Primer Examen Parcial $29/05/2013$ Ecu	acio	nes Diferer	nciales Parciales
(1)			$___/15~\mathrm{pts}$
Consideremos un trozo de oro, que ocupa una región R de el teorema de la divergencia), tal que el volumen de R es V temperatura que satisface			
$-\overline{\nabla}^2 u = 1 \text{en } R,$			
$u = 0$ en ∂R .			
Para este problema consideremos los siguientes valores:			
Conductividad	K	308,2	
Capacidad calórica o calor específico	c	0,03106	
Densidad	ρ	$19,3 \times 10^{6}$	
¿Cuál es el flujo de calor hacia afuera de la región R?			
(2)			$___/20 \mathrm{~pts}$
Consideremos la ecuación diferencial siguiente:			
$(ED) 3u_x - 2u_y = x - y,$	u =	u(x,y).	
(a) Hallar la solución general de (ED), y decir cuáles son las	curv	vas característ	ticas. Verificar.
En cada uno de los siguientes casos hallar (si es posible) una la condición lateral indicada. Si no hay, indicar por qué. Si diferentes.			, ,
(b) $u(x,x) = e^x$, (c) $u(-1)^{-1}$	-3x, 2	$2x) = e^x.$	
(3)			/15 pts
	c . : .	A.a	
Dar un ejemplo de ecuación lineal de primer orden con coe lateral dada sobre una curva lateral que corte todas las car Explicar por qué no tiene solución.			, , ,

Apellido, Nombre:

Calificación:

(4)

 $_{ extsf{-}}/30~\mathrm{pts}$

(a) Supongamos que v(x,t) es una función C^2 que satisface

(ED)
$$v_t = v_{xx} \quad 0 \le x \le 1, \quad t > 0;$$

(CB1)
$$v(0,t) = 0, t > 0;$$

(CB2)
$$v_x(1,t) = -Hv(1,t), \quad t > 0.$$

Aquí H es una constante positiva (arbitraria).

Demostrar que:

Si
$$0 \le t_1 \le t_2$$
 entonces $\int_0^1 [v(x, t_2)]^2 dx \le \int_0^1 [v(x, t_1)]^2 dx$. (1)

(b) Mostrar que

$$v(x,t) = \operatorname{senh}(x) e^t$$

es solución de

(ED)
$$v_t = v_{xx} \quad 0 \le x \le 1, \quad t > 0;$$

(CB1)
$$v(0,t) = 0, t > 0;$$

(CB2')
$$v_x(1,t) = Hv(1,t), \quad t > 0,$$

$$si H = \frac{\cosh 1}{\sinh 1}.$$

Observar que esta función v no cumple (1). Más aún,

$$\int_0^L [v(x,t)]^2 dx \to +\infty \quad \text{cuando} \quad t \to +\infty.$$

(c) ¿Qué condición de borde, (CB2) o (CB2') corresponde a la ley de enfriamiento de Newton en el extremo derecho del intervalo? Explicar.

(5)

Hallar la solución de

$$u_t = 3u_{xx},$$
 $0 \le x \le 1,$ $t \ge 0,$
 $u_x(0,t) = 2,$ $u_x(1,t) = -2,$ $t \ge 0,$
 $u(x,0) = 1 + \frac{1}{10}\cos(\pi x) + 2x - 2x^2,$ $0 \le x \le 1.$