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Abstract Many problems of theoretical and practical interest involve finding an
optimum over a family of convex functions. For instance, finding the projection
on the convex functions in Hk(�), and optimizing functionals arising from some
problems in economics. In the continuous setting and assuming smoothness, the con-
vexity constraints may be given locally by asking the Hessian matrix to be posi-
tive semidefinite, but in making discrete approximations two difficulties arise: the
continuous solutions may be not smooth, and functions with positive semidefinite
discrete Hessian need not be convex in a discrete sense. Previous work has con-
centrated on non-local descriptions of convexity, making the number of constraints
to grow super-linearly with the number of nodes even in dimension 2, and these
descriptions are very difficult to extend to higher dimensions. In this paper we pro-
pose a finite difference approximation using positive semidefinite programs and dis-
crete Hessians, and prove convergence under very general conditions, even when the
continuous solution is not smooth, working on any dimension, and requiring a lin-
ear number of constraints in the number of nodes. Using semidefinite programming
codes, we show concrete examples of approximations to problems in two and three
dimensions.
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2 N. E. Aguilera, P. Morin

1 Introduction

Convex and concave functions appear naturally in many branches of science such
as biology (growth), medicine (dose-response), or economics (utility, production or
costs), spurring in turn the interest of other areas, for example, statistics. It is no
surprise, then, that many problems of theoretical and practical interest involve the
optimization of a functional over a family of convex functions.

A particularly important case is when the functional to be minimized is the norm
of some normed function space V , i.e., given f ∈ V find

min
u∈C

‖u − f ‖V ,

where C is a family of convex functions in V . Typical choices are the spaces L2(�)

or H1(�), and, in general, the W k,p(�) spaces, where � is a convex domain in R
d .

Sometimes the convexity is a reasonable shape assumption on the model, which
could be replaced by or added to other shape constraints such as radial symmetry,
harmonicity or upper and lower bounds. This is the case, for example, of Newton’s
problem of minimal resistance (see, e.g. [3,4,12,13]).

More surprisingly perhaps, the convexity constraint may be a consequence of the
model, as in the design of some mechanisms in economics [14,17]. Actually, our inter-
est in the subject arose from one of these problems, which we will call the monopolist
problem, and is described in some detail in Sect. 6.1. In this problem we wish to find

max
u∈C

∫

Q

(∇u(x) · x − u(x)) f (x) dx, (1.1)

where Q = [0, 1]d , f is a non-negative probability density function over Q, and C is
a family of convex functions on Q with some further properties.

The monopolist problem is numerically very challenging since, unlike the problems
coming from physics, the space dimension d may be much higher than 2 or 3.

There is a big qualitative jump going from one to more dimensions when dealing
with convexity constraints. This can be appreciated readily by looking at the statis-
tics literature, where the one dimensional convex regression or density problem has
been considered both theoretically and numerically, and using different measuring
functionals (see, e.g. [1,8,9,15]), but very little has been done numerically in two or
more dimensions. In this regard, it is worth mentioning the work by Shih, Chen and
Kim [18], who use appropriate splines in the MARS multivariate adaptive regression
splines (MARS) algorithm.

One of the main difficulties in obtaining discrete approximations to optimization
problems over convex functions lies in giving a local and finite description of convex
functions if d > 1. Though this could be done for smooth functions of continuous
variables by asking the Hessian matrix to be positive semidefinite at all points, there
is no similar characterization for discrete functions on meshes. As a matter of fact, we
show in Examples 2.3 and 2.4 that this cannot be done easily.
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Approximating optimization problems over convex functions 3

It goes without saying that there is a lot of work done on convex functions of contin-
uous variables, as exemplified by the classical book by Rockafellar [19]. Traditionally,
this work leans more on properties satisfied by convex functions rather than on prop-
erties that imply convexity. In particular, very little has been done on local properties
guaranteeing convexity.

For discrete variables, there is a rather large work done by the discrete mathematics
community for fixed lattices, and a number of definitions for discrete convex functions
have been proposed (see, e.g. [16]). Again, usually these definitions are non-local.

As far as we know, there exists very few literature on optimization problems on con-
vex functions in dimensions two or more, either theoretically or numerically. Besides
those already mentioned (and the references therein), let us cite three more which are
prominent in the context of our work.

• Carlier and Lachand-Robert [5] obtained the C1 regularity of a variant of the
monopolist problem, substituting the functional in (1.1) for

∫

�

(
−1

2
|∇u|2 + x · ∇u − u(x)

)
f (x) dx,

under some restrictions on the domain � and the density f . They obtained also
C1 regularity for convex minimizers of functionals of the form

∫

�

(A(x, u)∇u(x) · ∇u(x) + f (x)u(x)) dx .

• Carlier, Lachand-Robert and Maury [6] proposed a numerical scheme for mini-
mizers of functionals of the type

∫

�

j (x, u(x),∇u(x)) dx,

on closed convex subsets of convex functions of H1(�) or L2(�), where j is a
quadratic function of u and ∇u, and � ⊂ R

2. We will discuss their approach in
the next section [after the inequalities (2.5)].
As Carlier et al. [6] point out, their work encompasses the problem of finding

min
∫

�

|u − f |2 dx subject to u ∈ L2(�), u convex, u ≤ f,

for given f ∈ L2(�), i.e., a L2-norm projection, and this problem is equivalent
to that of finding the convex envelope f ∗∗ of f . Thus, minimizing over convex
functions and finding the convex envelope of a function are two quite related tasks.

• Being one of the main problems in computational geometry, there are a number of
well established codes for finding the convex hull of a set of points in R

d , which
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4 N. E. Aguilera, P. Morin

are very efficient in low dimensions. Hence, it is natural to try to use these codes
to approximate optimization problems on convex functions, an approach which
Lachand-Robert and Oudet [11] applied to several problems.
It would be very interesting to see whether these ideas could be carried over, since
the convex hull codes are quite fast in low dimensions.

Our approach, based on semidefinite programming, takes a different direction from
those mentioned.

Let us recall that a semidefinite program is an optimization problem of the form

min c · x

subject to
x1 A1 + · · · + xn An − A0 � 0,

x ∈ R
n,

(1.2)

where c ∈ R
n , A0, A1, . . . , An are symmetric m × m matrices, and A � 0 indicates

that the symmetric matrix A is positive semidefinite. By letting the matrices Ai be
diagonal, we see that the program (1.2) is a generalization of linear programming (and
includes it strictly). Thus, in a semidefinite program the constraints can be a mixture
of linear inequalities and positive semidefinite requirements.

In this paper we give a theoretical framework for approximating many optimization
problems on convex functions using a finite differences scheme which imposes a
positive semidefinite constraint on a discretization of the Hessian matrix.

Although not linear, our approach seems very natural and has many advantages.
Being of a local nature, the number of constraints grows only linearly with the number
of nodes, and it works for any dimension of the underlying space. Notwithstanding the
already mentioned counterexamples (2.3 and 2.4) of the relation between convexity
and positive semidefinite Hessian, we will show that for many problems we obtain
convergence to a continuous optimum. This convergence holds even for non-smooth
optima, as those arising when projecting in the L∞ norm or in some problems of the
type given by Eq. (1.1).

In practice, our definition can be used to advantage by using the existing efficient
semidefinite codes and, furthermore, it is very simple to program in higher dimensions.

As a final remark, we think that our approach might be a first step to deal with
other problems where convexity is a consequence of the model, such as transportation
problems where the cost is quadratic, i.e., for solving the Monge–Ampère equations,
a prime example of fully non-linear differential equations.

This article is organized as follows.
In Sect. 2 we summarize some techniques that could be used to deal with the

numerical approximation of optimal convex functions, showing their strengths and
weaknesses, and introduce the discrete Hessian.

In Sect. 3 we give different characterizations of smooth convex functions of contin-
uous variables, which allow us to extend the definition of the Hessian to C1 functions
in terms of averages.

The heart of the paper is Sect. 4: in order to have a good definition of discrete
convexity, we need to show that any convex function of continuous variables may be
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Approximating optimization problems over convex functions 5

approximated by its discrete counterparts, and conversely, that a converging sequence
(in a suitable norm) of discrete convex functions will do so to a convex function of
continuous variables.

