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t: In this paper the 
ontinuity of the solutions of a mathemati
al modelof thermovis
oelasti
ity with respe
t to the model parameters is proved. This wasan open problem 
onje
tured in [27℄ and [28℄. The nonlinear partial di�erentialequations under 
onsideration arise from the 
onservation laws of linear momen-tum and energy and des
ribe stru
tural phase transitions in solids with non-
onvexLandau-Ginzburg free energy potentials. The theories of analyti
 semigroups andreal interpolation spa
es for maximal a

retive operators are used to show that thesolutions of the model depend 
ontinuously on the admissible parameters, in par-ti
ular, on those de�ning the free energy. More pre
isely, it is shown that if fqng1n=1is a sequen
e of admissible parameters 
onverging to q, then the 
orresponding so-lutions z(t; qn) 
onverge to z(t; q) in the norm of the graph of a fra
tional power ofthe operator asso
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The 
onservation laws governing the thermome
hani
al pro
esses in a one-dimensionalshape memory solid 
 = (0; 1) with Landau-Ginzburg free energy potential 	 giverise to the following initial-boundary value problem.(1:1)8>>>>><>>>>>: �utt � ��uxxt + 
uxxxx = f(x; t) + ��x � ���	(ux; uxx; �)� ; x 2 
; 0 � t � T;Cv�t � k�xx = g(x; t) + 2�2�uxuxt + ��u2xt; x 2 
; 0 � t � T;u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); x 2 
;u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0; 0 � t � T;�x(0; t) = 0; k�x(1; t) = k1 (��(t)� �(1; t)) ; 0 � t � T:The fun
tions, variables and parameters involved in (1.1) have the following physi
almeaning: u(x; t) = displa
ement; �(x; t) = absolute temperature; � = mass density;k = thermal 
ondu
tivity 
oeÆ
ient; Cv = spe
i�
 heat; � = vis
osity 
oeÆ
ient;f(x; t) = distributed for
es a
ting on the body (input); g(x; t) = distributed heatsour
es (input); u0(x) = initial displa
ement; u1(x) = initial velo
ity; �0(x) = initialtemperature; ��(t) = temperature of the surrounding medium (input); k1 = positive
onstant, proportional to the rate of thermal ex
hange at the right boundary, and Tis a pres
ribed �nal time. The fun
tion 	, whi
h represents the free energy densityof the system, is assumed to be a fun
tion of the linearized shear strain � = ux, thespatial derivative of the strain �x = uxx and the temperature �, and is taken in theLandau-Ginzburg form	(�; �x; �) = 	0(�) + �2(� � �1)�2 � �4�4 + �6�6 + 
2 �2x;	0(�) = �Cv� log� ��2�+ Cv� + C; (1.2)where �1, �2 are two 
riti
al temperatures and �2, �4, �6, 
 are positive 
onstants,all depending on the material being 
onsidered. Note that for values of � 
lose to�1 and �x �xed, the fun
tion 	(�; �x; �) is a non
onvex fun
tion of �. This propertyis related to the hysteresis phenomenon whi
h 
ara
terizes this type of materialsin the low and intermediate temperature ranges. The stress-strain relations arestrongly temperature-dependent. The behavior goes from elasti
, ideally-plasti
 atlow temperatures, to pseudoelasti
 or superelasti
 at intermediate temperatures, toalmost linearly elasti
 in the high temperature range. Shape memory and solid-solidphase transitions (martensiti
 transformations) are other pe
uliar 
hara
teristi
sof these materials whose dynami
al behavior is des
ribed by system (1.1). For adetailed review of these and other properties and the derivations of the equationsin (1.1) we refer the reader to [25℄ and the referen
es therein.The boundary 
onditions mean that the body is 
lamped at both ends, thermallyinsulated at the left end and, at the right end, the rate of thermal ex
hange ispres
ribed. The nonlinear 
oupled equations in (1.1) are sometimes referred to asthe equations of thermo-vis
o-elasto-plasti
ity. In parti
ular, the �rst equation in(1.1) 
an be regarded as a nonlinear beam equation in u, while the se
ond is anonlinear heat equation in �.



