(1) Probar las siguientes afirmaciones:

(a) La integral
$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx$$
 es convergente para $p > 1$ y no convergente para $p \le 1$.

(b) La integral
$$\int_0^1 \frac{1}{x^p} dx$$
 existe para $p < 1$ y no existe para $p \ge 1$

(c) La integral
$$\int_0^{+\infty} \frac{1}{x^p} dx$$
, no es convergente para ningún $p \in \mathbb{R}$.

(2) Estudiar la convergencia de las siguientes integrales:

(a)
$$\int_{2}^{+\infty} \frac{1}{\ln x} \, dx$$

(b)
$$\int_{2}^{+\infty} \frac{1}{x-1} \, dx$$

(c)
$$\int_0^\pi \frac{\sin(x)}{x^3} \, dx$$

(d)
$$\int_{-1}^{1} \frac{1}{x} dx$$

(e)
$$\int_0^1 \frac{\sin(x)}{x} dx$$

$$dx (b) \int_2^{+\infty} \frac{1}{x-1} dx (c) \int_0^{\pi} \frac{\sin(x)}{x^3} dx$$

$$(e) \int_0^1 \frac{\sin(x)}{x} dx (f) \int_0^{\pi} \frac{1-\cos(x)}{x} dx$$

(3) Estudiar la convergencia de las siguientes integrales usando el criterio de comparación:

(a)
$$\int_{-\infty}^{+\infty} \frac{x^3 + x^2}{x^6 + 1} \, dx$$

(b)
$$\int_{2}^{+\infty} \frac{x}{\sqrt{x^3 - 1}} dx$$

(a)
$$\int_{-\infty}^{+\infty} \frac{x^3 + x^2}{x^6 + 1} dx$$
 (b) $\int_{2}^{+\infty} \frac{x}{\sqrt{x^3 - 1}} dx$ (c) $\int_{1}^{+\infty} \frac{x}{3x^4 - 2x^2 + 1} dx$ (d) $\int_{-\infty}^{+\infty} \frac{2 + \sin(x)}{x^2 + 1} dx$

(d)
$$\int_{-\infty}^{+\infty} \frac{2 + \sin(x)}{x^2 + 1} dx$$

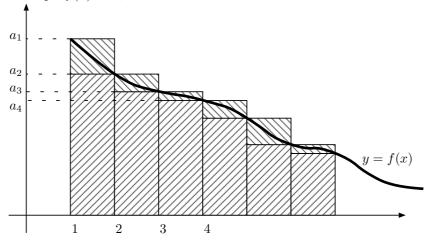
(e)
$$\int_{-\infty}^{-1} \frac{e^x}{x} \, dx$$

$$(f) \quad \int_0^{+\infty} \frac{1}{e^x + 1} \, dx$$

(g)
$$\int_{2}^{+\infty} \frac{1}{\ln x} \, dx$$

(e)
$$\int_{-\infty}^{-1} \frac{e^x}{x} dx$$
 (f) $\int_{0}^{+\infty} \frac{1}{e^x + 1} dx$ (g) $\int_{2}^{+\infty} \frac{1}{\ln x} dx$ (h) $\int_{0}^{+\infty} e^{-tx} dx$ $t \in \mathbb{R}$

(4) Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión decreciente de términos no negativos y sea $f:[1,+\infty)\to\mathbb{R}$ una función decreciente tal que para $n \in \mathbb{N}$ se tiene que $f(n) = a_n$.



(a) Probar que para todo $n \in \mathbb{N}$, n > 1 se cumple que

$$a_n \le \int_{n-1}^n f(x) \, dx \le a_{n-1}$$

(interpretar gráficamente).

(b) Deducir que si $S_n = \sum_{k=1}^n a_k$, entonces

$$S_n - a_1 \le \int_1^n f(x) \, dx \le S_{n-1}.$$

- (c) Demostrar que entonces $\sum_{n=1}^{\infty} a_n$ es convergente si y sólo si $\int_1^{+\infty} f(x) dx$ es convergente. Esto se conoce como criterio de la integral de Cauchy.
- (d) Aplicar el criterio de la integral de Cauchy para estudiar la convergencia de la serie armónica generalizada