We show in this section that the approximation of the discrete functions to the limit
u is uniform in u and its derivatives if u is smooth, and uniform in u over compact
subsets of �, if u is merely convex and bounded (and hence continuous). Although our
definition is stated using the Hessian, if a sequence of discrete functions converges to a
function which is not C2 or even C1, still convexity of the limit function is guaranteed.

In Sect. 5 we pose a general structure for optimization problems on convex functions
which fits the results of the previous sections, and may be applied to several important
problems. In addition, error bounds may be obtained if the continuous optimal solution
is smooth.

The results of Sects. 3–5 are somewhat independent of semidefinite programming.
However, as explained in Sect. 2, for many problems of interest the functional and
constraints involved may be expressed as a semidefinite program, and we present in
Sect. 6 numerical examples showing that the current codes make it feasible to use our
scheme on them.

We begin Sect. 6 by considering the monopolist problem in two and three dimen-
sions, comparing our results to the analytical solution when f = 1 in (1.1). We
continue by showing some norm projections, exploring the behavior under different
functionals of an example given by Carlier et al. [6]. Moreover, we exhibit an explicit
example in which the L∞ projection is not unique. We finish the section on numerical
examples by showing how our scheme could be used to fit a (discrete) convex function
to noisy data given on the nodes of a regular mesh, using the L2 norm (i.e., a least
squares approach), and also the L1 and L∞ norms, which are not often seen.

2 Dealing with convex functions

In this section we present some ideas and techniques that could be used to approximate
numerically an optimal convex function. For the sake of simplicity, we will work on
the unit d-dimensional cube in R

d , Q = [0, 1]d .
If d = 1 and

x0 = 0 < x1 < · · · < xn = 1, (2.1)

is a discretization of [0, 1], then a convex function u defined on [0, 1] satisfies the
inequalities

u(xi ) − u(xi−1)

xi − xi−1
≤ u(xi+1) − u(xi )

xi+1 − xi
for i = 1, . . . , n − 1. (2.2)

Conversely, if a function u defined only in the mesh points {x0, . . . , xn} satisfies
the inequalities (2.2), we can always extend it linearly in the intervals [xi−1, xi ],
i = 1, . . . , n, so that the resulting piecewise linear function will be convex on [0, 1].

Thus, the inequalities (2.2) may be used to define discrete convexity in one dimen-
sion. It is clear that—via the piecewise linear extension—we can approximate any
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6 N. E. Aguilera, P. Morin

convex function in [0, 1]. On the other hand, as we show in Lemma 2.1, under some
adequate assumptions if a sequence of discrete convex functions [satisfying (2.2) for
each corresponding subdivision] converges pointwise, then the limit defines a unique
convex function in [0, 1].

Let h be given, 0 < h < 1/2, and suppose M = {x0, . . . , xn} is a subdivision of
[0, 1] satisfying (2.1) and such that

max
1≤i≤n

|xi − xi−1| ≤ h. (2.3)

Let u be defined on M and satisfy (2.2). For a given ε, h < ε < 1/2, let us consider

x = max {x ∈ M : x ≤ ε} and x = min {x ∈ M : x ≥ 1 − ε}.

From (2.2) we see that

−|u(x)− u(0)|
ε

≤ u(x)− u(0)

x
≤ u(xi+1)− u(xi )

xi+1 − xi
≤ u(1)− u(x)

1 − x
≤ |u(1)− u(x)|

ε

for all xi , xi+1 ∈ M such that x ≤ xi , xi+1 ≤ x . Therefore, if

|u(xi )| ≤ M for all xi ∈ M,

we have

C ≤ u(xi+1) − u(xi )

xi+1 − xi
≤ C for all ε ≤ xi , xi+1 ≤ 1 − ε, (2.4)

where C and C are constants depending only on ε and M (but not on u or M). In
other words, if u is extended as a piecewise linear function to all of [0, 1], the resulting
function is uniformly Lipschitz on compact subsets of (0, 1).

Hence,

Lemma 2.1 Let (Mh)h be a sequence of meshes in [0, 1], h ↓ 0, satisfying (2.3) and
satisfies (2.2) for each h, and such that Mh ⊂ Mh′ for h > h′. Suppose uh is defined
in Mh for each h, and the sequence (uh)h is such that for all x ∈ ∪hMh, limh uh(x)

exists and is finite, and let

u(x) = lim
h

uh(x) for x ∈ ∪
h

Mh .

Then u may be extended to all of [0, 1] as a continuous convex function in a unique
way. Moreover, the convergence of uh (extended piecewise linearly) to u is uniform in
compact subsets of (0, 1).

Also, by the Arzela–Ascoli theorem,
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Approximating optimization problems over convex functions 7

Lemma 2.2 Let (Mh)h be a sequence of meshes as in the previous lemma. Suppose
M > 0 is given, and that for each h a function uh is defined in Mh and satisfies (2.2)
so that

|uh(x)| ≤ M for all x ∈ Mh and all h,

and assume uh is extended to all of [0, 1] piecewise linearly.
Then, there exists a subsequence of (uh′) of (uh) converging to a continuous convex

function u defined on [0, 1]. Moreover, the convergence of the subsequence (uh′) to u
is uniform in compact subsets of (0, 1).

Thus, from a theoretical point of view, the discrete functions satisfying (2.2) are
well understood.

From the numerical point of view, when used in a discretization of an optimization
problem, the constraints coming from the inequalities (2.2) are linear, and solving the
resulting discrete optimization problem with them is usually not much harder than
solving it without them.

Hence, the case d = 1 poses no major trouble.
For d > 1 it will be more convenient to work only with regular meshes (or grids)

on Q = [0, 1]d . Thus, for fixed h > 0 (h = 1/n for some n ∈ N), the mesh Mh

will consist of all points x ∈ R
d ∩ Q of the form x = hz with z ∈ Z

d . Denoting by
Q̊ = Q \ ∂ Q the interior of Q, we set

M̊h = Mh ∩ Q̊, ∂Mh = Mh ∩ ∂ Q,

and denote by Uh the set of real valued functions defined on Mh .
A first simple idea to extend the inequalities (2.2) to more dimensions, is to consider

the set of functions uh ∈ Uh satisfying the convexity constraints

uh(x + hei ) + uh(x − hei ) ≥ 2 uh(x) for all x ∈ M̊h and i = 1, . . . , d,

where ei denotes the i th vector of the canonical basis of R
d .

This set of discrete functions is very appealing because the convexity is modelled
by using only O(number of mesh points) linear constraints, as in the case d = 1. As
we have seen, this approach is exact in one dimension, and gives satisfactory results
in many cases in more dimensions (in particular for some of the specific examples
treated later in Sect. 6.1), but there is no guarantee of convexity in the limit function if
d > 1. In fact, by taking the interpolant, with this set we can certainly approximate any
function of continuous variables which is convex, but we can also approximate other
functions. For example, we may approximate u(x1, x2) = x1x2 which is linear—and
thus convex—in each coordinate direction, but not convex in Q ⊂ R

2.
This shows that the definition of discrete convexity should be done with more care:

when d > 1, we have to take into account every possible direction.
It is reasonable, then, to say that a discrete function is convex if

uh(x + y) + uh(x − y) ≥ 2uh(x) for all x, y such that x ± y ∈ Mh . (2.5)
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8 N. E. Aguilera, P. Morin

Since as h goes to 0 the possible directions become dense, it is possible (under some
conditions) to regain convexity in the limit as we had for one dimension.

In a way, this is the approach followed by Carlier et al. [6]. In a two dimensional
setting, they consider discrete convex functions which are restrictions to a mesh of
convex functions of continuous variables, and show that this definition is equivalent
to an intrinsic one, stated only in terms of the value of the function at the grid points,
similar to (2.5). The problem with this description is that it is non-local, and the
number of constraints needed in two dimensions (after pruning) reportedly grows
approximately as N 1.8, where N is the number of nodes in the grid. Moreover, this
approach is very difficult to extend to higher dimensions.

In order to keep the definition of discrete convexity local, another possibility is to
consider discretizations of the Hessian matrix, as we do in this work.