Initial boundary value problems of the type (1.1) have been studied by severalauthors ([15℄, [16℄, [21℄, [27℄, [28℄, [32℄, et
.; see [25℄ for a review). Initial e�orts toprove existen
e of solutions for this type of systems 
onsidered the heat 
ux in theform q = �k�x � �k�xt, with � > 0, instead of the 
lassi
al Fourier law (� = 0).This assumption introdu
es the additional term ��k�xxt on the left hand side of these
ond equation in (1.1). Although this was done merely for mathemati
al reasonsso that existen
e theorems 
ould be proved ([15℄, [16℄, [21℄, [22℄), it turns out thatthe se
ond law of thermodynami
s is not satis�ed if � > 0, as it 
an be easily veri�edby 
he
king the Clausius-Duhem inequality for the entropy produ
tion. Therefore,the 
ase � > 0 has no physi
al meaning. The �rst results on existen
e of solutionsfor the 
ase � = 0 are due to Sprekels ([27℄). However, he imposed very stronggrowth 
onditions on the free energy 	. In parti
ular, those 
onditions ex
ludedthe physi
ally relevant 
ase in whi
h 	 is given in the Landau-Ginzburg form (1.2).Later on, Zheng ([32℄) derived 
ertain apriori estimates from whi
h he 
on
ludedthat, if the initial data is smooth enough, then any lo
al solution of (1.1) with 	as in (1.2) 
an be extended globally in time. This result was later generalized bySprekels and Zheng ([28℄) to in
lude more general free energy fun
tionals. Morere
ently, using a state-spa
e approa
h ([25℄) it was shown that system (1.1)-(1.2)has a lo
al solution for a mu
h broader set of initial data than the one 
onsideredin [28℄ and [32℄.From a pra
ti
al point of view it would be very important to �nd the values of allthe parameters in (1.1)-(1.2) that \best �t" experimental data for a given material.This is 
alled the parameter identi�
ation problem (ID problem in the sequel).On
e this problem is solved, the next step is to determine how well this model 
anpredi
t the dynami
s of a given shape memory material whi
h is subje
ted to 
ertainexternal inputs. This is 
alled the model validation problem. Although numeri
alexperiments performed with system (1.1) have shown that physi
ally reasonableresults 
an be obtained for 
ertain values of the parameters (see [4℄ and [19℄), theID problem still remains open.In order to establish the 
onvergen
e of 
omputational algorithms for parameteridenti�
ation, one needs to show �rst that the solutions depend 
ontinuously on theparameters that one wants to estimate. As we shall see in the following se
tion,system (1.1)-(1.2) 
an be written as a semilinear Cau
hy problem of the form _z(t) =A(q)z(t)+F (q; t; z), z(0) = z0, in an appropriate Hilbert spa
e Zq, where q is a ve
torof admissible parameters, A(q) is a 
ertain di�erential operator asso
iated with thelinear part of the partial di�erential equations in (1.1) and F (q; t; z) 
orrespondsto the nonlinear part of the system. In [26℄ it was shown that the nonlinear termF (q; t; z) is lo
ally Lips
hitz 
ontinuous in the state variable z in the topology ofthe graph of (�A(q))Æ, for any Æ > 34 . Although this result is ne
essary to show the
ontinuous dependen
e of the solutions of (1.1) with respe
t to the parameter q, itis not suÆ
ient. In fa
t, it turns out that a key step in a
hieving this result involvesproving that if fqng1n=1 is a sequen
e of admissible parameters 
onverging to q, then



