1, β2 = 1, and ξ = 0.9. (5.1)

The number of bisections b performed to marked elements was set to b = 2, which is customary
for two dimensional meshes. The constant C1 of the upper bound (3.4) was set to one which, in
contrast to the other parameters in (5.1), has no effect in the behavior of AFEM; C1 is important
to stop AFEM reliably. Even though our theory guarantees a contraction for certain values of
parameters β1 and β2, we found that the simple choice made here leads to linear convergence and
a quasi-optimal behavior of AFEM, as described below.

Iter. Number of Marked elements Estimators

k elements (3.6) (3.7)–(3.8) ηk λk ρk ζk (η2
k + ζ2

k)1/2

0 24 12 60 1.621 1.180 0.449 0.7214 1.682
1 280 15 0 0.716 1.056 0.459 0.2868 0.850
2 364 37 0 0.633 1.056 0.417 0.2713 0.758
3 555 27 0 0.546 1.056 0.304 0.2093 0.625
4 714 38 0 0.494 1.056 0.265 0.1817 0.560
5 940 51 0 0.433 1.056 0.242 0.0985 0.496
6 1244 78 0 0.387 0.974 0.187 0.0741 0.430
7 1721 117 0 0.333 0.816 0.165 0.0612 0.372
8 2427 184 16 0.285 0.816 0.139 0.0474 0.317
9 3498 334 10 0.241 0.816 0.114 0.0325 0.266

10 5339 312 29 0.196 0.816 0.091 0.0215 0.216
11 7237 486 21 0.169 0.816 0.078 0.0159 0.186
12 10118 611 55 0.143 0.816 0.067 0.0116 0.158
13 13687 1030 55 0.124 0.544 0.058 0.0089 0.137
14 19441 1391 201 0.105 0.544 0.048 0.0068 0.115
15 28246 1590 120 0.087 0.544 0.040 0.0045 0.096
16 37563 2305 96 0.075 0.544 0.035 0.0033 0.083
17 49772 4546 370 0.065 0.544 0.030 0.0025 0.072
18 74457 4595 398 0.054 0.303 0.024 0.0018 0.059
19 100037 6510 881 0.046 0.303 0.021 0.0013 0.051
20 139461 10946 736 0.039 0.303 0.018 0.0009 0.043

Table 1: Numerical information on the behavior of AFEM. Iteration number (column 1), number of elements
(column 2), number of elements marked for refinement (columns 3-4), and error estimators (columns 5-9). Column
3 displays the number of elements marked in order to fulfill Dörfler’s condition (3.6), and the fourth column displays
the total number of additional elements marked (in an inner loop) in order to fulfill (3.7) and (3.8). The last column
displays the value of the upper error bound (3.4) in Lemma 3.1 with C1 = 1, which decreases as N−1/2, with N
being the number of elements. The decay of the various estimators can be seen in Figure 3.

In Table 1 we present all the numerical information about the behavior of AFEM. The first
and second column indicate the iteration number and the number of elements of the current mesh,
respectively. The third column displays the number of elements marked in order to fulfill Dörfler’s
condition (3.6), whereas the fourth column displays the total number of additional elements marked
(in an inner loop) in order to fulfill (3.7) and (3.8). This number is high in the first iteration due to
bad surface resolution, but it is then zero for seven consecutive iterations. Afterwards the number
of elements marked to fulfill (3.7)–(3.8) stays around an eight percent of the number of elements
marked to fulfill (3.6). Another run of AFEM with ξ = 0.95 instead of ξ = 0.9, but not reported
here, marked 60 elements in the first iteration (in order to ensure (3.7)–(3.8)), and zero in all the
subsequent iterations; this is consistent with Remark 3.2. Finally, the last five columns of Table 1
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display the a posteriori error estimators that guide AFEM, namely, the energy error estimator ηk,
the surface estimator λk, the term ρk measuring the lack of consistency of the right-hand side, and
the geometric estimator ζk. The last column displays the upper error bound (3.4) in Lemma 3.1
with C1 = 1.

Figure 3 depicts the behavior of all the a posteriori error estimators introduced in the manuscript.
All of them, except for λk, decrease at the expected optimal rate N−1/2 for linear finite elements.
In particular, we can see that the upper error bound

(
η2
k + ζ2

k

)1/2 of Lemma 3.1 with C1 = 1 (last

Figure 3: Logarithmic plot of estimators versus number N of elements. All of them, except for λk, decrease at

the expected optimal rate N−1/2 for linear finite elements. In particular, the upper error bound
`
η2

k + ζ2
k

´1/2
of

Lemma 3.1 with C1 = 1 (last column of Table 1) exhibits optimal decay with respect to the number of elements,
indicating the same behavior for the exact energy error ‖∇Γ(u− uk)‖L2(Γ).

column of Table 1) decays optimally with respect to the number of elements, indicating that the
same happens with the exact error, which is unknown to us. The term ρk measures the lack of
consistency of the right-hand side with the discrete surface and decreases faster than the other
quantities, allowing us to conclude that it has a minimal effect on the behavior of the algorithm.
The quantity λk measures surface resolution, regardless of the solution being computed, and ex-
hibits a suboptimal decay. It turns out, however, that this is not essential for the optimal decay of
the total error estimator Ek because the only (theoretical) requirement for λk is that it is locally
monotonically decreasing—which is guaranteed by AFEM—and also that it is below the threshold
Λ. This threshold is unknown but plays no role in the decision making of AFEM. However, Λ could
be estimated from the proof of Theorem 1, if desired. The reported values of λk are relatively large
and might not satisfy λk ≤ Λ for the theory to apply (see Theorem 1), thereby suggesting that the
theory is a bit pessimistic and cannot fully explain the optimal behavior of AFEM.

Finally, in Figure 4 we show three meshes at iteration steps k = 6, 9, 12, as viewed from the
point (1,−1, 1) in space (first row), and also from top (second row). These meshes reflect the
relatively large variation of the curvature of Γ near the pieces {−0.5}× [−1.5, 0] and [0, 1.5]×{0.5}
of ∂Ω as well as the re-entrant corner, but not quite the steep behavior of the forcing function f at
(0.5,−0.05). We also observe that the meshes in the second quadrant are about uniform because
both Γ is flat and the solution is smooth. The jump singularities of Γ across the cordinate axes do
not yield further refinement because they are exactly matched by the initial mesh. In the third row
of Figure 4 we depict the contourlines of the discrete solutions in order to reveal their behavior.
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Figure 4: Meshes and discrete solutions after 6, 9, and 12 iterations of AFEM, respectively. The meshes show that
mesh refinement is driven by resolution of both the corner singularity at the origin as well as the curvature of the
surface, whereas the peak of the source term f plays a secondary role. The last row depicts the contourlines of the
corresponding discrete solutions, viewed from top, which show a mild effect of f around its peak, indicated with a
dot in the third bottom figure.
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