For u ∈ Uh and x ∈ Mh , we define the (forward) first order finite differences by

�h,i u(x) = u(x + h ei ) − u(x)

h
, i = 1, . . . , d,

and the second order finite differences by

�2
h,i i u(x) = u(x + h ei ) − 2 u(x) + u(x − h ei )

h2 , i = 1, . . . , d,

or, if i �= j , by

�2
h,i j u(x) = 1

4 h2

(
u(x + h ei + h e j ) − u(x − h ei + h e j )

− u(x + h ei − h e j ) + u(x − h ei − h e j )
)
.

Clearly, not all of these finite differences are defined for points in ∂Mh . Therefore,
when mentioning �h,i u(x) or �2

h,i j u(x) for x ∈ Mh , we will implicitly assume that
x and i (and eventually j) are such that the corresponding finite difference is well
defined at x .

Finally, we define the discrete Hessian of u ∈ Uh at x ∈ M̊h , as the symmetric
matrix Hhu(x) ∈ R

d×d whose i, j entry is �2
h,i j u(x).

We are faced now with two issues:

1. How can a discrete optimization problem with positive semidefinite discrete
Hessian constraints be solved?

2. Once we found a discrete solution, how does it approximate the continuous
solution?

As mentioned in the introduction, for the first issue we will use the semidefinite
programming model (1.2), where the objective is linear and the constraints are positive
semidefinite. Thus, if the objective of the continuous problem is not linear, we must
rewrite it as a constraint. However, it is worth mentioning that not every functional
may be readily modelled as a positive semidefinite constraint, an example of such
functionals being
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Approximating optimization problems over convex functions 9

∫

�

1

1 + |∇u|2 dx,

arising in Newton’s problem of minimal resistance.
Although this method may not be used for all functionals, it can be used in

many cases as we now illustrate. The interested reader is referred to the article by
Vandenberghe and Boyd [20] for other possibilities.

In what follows we associate with each mesh node Pk , k = 1, . . . , N , the unknown
value uk , the discrete Hessian Hh(Pk), and a d-dimensional cube Qk centered at Pk

of measure |Qk |, so that
∑

k |Qk | = |Q|.
L1 projection. The program

min
∫

Q

|u − f | dx = min
∑

k

∫

Qk

|u − f | dx,

subject to u convex, is modeled by adding N more unknowns t1, . . . , tN (for a total
of 2N ) as

min
∑

k

tk

subject to ∫

Qk

|u − f | dx ≤ tk, k = 1, . . . , N ,

Hh(Pk) � 0, k = 1, . . . , N .

In turn, the constraints of the form

∫

Qk

|u − f | dx ≤ tk,

are lumped as |uk − f (Pk)| |Qk | ≤ tk , and finally modeled as the linear inequalities

−uk |Qk | + tk ≥ − f (Pk) |Qk |,
uk |Qk | + tk ≥ f (Pk) |Qk |.

L2 projection. This is analogous to the L1 projection:

min
∑

k

tk

subject to
(uk − fk)

2 |Qk | ≤ tk, k = 1, . . . , N

Hh(Pk) � 0, k = 1, . . . , N ,
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10 N. E. Aguilera, P. Morin

and the constraints of the form (uk − fk)
2 |Qk | ≤ tk are written in the form

[
tk (xk − fk)

√|Qk |
(xk − fk)

√|Qk | 1

]
� 0.

The H1 projection is handled in a similar way.
L∞ projection. This is analogous to the other projections, except that we only need
to add one more variable t (instead of N ), obtaining the discrete program

min t

subject to
−uk + t ≥ − f (Pk), k = 1, . . . , N ,

uk + t ≥ f (Pk), k = 1, . . . , N ,

Hh(Pk) � 0, k = 1, . . . , N .

The next issue is to see how well the discrete solutions of the semidefinite program
approximate the continuous convex solution.

Our first hope is that Hhu(x) � 0 will be equivalent to some version of convexity
of discrete functions, for example to the one given by the inequalities (2.5). The next
examples show that this is not true. The first one shows that a non-convex function
may have a positive semidefinite discrete Hessian, and the second one shows that the
discrete Hessian may not be positive semidefinite for some convex functions.

Example 2.3 Let us consider d = 2, and u defined on the 2-dimensional 2 × 2 grid
M1/2 by

u(0, 1) = 1, u(1/2, 1) = 1, u(1, 1) = 1,

u(0, 1/2) = 1/2, u(1/2, 1/2) = 5/8, u(1, 1/2) = 1,

u(0, 0) = 0, u(1/2, 0) = 1/2, u(1, 0) = 1.

We may check that (with h = 1/2),

Hhu(1/2, 1/2) =
[

1 −1
−1 1

]
,

whose eigenvalues are 2 and 0 [with eigenvectors (1,−1) and (1, 1)], and is thus
positive semidefinite.

However, the restriction to the diagonal x1 = x2 is not convex:

u(0, 0) + u(1, 1)

2
= 1

2
<

5

8
= u(1/2, 1/2).

Example 2.4 Consider the same grid of the previous example and u defined by

u(0, 1) = 8/15, u(1/2, 1) = 8/15, u(1, 1) = 1,

u(0, 1/2) = 1/30, u(1/2, 1/2) = 1/2, u(1, 1/2) = 1,

u(0, 0) = 0, u(1/2, 0) = 1/2, u(1, 0) = 1.
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We see that u is the restriction to Mh of the convex function

max

{
x1,

14x1 + x2

15
, x2 − 7

15

}
,

but

Hhu(1/2, 1/2) = 1

15

[
2 −23

−23 2

]
,

which has eigenvalues 5/3 and −7/5, and hence is not positive semidefinite.

Notwithstanding these examples, in Sect. 4 we will show that, under suitable con-
ditions, by asking for positive semidefinite discrete Hessians we may conveniently
approximate continuous convex functions, and obtain variants of Lemmas 2.1 and 2.2.

However, we will need some previous results which are tackled in the following
section.

3 Convex functions of continuous variables

In this section we deal with variants of the Hessian matrix, initially defined for C2

functions, which allow us to characterize convexity for C1 functions locally.
Let us start by introducing some more precise notation:

• The distance from a point x to a set A will be denoted by dist(x, A).
• If x ∈ R

d and h > 0, Qh(x) = {y ∈ R
d : |yi − xi | ≤ h for all i = 1, . . . , d}.

• The gradient of u is denoted by ∇u = (∂1u, . . . , ∂du), and we write ∂2
i j for ∂i∂ j .

• If � ⊂ R
d is an open set, we denote by Ck(�) the set of functions having all

derivatives up to order k continuous on �, and by Ck(�) the set of functions
having all derivatives up to order k uniformly continuous in �. If � is omitted,
Ck = Ck(Q).

Let ϕ be a non-negative, real valued function in C∞
0 , vanishing outside {x ∈ R

d :
|x | < 1}, and such that

∫
Rd ϕ(x) dx = 1, and for ε > 0 define ϕε(x) = ε−d ϕ(ε−1x).

The function

uε(x) = u ∗ ϕε(x) =
∫

Rd

u(x − y) ϕε(y) dy, (3.1)

defined for functions u and points x whenever the right hand side makes sense, has
many interesting well known properties, and we state some of them without proof,
referring the reader to, e.g., the book by Ziemer [22, Theorem 1.6.1 and Remark 1.6.2].

Theorem 3.1 1. If u ∈ L1
loc(R

d), then for every ε > 0, uε ∈ C∞(Rd) and ∂αuε =
(∂αϕε)∗u, for every multi-index α, where for α = (α1, . . . , αd), ∂α = ∂

α1
1 . . . ∂

αd
d .

2. If u ∈ L1(�) then uε(x) is defined for x ∈ � and dist(x, ∂�) > ε.
3. limε→0 uε(x) = u(x) whenever x is a Lebesgue point of u.
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12 N. E. Aguilera, P. Morin

4. If u ∈ C(�), and F is a compact subset of �, then uε converges uniformly to u
on F as ε → 0.

The functions uε, also called regularizations or mollifiers of u, will make us work
often with the sets

Aε = {x ∈ Q : dist(x, ∂ Q) > ε},

where ε ∈ R, 0 < ε < 1.
Our first result is a simple characterization of continuous convex functions using

the regularizations uε, and we omit its proof.