the asso
iated analyti
 semigroups T (t; qn) 
onverge strongly to T (t; q) in the normof the graph of (�A(q))Æ. This is a mu
h stronger result than the one obtained byusing the well known Trotter-Kato Theorem (see [25℄, Theorem 4.1).2. PRELIMINARIES AND STATE-SPACE FORMULATIONIn the sequel, an isomorphism will be understood to denote a bounded invertibleoperator from a Bana
h spa
e onto another.Let X be a Bana
h spa
e and X� its topologi
al dual. We denote with hx� ; xior hx ; x�i the value of x� at x. For ea
h x 2 X we de�ne the duality set S(x) :=fx� 2 X� : hx�; xi =kxk2 = kx�k2g. The Hahn-Bana
h theorem implies that S(x) is nonempty for everyx 2 X. If A is a linear operator in X with domainD(A), we say that A is dissipativeif for every x 2 D(A) there exists x� 2 S(x) su
h that RehAx; x�i � 0. We say thatA is stri
tly dissipative if A is dissipative and the 
ondition RehAx; x�i = 0 for allx� 2 S(x) implies that x = 0. If X is a Hilbert spa
e then S(x) = fxg and thereforeA is dissipative i� RehAx; xi � 0 for every x 2 D(A). We say that the operator Ais maximal dissipative if A is dissipative and it has no proper dissipative extension.We say that the operator A is (maximal) a

retive if �A is (maximal) dissipative.If the operator A is stri
tly dissipative and maximal dissipative, we will simply saythat A is stri
tly maximal dissipative.If A generates a strongly 
ontinuous semigroup T (t) on X then the type of T is de-�ned to be the real number w0(T ) := inft>0 1t log kT (t)k. It 
an be shown that the typeof a semigroup is either �nite or equals �1. Moreover, w0(T ) = limt!1 1t log kT (t)k.Also, the semigroup T (t) is of negative type i� T (t) is exponentially stable, i.e.,w0(T ) < 0 i� 9M � 1, � > 0 su
h that kT (t)k � Me��t for all t > 0 (see [1,pp 17-21℄). If the semigroup T (t) generated by A is analyti
 and �(A) denotes thespe
trum of A, then w0(T ) = sup�2�(A)Re � provided that �(A) 6= ; and w0(T ) = �1if �(A) = ; (see [1℄).Let us return now to our original problem (1.1)-(1.2). We de�ne the fun
tionL(x; t) := ��(t) 
os(2�x) and the transformation ~�(x; t) = �(x; t) � L(x; t). We alsode�ne the state spa
e Z := H10 (0; 1) \H2(0; 1)� L2(0; 1)� L2(0; 1), z :=  uvw! 2 Zand the admissible parameter setQ := �q = (�; Cv; �; �2; �4; �6; �1; 
) j q 2 IR8>0	 :Next, we de�ne in Z an inner produ
t h�; �iq depending on the parameter q as follows* uvw! ; û̂v̂w!+q := 
 Z 10 u00(x)û00(x) dx+ � Z 10 v(x)v̂(x) dx+ Cvk Z 10 w(x)ŵ(x) dx



and we denote by Zq the Hilbert spa
e Z endowed with the inner produ
t h�; �iq. Thenorm indu
ed by h�; �iq in Zq will be denoted by k � kq. Note that these norms are allequivalent and, moreover, they are uniformly equivalent on 
ompa
t subsets of Q.Then the initial boundary value problem (1.1) with 	 as in (1.2) 
an be formallywritten as an abstra
t semilinear Cau
hy problem in Zq as follows( _z(t) = A(q)z(t) + F (q; t; z(t)); 0 � t � Tz(0) = z0; (2.1)where z(t)(x) =  u(x; t)ut(x; t)~�(x; t) !,D (A(q)) := ( uvw! 2 Zq ����� u 2 H4(0; 1); u(0) = u(1) = 0 = u00(0) = u00(1);v 2 H10 (0; 1) \H2(0; 1);w 2 H2(0; 1); w0(0) = 0; kw0(1) = �k1w(1) ) ;(2.2)and for  uvw! 2 D (A(q)),A(q) uvw! := 0� v�v00 � 
�u0000kCvw00 1A = 0� 0 I 0�
� �4�x4 � �2�x2 00 0 kCv �2�x2 1A uvw! : (2.3)The element z0 is de�ned byz0(x) =  u0(x)u1(x)�0(x)� ��(0)
os(2�x)!and the nonlinear mapping F (q; t; z) : Q� [0; T ℄� Zq ! Zq is de�ned byF (q; t; z) = F  q; t; uvw!! :=  0f2(q; t; z)f3(q; t; z)! ; (2.4)where�f2(q; t; z)(x) = f(x; t)+ ��x �2�2(w(x) + L(x; t)� �1)u0(x)� 4�4u0(x)3 + 6�6u0(x)5� ;Cvf3(q; t; z)(x) = g(x; t) + 2�2 (w(x) + L(x; t)) u0(x)v0(x)+ ��v0(x)2 � Cv�0�(t) 
os(2�x)� 4k�2L(x; t):The following results 
an be found in [25℄ and [26℄.