(5) Probar que $\int_{g(a)}^{g(b)} f(x) dx = \int_a^b f \circ g(x) g'(x) dx$ cualquiera sea la función continua f y la función derivable g .			
(6) Hallar las primitivas de la función f , siendo $f(x)$ igual a			
(a) $4x^3 - 3x + 6$	(b) $\frac{1}{x^{15}}$	(c) $3e^x$	(d) $\frac{2}{\sqrt{x}}$
(e) $x\sqrt{x}$	$(f) \frac{x^3 + 3\sqrt{x} - 1}{x^2}$	$(g) \frac{\left(\sqrt{x} + \sqrt{a}\right)^2}{x}$	(h) $\frac{2-\sqrt{x}}{\sqrt{x}}$

(7) Usar el método de sustitución para hallar las primitivas de la función f, siendo f(x) igual a:

(a)
$$x\sqrt{x^2-2}$$
 (b) $\frac{x}{x^2+1}$ (c) $3\sin(4x)-\cos(2x)$ (d) $\sin^6(x)\cos(x)$ (d) $\cos\left(x-\frac{\pi}{6}\right)$ (f) e^{3x} (g) $\frac{e^x}{1+e^x}$ (h) $\sin^2(x)^*$ (i) $x^4\cos(x^5)$ (j) $\frac{2x^2}{\sin(x^3)}$ (k) $(2x-1)^2$ (l) $x\sin(x^2)$ (m) $\frac{1}{4x+3}$ (n) $2x\sqrt{1-x^2}$ (i) $x(5x^2-3)^7$ (o) $\frac{e^{ax}}{\sqrt{1-e^{ax}}}$ (p) $\frac{\cos(x)}{1-\sin(x)}$ (q) $\sin(\sqrt{x})\sqrt{x}$ (r) $\frac{1}{e^x+e^{-x}}$ (s) $\frac{\ln(x)}{x}$

 $(* sen^2(x) = \frac{1}{2}(1 - cos(2x)))$

(8) Sabiendo que $\arctan'(x) = \frac{1}{1+x^2}$, calcular las primitivas de f, siendo f(x) igual a:

(a)
$$\frac{1}{1+4x^2}$$
 (b) $\frac{1}{4+9x^2}$ (c) $\frac{1}{x^2+6x+11}^*$ (d) $\frac{2x-3}{x^2+1}$

(* completar cuadrados).

(9) Sabiendo que arc sen' $(x) = \frac{1}{\sqrt{1-x^2}}$, calcular las primitivas de f, siendo f(x) igual a:

(a)
$$\frac{1}{\sqrt{1-9x^2}}$$
 (b) $\frac{1}{\sqrt{9-4x^2}}$ (c) $\frac{1}{\sqrt{1-6x-x^2}}$

(10) Hacer la sustitución x = sen(u) (o sea u = arc sen(x)) para calcular la primitiva de $\sqrt{1 - x^2}$. Usar el resultado para calcular las primitivas de

(a)
$$\sqrt{4-3x^2}$$
 (b) $\sqrt{2x+4-3x^2}$ (c) $(2x-1)\sqrt{1-x^2}$

(11) Hacer la sustitución $x = \operatorname{senh}(u)$ para calcular las primitivas de $\sqrt{1+x^2}$.

(12) Hacer la sustitución $x = \cosh(u)$ para calcular las primitivas de $\sqrt{x^2 - 1}$.

(13) Calcular las primitivas de la función f, siendo f(x) igual a:

(a)
$$x \operatorname{sen}(x)$$
 (b) $x \ln(x)$ (c) $\frac{x}{e^x}$ (d) $e^{2x} \operatorname{sen}(3x)$ (e) $e^{ax} \cos(bx)$ (f) $\operatorname{arctan}(x)$ (g) $x2^{-x}$ (h) $x^2 \cosh(x)$

(14) Calcular las primitivas de la función f, siendo f(x) igual a:

(a)
$$\frac{5x^3 - 2x^2 + 15}{x + 1}$$
 (b) $\frac{1 + x^2}{1 - x^2}$ (c) $\frac{x + 2}{x + 10}$ (d) $\frac{3x^2 + 6x - 1}{x^2 + 5x + 20}$

(15) Calcular las primitivas de la función f, siendo f(x) igual a:

(a)
$$\frac{4x-7}{x^2-3x+2}$$
 (b) $\frac{6x+10}{x^2+4x+3}$ (c) $\frac{2x-3}{(x^2-3x+2)^2}$ (d) $\frac{x^3-1}{4x^3-x}$ (e) $\frac{1}{1+x^3}$ (f) $\frac{x^3}{x^4-1}$ (g) $\frac{4x^3+x^2-2x+1}{x^4+3x^3+3x^2+3x+2}$