Lemma 3.2 Suppose u ∈ C and uε is defined as in (3.1). We have,

1. If u is convex, then uε is convex in Aε for all ε > 0.
2. Conversely, if for a sequence of ε’s converging to 0, uε is convex in Aε, then u is

convex.

The Hessian of u ∈ C2 at x is the symmetric matrix Hu(x) whose i j entry is
∂2

i j u(x), and convex functions in C2 are characterized by the positive semidefinite
condition

Hu(x) � 0 for all x ∈ Q̊.

Also, for u ∈ C2, and δ > 0, the average

H δu(x) = 1

(2δ)d

∫

Qδ(x)

Hu(y) dy, (3.2)

defined for x ∈ Aδ , converges to Hu(x) for all x ∈ Q̊, as δ ↓ 0. Thus the condition

H δu(x) � 0 for all x and δ such that x ∈ Aδ, (3.3)

implies the convexity of u. Actually, since the average of positive semidefinite matrices
is positive semidefinite, (3.3) is equivalent to convexity for u ∈ C2.

The definitions of Hu and H δu involve second order derivatives which are not
defined if u is not smooth enough. However, we may express H δu merely in terms of
u and ∇u integrating by parts, and the resulting formula will make sense for u ∈ C1.
Thus, for u ∈ C1 and x ∈ Aδ let us define H̃δu(x) as the symmetric d × d matrix
whose diagonal entries are

(
H̃δu(x)

)
i i = (2δ)−d

⎛
⎜⎜⎝

∫

F+
δ,i (x)

∂i u(y) dy −
∫

F−
δ,i (x)

∂i u(y) dy

⎞
⎟⎟⎠ , (3.4a)
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Approximating optimization problems over convex functions 13

and, if i �= j ,

(
H̃δu(x)

)
i j = (2δ)−d

⎛
⎜⎜⎝

∫

F+
δ,i (x)∩F+

δ, j (x)

u(y) dy −
∫

F+
δ,i (x)∩F−

δ, j (x)

u(y) dy

−
∫

F−
δ,i (x)∩F+

δ, j (x)

u(y) dy +
∫

F−
δ,i (x)∩F−

δ, j (x)

u(y) dy

⎞
⎟⎟⎠ , (3.4b)

where F±
δ,i (x) denotes the d − 1 dimensional face of the cube Qδ(x) having outward

normal ±ei .
Of course, since the Eq. (3.4) were obtained integrating by parts, we have:

Lemma 3.3 If u ∈ C2 then H δu = H̃δu.

As we show now, the extension H̃δ of H δ to functions in C1, still gives a local
characterization of convexity.

Theorem 3.4 The following are valid if u ∈ C1:

1. If u is convex, then H̃δu(x) � 0 for all δ > 0 and x ∈ Aδ .
2. If for a sequence δn ↓ 0, H̃δn u(x) � 0 for all x ∈ Aδn , then u is convex.

Proof Suppose u ∈ C1, and consider the regularization uε defined in (3.1). Since we
can interchange derivatives and integrals with the convolution,

H̃δuε(x) = H̃δ(u ∗ ϕε)(x) = (
H̃δu

) ∗ ϕε(x) for x ∈ Aδ+ε. (3.5)

If u is convex, by the first part of Lemma 3.2 we know that uε is convex in Aε, and
since uε ∈ C∞, for x ∈ Aδ+ε we have H δuε(x) � 0. Thus, by Lemma 3.3,

H̃δuε(x) � 0 for x ∈ Aδ+ε.

Using Theorem 3.1, since uε and their derivatives converge uniformly to u in compact
subsets of Q̊, we must have H̃δu(x) � 0 for x in compact subsets of Aδ , and therefore
in the whole of Aδ .

On the other hand, if H̃δu(x) � 0 for x ∈ Aδ , since an integral mean of positive
semidefinite matrices is positive semidefinite, using (3.5) and Lemma 3.3, we see that

H δuε(x) = H̃δuε(x) � 0 for x ∈ Aε+δ ,

which implies that uε is convex in Aε+δ . Letting δ go to 0 while keeping ε fixed,
we see that uε is convex in Aε, and by the second part of Lemma 3.2, u must be
convex. ��
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14 N. E. Aguilera, P. Morin

4 Approximating convex functions, the discrete Hessian

There are two main issues when defining the set of discrete approximants to be used:

1. we want it to be rich enough to approximate every convex function, and
2. we want this set to be not too large, to avoid convergence to non-convex functions.

The first point is very natural, and necessary to approximate the solution to the
problem. The second point might look artificial at first sight, but if not enforced, then
we could be approximating a non-convex function. This is the case, for instance, if we
only require convexity along the coordinate axes, as we stated in Sect. 2.

Our discrete approximations will be a subset of functions having positive semidefi-
nite discrete Hessians, and the main purpose of this section is to address the two issues
mentioned above.

We will show in Theorem 4.2 that, despite the examples 2.3 and 2.4, the discrete
Hessian Hh may be used to obtain very good approximations to convex functions of
continuous variables.

This is not surprising since we can approximate, say, u ∈ C3, by discrete functions
whose finite differences up to order 2 converge to the derivatives up to order 2 of u,
and then add a small perturbation to bring up the eigenvalues of the discrete Hessians.
This is the main idea of the proof, and in its course, we will use the following part of
the Hoffman–Wielandt Theorem [10].

Theorem 4.1 (Hoffman and Wielandt) There exists a positive constant cd , depending
only on the dimension d, such that if A = [ai j ] and B = [bi j ] are symmetric d × d
matrices, and λ and µ are their minimum eigenvalues, then

|λ − µ| ≤ cd max
i j

|ai j − bi j |.

Theorem 4.2 Let u ∈ C3 be convex. Then, for any ε>0, there exists h0=h0(u, ε)>0
such that for any h, 0<h<h0, there exists a function uh defined on Mh satisfying for
all x ∈ Mh,

|uh(x) − u(x)| +
d∑

i=1

|�h,i uh(x) − ∂i u(x)|

+
∑

1≤i≤ j≤d

|�2
h,i j uh(x) − ∂2

i j u(x)| < ε, (4.1)

and

Hhuh(x) � 0 for all x ∈ M̊h .

Let us recall that in the inequality (4.1), for x ∈ ∂Mh we consider only the finite
differences that are defined at that x .
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Approximating optimization problems over convex functions 15

Proof If u is convex and smooth, given ε1 > 0 there exists δ1 > 0 such that for all
x ∈ Q and 0 < h < δ1,

d∑
i=1

|�h,i u(x) − ∂i u(x)| +
∑

1≤i≤ j≤d

|�2
h,i j u(x) − ∂2

i j u(x)| <
ε1

cd
,

where cd is the constant in Theorem 4.1. Hence, since u is convex and therefore
Hu(x) � 0, the minimum eigenvalue of Hhu(x) is uniformly bounded below by −ε1.

Now consider the function

g(x) = 1

2
|x |2,

for which, if h small enough,

|g(x)| ≤ d/2, |�h,i g(x)| = |xi + h/2| ≤ 2, and Hh g(x) = Hg(x) = Id ,

where Id is the identity matrix in R
d×d .

If 0 < h < min {ε1, δ1}, the function

uh = u + ε1g,

defined on Mh , satisfies

Hhuh(x) � 0 for x ∈ M̊h,

|uh(x) − u(x)| ≤ dε1

2
,

and

d∑
i=1

|�h,i uh(x) − ∂i u(x)| +
∑

1≤i≤ j≤d

|�2
h,i j uh(x) − ∂2

i j u(x)|

≤
d∑

i=1

|�h,i (uh(x) − u(x))| +
d∑

i=1

|�h,i u(x) − ∂i u(x)|

+
∑

1≤i≤ j≤d

|�2
h,i j (uh(x) − u(x))| +

∑
1≤i≤ j≤d

|�2
h,i j u(x) − ∂2

i j u(x)|

≤ 2dε1 + dε1 + ε1

cd
.

Thus, for some constant c′
d depending only on d, the inequality (4.1) holds with ε

replaced by c′
d ε1.

The result follows now by taking ε1 and h0 appropriately. ��
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16 N. E. Aguilera, P. Morin

The main implication of Theorem 4.2 is that any smooth convex function is a
limit of a sequence of functions with positive semidefinite discrete Hessians, giving
an affirmative answer to the first issue mentioned at the beginning of this section.
Moreover, an application of Lemma 3.2 implies this result also for non-smooth convex
functions, with convergence in ‖ · ‖0 on compact subsets of � (see definitions below).