Theorem 2.1. ([25℄) Let q 2 Q and the operator A(q) : D (A(q)) � Zq ! Zq asde�ned by (2.2)-(2.3). Theni) A(q) is stri
tly maximal dissipative;ii) The adjoint A�(q) is also stri
tly maximal dissipative and is given by D (A�(q)) =D (A(q)), and for  uvw! 2 D (A�(q))A�(q) uvw! = 0� �v�v00 + 
�u0000kCvw00 1A = 0� 0 �I 0
� �4�x4 � �2�x2 00 0 kCv �2�x2 1A uvw! ;iii) 0 2 � (A(q)), the resolvent set of A(q);iv) The spe
trum � (A(q)) of A(q) 
onsists only of eigenvalues, � (A(q)) = �p (A(q)) =f�+;�n ; �ng1n=1 where �+;�n = p�n ��r(q)�pr2(q)� 1�, �n = �k�2nCv , with �n =
n4�4� , r(q) = �p�2p
 and f�ng1n=1 are all the positive solutions of the equationtan � = k1k� . The 
orresponding set of normalized eigenve
tors in Zq is given by( en�+n en0 ! ;  knenkn��n en0 ! ;  00�n!)1n=1 ;where en(x) = � 2� (�n + j�+n j2)� 12 sin(�nx), �n(x) = � k�nCv R �n0 
os2(�) d�� 12 
os(�nx)and k2n = �n+j�+n j2�n+j��n j2 .v) The operator A(q) generates an analyti
 semigroup T (t; q) of negative type whi
hsatis�es kT (t; q)kL(Zq) � e�!(q)t, for t � 0, where !(q) is given by!(q) = 8<: min�k�21Cv ; ��22 � ; if �2� � 4
min�k�21Cv ; ��22 � �22p�p�2�� 4
� ; if �2� > 4
:It will be useful to introdu
e some notation for 
ertain interpolation spa
es. If Xis a Bana
h spa
e and p � 1 , Lp�(X) will denote the Bana
h spa
e of all Bo
hnermeasurable mappings u : [0;1)! X su
h that kukpLp�(X) := R10 ku(t)kpX dtt <1. LetX0, X1 be two Bana
h spa
es with X0 
ontinuously and densely embedded in X1,p � 1 and � 2 (0; 1). We shall denote by (X0; X1)�;p the spa
e of averages (or \real"interpolation spa
e)(X0; X1)�;p := �x 2 X1 ���� 9ui : [0;1)! Xi; i = 0; 1; t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) and x = u0(t) + u1(t) a.e. � :Endowed with the normkxk(X0;X1)�;p := inf(kt��u0kLp�(X0) + kt1��u1kLp�(X1) ����� t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) andx = u0(t) + u1(t) a.e. ) ;



(X0; X1)�;p is a Bana
h spa
e. In the parti
ular 
ase when p = 2 and X0, X1 areHilbert spa
es, we shall denote (X0; X1)�;2 = [X0; X1℄�.Sin
e 0 2 � (A(q)) and A(q) generates an analyti
 semigroup T (t; q), the fra
tionalÆ-powers (�A(q))Æ of �A(q) are well de�ned, 
losed, linear, invertible operators forany Æ � 0 (see [23, pp 69-75℄). Moreover, (�A(q))�Æ has the representation(�A(q))�Æ = 1�(Æ) Z 10 tÆ�1T (t; q) dt;where the integral 
onverges in the uniform operator topology for every Æ > 0. Sin
eA(q) is 
losed and 0 2 � (A(q)), the operator (�A(q))Æ is also 
losed and invertiblefor ea
h Æ > 0. Therefore, D �(�A(q))Æ� endowed with the topology of the graphnorm is a Hilbert spa
e. Sin
e ((�A(q))Æ is boundedly invertible, the norm of thegraph of ((�A(q))Æ is equivalent to the norm kzkq;Æ := 

(�A(q))Æz

q. We shalldenote by Zq;Æ the Hilbert spa
e D �(�A(q))Æ� endowed with the k � kq;Æ-norm.Theorem 2.2. ([26℄) Let q 2 Q, A(q) : D (A(q)) � Zq ! Zq as de�ned by (2.2)-(2.3), 0 < Æ < 1 and Zq;Æ as de�ned above. Theni) Zq;Æ = [D (A(q)) ; Zq℄1�Æ, in the sense of an isomorphism;ii) The norms kzkq;Æ, kzk(D(A(q));Zq)1�Æ;2 and kzkq + 

t1�ÆA(q)T (t; q)z

L2�(Zq) areall equivalent in D �(�A(q))Æ�.The next lemma shows some relations between the spa
es Zq;Æ for di�erent q's.Lemma 2.3. ([26℄) Let Æ 2 (0; 1). Then,i) For any pair q, q� 2 Q the spa
es Zq;Æ and Zq�;Æ are isomorphi
.ii) Moreover, for any 
ompa
t subset QC of Q the norms fk � kq;Æ : q 2 QCgare uniformly equivalent, i.e., there exist positive 
onstants m, M su
h thatmkzkq;Æ � kzkq�;Æ �Mkzkq;Æ for every q, q� 2 QC and all z 2 D �(�A(q))Æ�\D �(�A(q�))Æ�.Consider the following standing hypotheses.(H1) There exist fun
tions Kf , Kg 2 L2(0; 1), Kf (x) � 0 a.e., Kg(x) � 0 a.e., su
hthatjf(x; t1)� f(x; t2)j � Kf(x) jt1 � t2j and jg(x; t1)� g(x; t2)j � Kg(x) jt1 � t2jfor a.e. x 2 (0; 1) and all t1, t2 2 [0; T ℄.(H2) �� 2 H1(0; T ) and �0� is lo
ally Lips
hitz 
ontinuous in (0; T ).Theorem 2.4. ([26℄) Let q 2 Q, 0 < � < 14 and assume that the hypotheses (H1)and (H2) hold. Then,i) for any bounded subset U of [0; T ℄ � Zq; 34+� there exists a 
onstant L =L(q; U; ��; f; g) su
h thatkF (q; t1; z1)� F (q; t2; z2)kq � L�jt1 � t2j+ kz1 � z2kq; 34+��



for all (t1; z1), (t2; z2) 2 U , i.e., the fun
tion F (q; t; z) : Q� [0; T ℄�Zq; 34+� !Zq is lo
ally Lips
hitz 
ontinuous in t and z. Moreover the 
onstant L 
an be
hosen independent of q on any 
ompa
t subset of Q;ii) for any initial data z0 2 D �(�A(q)) 34+��, there exists t1 = t1(q; z0) > 0su
h that the initial value problem (2.1) has a unique strong solution z(t; q) 2C ([0; t1) : Zq) \ C1 ((0; t1) : Zq). Moreover ddtz(t; q) 2 C 14��lo
 ((0; t1℄ : Zq), i.e.,ddtz(t; q) is lo
ally H�older 
ontinuous on (0; t1℄ with exponent 14 � �.Finally, we state the following theorem proved in [26℄, whi
h states that for any 
om-pa
t subset QC of the admissible parameter set Q, it is possible to �nd a nontrivial
ommon interval of existen
e for all solutions z(t; q), q 2 QC .Theorem 2.5. ([26℄) Let QC be a 
ompa
t subset of the admissible parameter setQ, q0 2 QC , z0 2 Zq0;Æ, where 34 < Æ < 1. Let �0; tM(q)� = �0; tM(q; z0)� denote themaximum interval of existen
e of the solution z(t; q) with initial 
ondition z(0; q) =z0. Then tM(QC) := infq2QC tM(q) > 03. CONTINUOUS DEPENDENCE ON THE MODEL PARAMETERSIn this se
tion we show that the mapping q ! z(� ; q) from the spa
e of admissibleparameters Q into the spa
e of solutions is 
ontinuous. More pre
isely, we shallshow that if fqng1n=1 is a sequen
e in Q 
onverging to q 2 Q, then the sequen
efz(t; qn)g1n=1 
onverges to z(t; q) in some appropriate sense.Throughout this se
tion, to simplify the notation we will denote with An = A(qn); A =A(q); Tn(t) = T (t; qn); T (t) = T (t; q), zn(t) = z(t; qn) and z(t) = z(t; q).We shall need the following lemmas.Lemma 3.1. Let fqng1n=1 be a sequen
e in Q, qn ! q 2 Q, and let A; An; T; Tnbe as above. Then kAnTn(t)z � AT (t)zkq ! 0 as n!1for every z 2 Zq and t > 0.Proof. Let z 2 Zq. Sin
e Tn(t), T (t) are analyti
 semigroups, Tn(t)z, T (t)z, are inD(An), D(A), respe
tively 8t > 0. From Theorem 3.5 in [25℄ it follows that thereexists an angle �, 0 < � < �2 , su
h that the angular se
tor�� = f0g [ f� 2 C : jarg �j < �2 + �g � �(A) \ 1\n=1 �(An):



Now, let �2 < �1 < �2 + � and let � be the path 
omposed of the two raysre�i�1; rei�1; 0 � r < 1; � oriented so that Im(�) in
reases along �. We havethe following expresions (see [23℄)AT (t)z = 12�i Z� �e�tR(�;A)z d�;AnTn(t)z = 12�i Z� �e�tR(�;An)z d�;for every z 2 Zq; t > 0, where R(�;A) = (�I � A)�1, R(�;An) = (�I � An)�1.Then AT (t)z � AnTn(t)z = 12�i Z� �e�t (R(�;A)� R(�;An)) z d�: (3.1)But k�e�t (R(�;A)� R(�;An)) zkq � j�jeRe(�)t � 1j�j + Cj�j� kzkq� (1 + C)eRe(�)tkzkq 2 L1(�);where the 
onstant C appears be
ause of the uniform equivalen
e of the norms k�kqnand k � kq. Also, for any �xed � 2 �k (R(�;A)� R(�;An)) zkq ! 0 as n!1:In fa
t, k (R(�;A)�R(�;An)) zkq = kR(�;An) [(�I � An)R(�;A)� I℄ zkq= kR(�;An)(A� An)R(�;A)zkq� kR(�;An)kL(Zq)k(A� An)R(�;A)zkqwhi
h 
onverges to zero as n goes to in�nity by virtue of the uniform boundedness ofkR(�;An)kL(Zq) and the strong 
onvergen
e of An to A (whi
h follows immediatelyfrom the de�nition of An and A, and the 
onvergen
e of qn to q).The lemma then follows from (3.1) and the Dominated Convergen
e Theorem. �Lemma 3.2. Under the same hypotheses of Lemma 3.1

(�A)Æ(T (t)� Tn(t))z

q ! 0 as n!1for every z 2 Zq, Æ 2 [0; 1℄ and t � 0.Remark. We note here that the assertion of Lemma 3.2 
ould be obtained imme-diately if (�A)Æ 
ommuted with Tn(t). However, this is not true sin
e An does not
ommute with A, as it 
an be easily veri�ed.