We would like to show next that our set of approximants also solves the second
issue. That is, if we have a convergent (in certain norm) sequence of functions with
positive semidefinite discrete Hessians, then the limit is convex. On the other hand, if
the sequence is not convergent, we would like also to understand under which further
conditions on the sequence we may extract a subsequence converging to a convex
function.

In what follows, we will work with sequences of functions defined on finer and
finer meshes, that is, sequences S = (uhn )n∈N

with uhn ∈ Uhn for every n, such
that hn/hn+1 ∈ N and (hn)n decreases to 0. We will denote by S the set of all such
sequences, and use the notation

M(S) = ∪n Mhn , M̊(S) = M(S) ∩ Q̊, and ∂M(S) = M(S) ∩ ∂ Q.

So as not to clutter even more the notation, usually we will drop the index n, writing
S = (uh) for S ∈ S, when this does not lead to confusion.

If S = (uh) ∈ S and u : Q → R, we will say that

lim
h→0

uh(x) = u(x) uniformly for x ∈ M(S),

if for any ε > 0, there exists h0 = h0(ε) > 0, so that |uh(x) − u(x)| < ε for all
h < h0 and x ∈ Mh , that is, maxx∈Mh |uh(x) − u(x)| → 0 as h → 0. In this case
we will write, with a little abuse of notation,

lim
h→0

‖uh − u‖∗
0 = 0.

If in addition u ∈ C1, we write, similarly,

lim
h→0

‖uh − u‖∗
1 = 0,

to indicate that limh→0 ‖uh − u‖∗
0 = 0 and

lim
h→0

�h,i uh(x) = ∂i u(x)

uniformly for all x ∈ M(S) for which the finite differences make sense and i =
1, . . . , d.

Lemma 4.3 Suppose S = (uh) ∈ S and u ∈ C1 are such that

lim
h→0

‖uh − u‖∗
1 = 0,
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Approximating optimization problems over convex functions 17

and

Hhuh(x) � 0 for all x ∈ M̊(S).

Then u is convex.

Proof We follow closely what was done in Sect. 3, using a variant of the diver-
gence theorem for discrete variables, so that only approximations to the function or
its derivatives—but not the second derivatives—are needed.

For x ∈ M̊h′ and h � h′, let us define

H∗
h′,h uh(x) =

∑
y

Hh uh(y),

where the sum is over all y ∈ Mh such that Qh(y) ⊂ Qh′(x).
Since the sum of positive semidefinite matrices is a positive semidefinite matrix,

we have

H∗
h′,h uh(x) � 0 for all x ∈ M̊h′ .

In one dimension we have just one entry in H∗
h′,h , involving a term of the form

u(x − h′) − 2 u(x − h′ + h) + u(x − h′ + 2h)

+u(x − h′ + h) − 2 u(x − h′ + 2h) + u(x − h′ + 3h) + · · ·
+u(x + h′ − 2h) − 2 u(x + h′ − h) + u(x + h′)

= (
u(x + h′) − u(x + h′ − h)

) − (
u(x − h′ + h) − u(x − h′)

)
.

That is, if d = 1 then

H∗
h′,h uh(x) = [ 1

h

(
�h uh(x + h′ − h) − �h uh(x − h′)

)]
. (4.2)

If d = 2 and x = (x1, x2), the diagonal entries are similar to the one dimensional
case. For instance,

(
H∗

h′,h uh(x)
)

11
= 1

h

(∑
k

�h,1 uh(x1 + h′ − h, x2 + kh)

−
∑

k

�h,1 uh(x1 − h′, x2 + kh)

)
, (4.3)

123



18 N. E. Aguilera, P. Morin

where both sums are on k’s such that −h′ < kh < h′. On the other hand, the off-
diagonal terms are of the form

(
H∗

h′,h uh(x)
)

12
= 1

4h2 ((uh(x + α) + uh(x + β) + uh(x + γ ) + uh(x + δ))

− (
uh(x + α′) + uh(x + β ′) + uh(x + γ ′) + uh(x + δ′)

)
− (

uh(x − α′) + uh(x − β ′) + uh(x − γ ′) + uh(x − δ′)
)

+ (uh(x − α) + uh(x − β) + uh(x − γ ) + uh(x − δ))) ,

(4.4)

where

α = (h′ − h) e1 + (h′ − h) e2, α′ = (h′ − h) e1 − (h′ − h) e2,

β = h′ e1 + (h′ − h) e2, β ′ = h′ e1 − (h − h′) e2,

γ = (h′ − h) e1 + h′ e2, γ ′ = (h′ − h) e1 − h′ e2,

δ = h′ e1 + h′ e2, δ′ = h′ e1 − h′ e2.

For d>2 we get similar expressions to those of Eqs. (4.2) and (4.3) for the diagonal
terms, and (4.4) for the off-diagonal terms, except that—as when going from (4.2)
to (4.3)—they must be summed over mesh points on d − 1 dimensional surfaces
perpendicular to the (say) i th direction, or d − 2 dimensional surfaces perpendicular
to the (say) i j plane.

This was also the case in the Eq. (3.4) for the continuous case, and so we can think
of these sums as approximations to those integrals, where small d-dimensional cubes
of side length h centered at mesh points have been used. In order to do this we must
multiply the entries by hd so as to obtain the correct dimensions.

In fact, since we are assuming

lim
h→0

‖uh − u‖∗
1 = 0,

and H∗
h′,huh(x) involves either no finite differences (off the diagonal) or only first

order differences (in the diagonal) which converge uniformly to (respectively) u or its
first derivatives,

lim
h→0

hd H∗
h′,huh(x) = Rh′u(x) for all x ∈ M̊h′ ,

where

Rh′u(x) � 0,

since the limit of positive semidefinite matrices is positive semidefinite.
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Approximating optimization problems over convex functions 19

On the other hand, due to the convergence of uh to u in the ‖ · ‖∗
1 norm, we can see

that, as h ↓ 0,

(
hd H∗

h′,huh(x)
)

i i
→

∫

F+
δ,i (x)

∂i u(y) dy −
∫

F−
δ,i (x)

∂i u(y) dy,

(
hd H∗

h′,huh(x)
)

i j
→

⎛
⎜⎜⎝

∫

F+
δ,i (x)∩F+

δ, j (x)

u(y) dy −
∫

F+
δ,i (x)∩F−

δ, j (x)

u(y) dy

−
∫

F−
δ,i (x)∩F+

δ, j (x)

u(y) dy +
∫

F−
δ,i (x)∩F−

δ, j (x)

u(y) dy

⎞
⎟⎟⎠ ,

if i �= j . Thus,

Rh′u(x) = (2h′)d H̃h′u(x) for x ∈ M̊h′ ,

which implies H̃h′u(x) � 0 for all x ∈ M̊h′ . The result now follows from
Theorem 3.4. ��

The convergence in ‖·‖∗
1 should be guaranteed by the definition of the discrete prob-

lem and is problem dependent. We make now a general assumption on an algorithm
to ensure convergence in ‖·‖∗

1.
Let us denote by �1 the space of Lipschitz continuous functions defined on Q,

recalling that �1 = W 1,∞, the space of continuous functions having derivatives in
the weak sense up to order one bounded. If K > 0, we let �1

K be the set of functions
u ∈ �1 such that both |u(x)| ≤ K for all x ∈ Q and |u(x) − u(x + t ei )| ≤ K t
for all i = 1, . . . , d and t > 0 whenever x, x + t ei ∈ Q. Of course, the condition
|u(x) − u(x + t ei )| ≤ K t is equivalent to |∂i u(x)| ≤ K .

Similarly, let us denote by �2 = W 2,∞ the space of functions whose first derivatives
are in �1, and by �2

K the set of all functions in �2 which have all weak derivatives
up to order 2 bounded by K . In particular, we have �2 ⊂ C1.