Proof of Lemma 3.2. It suÆ
es to show the result for Æ = 1. We 
an writekA(T (t)� Tn(t))zk = 

[AT (t)� AnTn(t) + (I � AA�1n )AnTn(t)℄z

q� k(AT (t)� AnTn(t))zkq + 

I � AA�1n 

L(Zq) kAnTn(t)zkq :As a 
onsequen
e of Lemma 3.1 the �rst term on the right of the above inequalitytends to zero as n goes to in�nity and the sequen
e fkAnTn(t)zkqg1n=1 is bounded.A straightforward 
al
ulation using the de�nition of A(q) shows that for any pair ofadmissible parameters q = (�; Cv; �; �2; �4; �6; �1; 
), ~q = (~�; ~Cv; ~�; ~�2; ~�4; ~�6; ~�1; ~
)2 Q and any z =  uvw! 2 ZqA(~q)A�1(q)z = 0B� u�~� � � �~
~�
� u00 + �~
~�
v�Cv~Cv�w 1CA ; (3.2)from whi
h it follows immediately that kI � AA�1n kL(Zq) ! 0 as n ! 1. Thetheorem then follows. �Lemma 3.3. Let QC be a 
ompa
t subset of Q. Then for any Æ 2 [0; 1℄ there existsa 
onstant C depending only on Æ and QC su
h that

(�A(q1))Æ(�A(q2))�Æ

L(Zq3) � Cfor every q1; q2; q3 2 QC .Proof. Sin
e the operator A(q) is maximal dissipative (Theorem 2.1), the spa
e Zq;Æis isomorphi
 to the real interpolation spa
e [D(A(q)); Zq℄1�Æ, of order 1�Æ betweenZq and D(A(q)) (see [1℄), i.e.�D �(�A(q))Æ� ; k � kq;Æ� �= [D(A(q)); Zq℄1�Æ: (3.3)From (3.2) it follows that there exists a 
onstant C depending only on QC su
hthat kA(~q)A�1(q)zk~q � Ckzk~q for every q; ~q 2 QC ; z 2 Zq. Letting � = A�1(q)z weobtain kA(~q)�k~q � CkA(q)�k~q for all q; ~q 2 QC ; � 2 D(A(q)): (3.4)Sin
e the k � kq-norms are uniformly equivalent for q 2 QC , it follows from (3.4) and(3.3) that the norms k � kq;Æ are also uniformly equivalent for q 2 QC . Thus, for anyq1; q2; q3 2 QCk(�A(q1))Æ(�A(q2))�Æzkq3 � C1k(�A(q1))Æ(�A(q2))�Æzkq1= C1k(�A(q2))�Æzkq1;Æ� C1 C2k(�A(q2))�Æzkq2;Æ= C1C2kzkq2� C1 C2C3kzkq3;



where the 
onstants Ci, i = 1; 2; 3, depend only on QC and Æ. �Remark. Sin
e Tn(t) is an analyti
 semigroup of 
ontra
tions, by a well knownresult on semigroup theory ([23℄), for any Æ 2 (0; 1℄, there exists a 
onstant CÆindependent of n su
h that

(�An)ÆTn(t)