By analogy to the continuous case, let us define for h and K positive the following
spaces of discrete functions:

�0
h,K = {u ∈ Uh : |u(x)| ≤ K , x ∈ Mh},

�1
h,K = {u ∈ �0

h,K : |�h,i u(x)| ≤ K , x ∈ Mh, i = 1, . . . , d}, (4.5)

�2
h,K = {u ∈ �1

h,K : |�2
h,i j u(x)| ≤ K , x ∈ Mh, i, j = 1, . . . , d},

with the understanding that on the right hand sides we take �h,i u(x) or �2
h,i j for all

x, i and j where it makes sense.
The following result is a version of the Arzela–Ascoli theorem, and we omit its

proof.
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20 N. E. Aguilera, P. Morin

Theorem 4.4 If S = (uh) ∈ S for which uh ∈ �1
h,K for all h > 0, then there exists

u ∈ �1
K and a subsequence S′ = (uh′) of S such that

lim
h′→0

‖uh′ − u‖∗
0 = 0.

Combining the previous results, we have:

Theorem 4.5 If S = (uh) ∈ S is such that

uh ∈ �2
h,K and Hhuh(x) � 0

for all x ∈ M̊(S) and h > 0, then there exists u ∈ �2
K , and a subsequence S′ = (uh′)

of S such that

lim
h′→0

‖uh′ − u‖∗
1 = 0 and u is convex.

Proof Applying Theorem 4.4 to the functions �h,i , perhaps on some smaller meshes
M′

i,h with M̊h ⊂ M′
i,h ⊂ Mh , we may find functions ui ∈ �1

K and a subsequence
of S, S′ = (uh′), such that

lim
h′→0

‖�h′,i uh′ − ui‖∗
0 = 0 for i = 1, . . . , d.

To show that there exists u such that ui = ∂i u (in the classical sense), we define
for x = (x1, . . . , xd) ∈ Q,

u

(
d∑

i=1

xi ei

)
= u(0) +

d∑
j=1

x j∫

0

u j

⎛
⎝t j e j +

j−1∑
i=1

xi ei

⎞
⎠ dt j .

Since for i = 1, . . . , d, ui is bounded (by K ) and continuous, u is well defined and
continuous. Using that �h′,i uh′ converge uniformly to ui , for x ∈ M(S′) we may
write

u(x) = lim
h′→0

uh′(0) +
d∑

j=1

x j /h′∑
k j =0

h′ �h′, j uh′

⎛
⎝k j h

′ e j +
j−1∑
i=1

xi ei

⎞
⎠ .

But, for a given h′ and all x ∈ Mh′ we have

uh′(0) +
d∑

j=1

x j /h′∑
k j =0

h′ �h′, j uh′

⎛
⎝k j h

′ e j +
j−1∑
i=1

xi ei

⎞
⎠

= uh′(0) +
d∑

j=1

⎛
⎝uh′

⎛
⎝

j∑
i=1

xi ei

⎞
⎠ − uh′

⎛
⎝

j−1∑
i=1

xi ei

⎞
⎠

⎞
⎠ = uh′(x), (4.6)
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and therefore

lim
h′→0

‖uh′ − u‖∗
0 = 0.

Arguing as in Eq. (4.6) and taking limits, we may also verify the “independence of
path”, that is, for x ∈ Mh′

0
and h′ ≤ h′

0 we may write,

u(x + h′ ei ) − u(x) =
h′∫

0

ui (x + ti ei ) dti for all i = 1, . . . , d.

Using the continuity of u, we see that the last equation is valid for all x ∈ Q̊ and
h′ small enough, and, using once more the continuity of u, that

u(x + δ ei ) − u(x) =
δ∫

0

ui (x + ti ei ) dti for all i = 1, . . . , d,

for all x ∈ Q̊ and all δ > 0, and therefore

∂i u(x) = ui (x) for all x ∈ Q̊ and i = 1, . . . , d.

The convexity of u follows from Lemma 4.3. ��
Remark 4.6 If un is a sequence of convex functions converging pointwise to u, then
u must be convex. However it is not true in general that the second derivatives or the
Hessian of un will converge to that of u, even if we have uniform convergence of un

and its derivatives to those of u. In this sense, Theorem 4.5 cannot be bettered too
much.

For example, consider in d = 1 the functions

u(x) = x2

2
,

and, with h = 1/n for n ∈ N,

uh(x) = u(x) + cos(πnx)

(nπ)2 .

We have,

uh(x) ≥ 0, limh→0 uh(x) = u(x),

0 ≤ u′
h(x) = u′(x) − sin(πnx)

nπ
≤ 1, limh→0 u′

h(x) = u′(x),
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22 N. E. Aguilera, P. Morin

where the limits are uniform in x . Also,

u′′
h(x) = u′′(x) − cos(πnx) (≥0), and �2uh(x) = 1 − 4 cos(πnx)

π2 .

Taking n = 2 j+m , x = i
2 j = 2m i

n , for m > 0 we obtain

�2uh(x) = 1 − 4 cos(π2mi)

π2 = 1 − 4

π2 ≈ 0.594715,

and so the second order differences at dyadic points converge to this constant value.
However, also at these points, u′′(x) = 1. ��

On the other hand, we may weaken the conditions on convergence, following what
was done for the one-dimensional case in Sect. 2.

If uh is defined in Mh and Hhuh(x) � 0 for x ∈ Mh , its restriction to the one-
dimensional line obtained by fixing all coordinates except the i-th one, satisfies

u(x + ih ei ) − u(x + (i − 1) h ei )

h
≤ u(x + (i + 1) h ei ) − u(x + ih ei )

h
,

for i = 1, . . . , d, since these are coefficients in the main diagonal of Hhuh(x + hei ).
That is, the inequalities (2.2) are satisfied, and hence if for some M > 0,

|uh(x)| ≤ M for all x ∈ Mh ,

then for any given ε > 0 we may find a constant C , depending on M and ε but not on
u, such that

|�h,i u(x)| ≤ C for all x ∈ Mh such that dist(x, ∂ Q) > ε.

Therefore, by applying Theorem 4.4 to d-dimensional cubes contained in Q̊, we
may strengthen Lemma 4.3 to obtain a variant of Lemma 2.1:

Corollary 4.7 Let S = (uh) ∈ S such that

Hhuh(x) � 0 for all x ∈ M̊(S),

and suppose u is a (finite) function defined on M(S) satisfying

lim
h↓0

uh(x) = u(x) for all x ∈ M(S).

Then, the convergence of uh to u is uniform on compact subsets of Q̊, and u may be
uniquely extended to a convex function defined on all of Q.

Similarly, we may weaken the conditions of Theorem 4.4 to obtain the following
version of Lemma 2.2:
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Corollary 4.8 If M > 0 and S = (uh) ∈ S are such that

|uh(x)| ≤ M for all h and x ∈ Mh .

Then there exists a continuous convex function u defined on Q and a subsequence
S′ = (uh′) of S such that

lim
h′→0

uh′(x) = uh(x) for all x ∈ M(S′).

Moreover, the convergence is uniform on compact subsets of Q̊.

We conclude this section with some comments.

Remark 4.9 (boundary behavior). If u ∈ C2, ∂2
i j u(x) is defined initially for x ∈ Q̊,

but the very definition of C2 as the set of those functions in C2(Q̊) having second
order derivatives uniformly continuous on Q̊, makes it possible to define ∂2

i j u(x) for
x ∈ ∂ Q by a limiting argument. And the same goes for lower order derivatives, and
even Hu(x).

The situation is different for discrete functions defined on Mh for fixed h > 0,
since we cannot take limits. However, the particular geometry of Q makes it possible
(as we did) to consider for x ∈ ∂Mh as many finite differences as we can. For instance,
�2

i i u(x) is well defined for x ∈ ∂Mh as long as x ± h ei ∈ Mh .
Pushing the definitions a little further, we may define the discrete Hessian Hhu(x)

for x ∈ ∂Mh , by including as many second derivatives as we can. For example, if
d = 3 and h = 1/2, we can define

Hhu(x) =
[
�2

h,11 u(x) �2
h,12 u(x)

�2
h,12 u(x) �2

h,22 u(x)

]
if x = (1/2, 1/2, 0),

Hhu(x) = [
�2

h,11 u(x)
]

if x = (1/2, 0, 0),

leaving Hhu(x) undefined if x = (0, 0, 0).
As the reader may verify, our previous results involving Hh remain valid with this

interpretation of the discrete Hessian.

5 Approximating functionals

We are in position now to use finite difference approximations of a wide class of
optimization problems on convex functions.

Let us describe this technique by assuming, for instance, that (V, ‖·‖V ) is a Banach
space of real valued functions on Q, the functional

J (v) =
∫

Q

F(x, v(x),∇v(x)) dx
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is defined and continuous on V , and we are interested in the optimization problem

inf {J (v) : v ∈ C}, (5.1)

where C is a family of convex functions, C ⊂ V .
If the functions in C may be approximated by convex functions in C3 ∩ V , then

using Theorem 4.2 it may be not too difficult to define for each h > 0 (or a sequence
converging to 0 of such h’s), a family Ch , Ch ⊂ Uh , and a functional Jh defined on Ch ,
such that:

1. Hhvh(x) � 0 for all vh ∈ Ch and x ∈ M̊h ,
2. for any v ∈ C and any ε > 0, there exists h > 0 and vh ∈ Ch such that

|Jh(vh) − J (v)| < ε.

Condition 2 immediately implies that

inf {J (v) : v ∈ C} ≥ inf
h

inf {Jh(vh) : vh ∈ Ch}. (5.2)

To prove the converse, we observe that

inf
h

{Jh(vh) : vh ∈ Ch} = inf
h,K>0

inf {Jh(vh) : vh ∈ Ch,K },

where Ch,K = Ch ∩ �2
h,K . Keeping K > 0 fixed, we may find a sequence S = (uK

h ),

with uK
h ∈ Ch,K such that

Jh(uK
h ) ↓ inf

h
inf {Jh(vh) : vh ∈ Ch,K },

and using Theorem 4.5, a subsequence S′ = (uK
h′ ) and a convex function uK ∈ C2

with ‖uK
h − uK ‖∗

1 converging to 0.
If Vh and Jh are such that

uK ∈ C and Jh(uK
h ) → J (uK ),

letting K → ∞ we will have

inf {J (v) : v ∈ C} ≤ inf
h

inf {Jh(vh) : vh ∈ Ch}. (5.3)

Putting together the inequalities (5.2) and (5.3), we will have discrete approxima-
tions of the problem (5.1).

Let us give some more concrete examples. Suppose, for instance that V = H1 is
the set of functions u : Q → R with finite norm

‖u‖ =
⎛
⎜⎝

∫

Q

|∇u(x)|2 + |u(x)|2 dx

⎞
⎟⎠

1/2

,

123



Approximating optimization problems over convex functions 25

and suppose C is the set of all convex functions in H1. Given f ∈ V we would like to
find its projection on C, that is, find u ∈ C such that

‖u − f ‖ = min
v∈C

‖v − f ‖,

and, getting rid of the square roots, we may set

J (v) = ‖v − f ‖2.

In this example we actually have a unique minimum, since the norm is strictly
convex. We may consider then Ch as the set of discrete functions vh ∈ Uh with
Hhvh(x) � 0 for all x ∈ M̊h .

Assuming for simplicity that f ∈ C1, for vh ∈ Uh we define

Jh(vh) = hd

⎛
⎝ ∑

x∈M̊h

(
|vh(x) − f (x)|2 +

d∑
i=1

|�h,i vh(x) − ∂i f (x)|2
)⎞

⎠ .

Then, it is easy to see that (5.2) and (5.3) hold. In fact, the convex functions of
V may be approximated by C3 convex functions, so that, given ε > 0 there exists
v ∈ C3 ∩ H1 such that

‖u − v‖ <
1

2
ε,

and use Theorem 4.2 to find h small enough and vh ∈ Ch such that

|Jh(vh) − J (v)| <
1

2
ε.

Thus we will have

|Jh(vh) − J (u)| ≤ |Jh(vh) − J (v)| + |J (v) − J (u)| < ε,

for some vh ∈ Ch .

6 Numerical results

In this section we illustrate the behavior of the numerical scheme by applying it to
the problems mentioned in the introduction, namely, the monopolist problem, norm
projections on the set of convex functions, and fitness of data by discrete convex
functions.

In all of the following examples, we associate with each mesh node Pk , k =
1, . . . , N , the unknown value uk , and the square Qk = Q ∩ Qh(Pk), of area |Qk |.
We also consider the discrete Hessian Hh(Pk) as discussed in the Remark 4.9, i.e.,
imposing convex constraints on the boundary whenever they make sense.
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Even though Theorem 4.5 requires us to impose upper bounds on the second order
differences in order to ensure convergence, the following numerical experiments were
carried on without this requirement. Convergence was nevertheless observed at optimal
rates.

The times reported correspond to the experiments being run on a PC, with a 2.8 GHz
Pentium IV processor and 2 GB of RAM, running Linux. The matrices were assembled
using OCTAVE [7] and the semidefinite program was solved using CSDP 5 [2] with
the default parameters. The graphics were obtained using Mathematica [21].

6.1 The monopolist problem

Since this problem is not widely known in the mathematics community, let us start by
giving a brief description of it following the one given in [14], where it is referred to
as the revenue maximization in a multiple-good monopoly problem.

Problem 6.1 (The monopolist problem) A seller with d different objects faces a sin-
gle buyer, whose preferences over consumption and money transfers are given by
U (x, p, t) = x · p − t , where x ∈ [0, 1]d is the vector of the buyer’s valuations,
p ∈ R

d is the vector of quantities consumed for each good, and t ∈ R is the monetary
transfer made to the seller. The valuations x are only observed by the buyer, and a
density function f (x) represents the seller’s belief on the buyer’s private information
x . The seller’s problem is to design a revenue maximizing mechanism to carry out the
sale, and it is enough to consider only direct revelation mechanisms: the buyer must
prefer to reveal its information truthfully (incentive compatibility) and to participate
voluntarily (individual rationality). Under these conditions, it can be proved that the
seller’s problem may be written as

max
u∈C

∫

Q

(∇u(x) · x − u(x)) f (x) dx,

where Q = [0, 1]d , f is a non-negative probability density function over Q, and C is
the set of functions u satisfying

1. u is convex,
2. 0 ≤ ∇u(x) ≤ 1 for all x ∈ Q (the gradient taken in the weak sense and the

inequalities componentwise), and
3. u(0) = 0.

The functional to be maximized is the seller’s expected revenue. For a buyer of type
x , the solution u to this optimization problem represents the utility received by her,
and the i-th component of ∇u denotes the probability that she will obtain good i . The
restriction of convexity stems from incentive compatibility, and the condition u ≥ 0
from individual rationality.

We show now some numerical results for the problem 6.1 for the special case f = 1,
for which analytic solutions in 2 and 3 dimensions are known, allowing us to judge
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the behavior of the discrete approximations. That is, the functional to be minimized is

J (u) =
∫

Q

(u(x) − ∇u(x) · x) dx .

In both 2 and 3 dimensions, the solutions are piecewise linear convex functions
whose partial derivatives are either 0 or 1. For example, for d = 2 the solution is

u(x1, x2) = max {0, x1 − a, x2 − a, x1 + x2 − b},

where

a = 2

3
and b = 1

3

(
4 − √

2
)

,

and the value at the optimum is

J (u) = 2

27

(
6 + √

2
)

≈ 0.549201.

In Fig. 1 we show the contour lines obtained. In (a) the analytic solution, and then
the discrete solution for h = 1/16, 1/32 and 1/64 in, respectively, (b), (c) and (d),
with the contours of the analytic solution shown in a lighter gray. The contours are
10−7, 0.1, 0.2, . . . , 1.1 (the CSDP solution is always positive due to the way it is
solved).

We observe that the scheme introduces quite a bit of diffusion at lower resolutions,
and, in particular, the heights at the point (1, 1) increase to the analytic solution at that
point as h decreases. However, the jump in the gradients is well captured, especially at
higher resolutions, even though we are asking for conditions on the discrete Hessians
which are unbounded from above.

In Table 1 we give some comparative results at different mesh sizes. In this table
we indicate by Jh(Ihu) the discrete functional evaluated at Ih(u), the interpolant in
Mh of the exact solution, and the error column refers to max |uh − Ihu| (L∞ error).

It is interesting to notice that even though the solution is not smooth (u is only
Lipschitz) the error in the L∞ norm is smaller or approximately equal to h. In the last
column of the table we show the quantity (J (u) − Jh(uh))/h which is approximately
0.14 for all the values of h reported, showing that even under such low regularity
assumptions on u, the error in the functional behaves as O(h).

In three dimensions there is also a solution with partial derivatives which are either
0 or 1, of the form

u(x, y, z) = max {0, x − a, y − a, z − a,

x + y − b, x + z − b, y + z − b, x + y + z − c}.
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(a) (b)

(c) (d)

Fig. 1 Contour lines of the solutions of the economics problem in 2D: analytic solution (a), and discrete
approximations with h = 1/16 (b), h = 1/32 (c), h = 1/64 (d)

Table 1 Comparison of the approximations to the economics problems in 2D for different mesh sizes

n h = 1/n Jh(uh) Jh(Ihu) Error (L∞) Time (s) J (u)−Jh (uh )
h

8 0.125 0.5319 0.5444 0.0769 0.190 0.14

16 0.0625 0.5404 0.5478 0.0300 0.990 0.14

32 0.03125 0.5449 0.5488 0.0336 17.000 0.14

64 0.015625 0.5470 0.5491 0.0174 751.100 0.14

∞ 0 0.5492

The column labeled n denotes the number of subdivisions of the interval [0, 1] in each direction. The number
of unknowns is (n + 1)2

This time the coefficients cannot be expressed in a simple form, since they involve
roots of polynomials of high degree, and we just give numerical approximations:

a = 0.840627, b = 1.038352, c = 1.236077,

so that b − a = c − b, and the value of the functional is

J (u) ≈ 0.868405.

In Fig. 2 we show the regions where ∇u · (1, 1, 1) is 0, 1, 2 or 3 in, different shades
of gray. We illustrate the regions with wire frames viewed from the positive octant in
(a), and exploded views of the solid regions from the positive octant in (b) and the
negative octant in (c).
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(a) (b) (c)

Fig. 2 Regions where the analytic solution in 3D has constant gradient: with wire frames viewed from the
positive octant (a), and exploded views of the solid regions from the positive octant (b), and the negative
octant (c)

Table 2 Comparison of the approximations to the economics problems in 3D for different mesh sizes

n h = 1/n Jh(uh) Jh(Ihu) Error (L∞) Time (s) J (u)−Jh (uh )
h

4 0.25 0.8195 0.8449 0.1356 0.21 0.20

8 0.125 0.8484 0.8605 0.1281 3.87 0.16

12 0.0833 0.8578 0.8647 0.1130 10.29 0.13

16 0.0625 0.8622 0.8661 0.1135 7 m 20 0.10

20 0.0500 0.8648 0.8671 0.1177 50 m 23 0.07

∞ 0 0.8684

As before, the column labeled n denotes the number of subdivisions of the interval [0, 1] in each direction.
The number of unknowns is (n + 1)3

In Table 2 we give some comparative results at different mesh sizes. It is interesting
to notice here that the L∞ error is not converging to zero with order O(h). Nevertheless,
the quantity (J (u)− Jh(uh))/h (shown in the last column) decreases slowly as h goes
to 0, meaning that the error J (u) − Jh(uh) in the functional behaves as O(h) in this
range, exhibiting a similar behavior to that of the two dimensional case.

Remark 6.2 Theoretically, semidefinite programs are polynomial time solvable. How-
ever, as the Tables 1 and 2 show, in practice we cannot go too far with the number of
unknowns.

A reasonable size for the two dimensional problems we considered is a mesh of
about n = 40 subdivisions.

6.2 Projections

Carlier, Lachand-Robert and Maury [6] gave several examples of H1 and H1
0 projec-

tions, and in this section we consider one of the functions they considered, namely,

f (x1, x2) = −(4 + 5x1x2
2 ) e−30

(
(x1−1/2)2+(x2−1/2)2

)
for (x1, x2) ∈ Q.

We show the graph of the original function in Fig. 3, and that of the resulting L1,
L2, L∞, H1 and H1

0 projections in Fig. 4. As in the original article, these graphs are
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Fig. 3 Graph of
f (x1, x2) = −(4 + 5x1x2

2 )

e−30[(x1−1/2)2+(x2−1/2)2],
shown upside down

–4

–2

0

shown upside down. The interested reader may observe that our results are qualitatively
different from those in [6, p. 304].

Using a similar function, but with more symmetries,

g(x1, x2) = − sin3(2πx1) sin3(πx2) for (x1, x2) ∈ Q,

we show in Fig. 5 that the L∞ projection need not be unique. The solution in (b) is
the one obtained by the semidefinite programming code.

In all these examples, we used a mesh with 41 × 41 nodes. The times ranged from
about 40 seconds for the L∞ projections to about 200 seconds for the L2 projection.
The H1 and H1

0 projections took about the same time, near 140 seconds.

6.3 Fitting data

As mentioned in the introduction, many problems in science are modelled via convex
functions, raising the question of how measured data (usually non convex) can be
approximated by a convex function.

Often the fitness to data is done parametrically. For example, by assuming that the
underlying function is a linear combination of some given polynomials, and minimiz-
ing over all possible parameters in a convenient norm. Even in this case, approximating
the data by a linear combination which is also convex—but otherwise arbitrary—may
be challenging.

In this section we show how our numerical scheme could be used for fitting data on
a regular mesh by discrete functions having a positive semidefinite discrete Hessian.
Though the resulting discrete functions may not be extended to a convex function of
continuous variables, as shown in Example 2.3, the underlying “true” convex function
might be well captured by the discrete function.
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Fig. 4 Projections and its comparisons to the function of Fig. 3, shown upside down
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Fig. 5 Non-uniqueness of the L∞ projection. a original function, b, c two optimal solutions

In the tests we show, we perturbed with random noise the values of the function

f (x1, x2) = (x1 − 1/2)2 + 2 (x2 − 1/2)2,

on a regular mesh of 41 × 41 nodes. The original function and the perturbed data are
represented in Fig. 6a and b, respectively.1

We chose to use a uniformly distributed noise between −ε and ε for each node,
where ε = 10 h (h being the mesh size). In this way we simulate some intrinsic
measurement noise whose distribution is presumably known, and that the mesh has
been chosen finer than the measurement noise. Needless to say, our choice of noise is
quite arbitrary, and there are many other possibilities to choose from.

In Fig. 6c–e we show the resulting level curves for the L1, L2 and L∞ discrete
projections (respectively), with the contours of the original unperturbed function in
a lighter gray. The L2 discrete projection may be considered as a variant of a least
squares approximation, but the others are not seen as often.

The times spent by the semidefinite code were similar to those of Sect. 6.2, about
170, 200 and 40 s (respectively). As is to be suspected, for the same mesh but smaller
noise (e.g., taking ε = h), the results are better and the times smaller.

Comparing the level curves with those of the unperturbed function (Fig. 6c–e), it is
apparent that the L∞ discrete projection seems to give the closest fit. Notice that this
projection is also faster than the L1 or L2 discrete projections by a factor of 4–5.

For the run shown, the maximum absolute value of the differences between the
perturbed data and the original function on the mesh is about 0.25 (10 times the mesh
size, as designed), whereas the maximum absolute value of the differences between
the L∞ projection and the original function is 0.37, attained at (0, 0).

However, as can be seen in Fig. 6e, the L∞ projection gives a good fit to the
unperturbed function in the interior nodes, and is actually between ±0.015 (somewhat
smaller than the mesh size) for nodes of the square 0.1 ≤ x1, x2 ≤ 0.9, but deteriorates
near the boundary (as do the other projections). This is perhaps better appreciated in
Fig. 6f, where the graph of the L∞ discrete projection is compared to that of the
unperturbed original function.

1 It must be kept in mind that, though the data is discrete, the graphic software makes its own interpolations
for drawing surfaces and level curves.
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Fig. 6 Fitting a convex surface to perturbed data. Original function (a), perturbed data (b), level curves
of the L1 projection (c), level curves of the L2 projection (d), level curves of the L∞ projection (e), 3D
graphs of the unperturbed function and L∞ projection (f)
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The “overshooting” at the boundary is a typical and known phenomenon when
fitting data by convex functions. See, for instance, the article by Meyer [15], where
the one dimensional case is discussed.
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