L(Zqn ) � CÆtÆj 
os �njwhere �n is any angle in (�2 ; �) for whi
h�(An) � f0g [ f� 2 C : j arg�j � �ng:As we mentioned in Lemma 3.1, in this 
ase the angle �n above 
an be 
hosenindependent of n. Hen
e, there exists a 
onstant ~CÆ depending only on Æ su
h thatk(�An)ÆTn(t)kL(Zqn ) � ~CÆtÆ 8n = 1; 2; � � � :Next, we state a lemma whose proof 
an be found in [14℄ (Lemma 7.1.1).Lemma 3.4. Suppose L � 0, 0 < Æ < 1 and a(t) is a nonnegative, lo
ally integrablefun
tion on 0 � t � T . Let u(t) be a real valued fun
tion de�ned on [0; T ℄ satisfyingu(t) � a(t) + L Z t0 1(t� s)Æu(s) dson this interval. Then, there exists a 
onstant K = K(Æ) su
h thatu(t) � a(t) +KL Z t0 a(s)(t� s)Æ ds for 0 � t < T:The following theorem will be essential for our main result.Theorem 3.5. Let Æ 2 �34 ; 1�, fqng1n=1 � Q, qn ! q 2 Q, and zn(t); z(t) be thesolutions of the IVP (2.1) with initial datum z0 2 D �(�A)Æ� 
orresponding to theparameters qn and q, respe
tively, and let [0; t1) be the maximal interval of existen
eof z(t). Then, for any t01 < t1 there exists a 
onstant N0 su
h that zn(t) exists on[0; t01℄ for every n � N0 and a 
onstant D su
h thatkzn(t)kq;Æ � D; 8n � N0; 8t 2 [0; t01℄:Proof. Let Æ 2 �34 ; 1�, 0 < t01 < t1, and tn1 > 0 be su
h that zn(t) exists on [0; tn1 ) forea
h n 2 IN. Then, for t 2 [0;minft01; tn1g)z(t) = T (t)z0 + Z t0 T (t� s)F (s; z(s)) dszn(t) = Tn(t)z0 + Z t0 Tn(t� s)Fn(s; zn(s)) ds;



whi
h implykz(t)�zn(t)kq;Æ = k(�A)Æz(t)� (�A)Æzn(t)kq� 

(�A)Æ (T (t)� Tn(t)) z0

q+ 



Z t0 (�A)ÆT (t� s)F (q; s; z(s))� (�A)ÆTn(t� s)F (qn; s; zn(s)) ds



q� 

(�A)Æ (T (t)� Tn(t)) z0

q+ 



Z to (�A)ÆT (t� s)F (q; s; z(s))� (�A)ÆTn(t� s)F (q; s; z(s)) ds



q+ 



Z t0 (�A)ÆTn(t� s) [F (q; s; z(s))� F (qn; s; z(s))℄ ds



q+ 



Z t0 (�A)ÆTn(t� s) [F (qn; s; z(s))� F (qn; s; zn(s))℄ ds



q:= In1 (t) + In2 (t) + In3 (t) + In4 (t):Note that, even when this last inequality is true on [0;minft01; tn1g), In1 (t), In2 (t) andIn3 (t) are well de�ned on [0; t01℄.We have the following estimatesIn3 (t) � Z t0 k(�A)ÆTn(t� s)kL(Zq)kF (q; s; z(s))� F (qn; s; z(s))kq ds� C1 Z t0 k(�An)ÆTn(t� s)kL(Zqn )kF (q; s; z(s))� F (qn; s; z(s))kq ds� C1 Z t0 CÆ(t� s)Æ kF (q; s; z(s))� F (qn; s; z(s))kq ds:The se
ond and third inequality follow from Lemma 3.3 and the Remark pre
edingLemma 3.4, respe
tively. Now, for any s 2 [0; t01℄, kF (q; s; z(s))�F (qn; s; z(s))kq ! 0as n!1. Also, there exists a 
onstant C2 independent of n su
h that kF (q; s; z(s))�F (qn; s; z(s))kq � C2 for every s 2 [0; t01℄, whi
h follows easily from the 
ontinuityof z(s) and the de�nition of F . Therefore, In3 (t) ! 0 as n ! 1 on [0; t01℄ by theDominated Convergen
e Theorem and In3 (t) � C1C2CÆ1� Æ t1�Æ, 8n 2 IN, 8t 2 [0; t01℄.To estimate In2 (t), observe thatIn2 (t) � Z t0 k(�A)Æ (T (t� s)� Tn(t� s))F (q; s; z(s))kq ds:Now, kF (q; s; z(s))kq is uniformly bounded on [0; t01℄, say kF (q; s; z(s))kq � C3,



8t 2 [0; t01℄ andk(�A)Æ(T (t� s)�Tn(t� s))kL(Zq)� k(�A)ÆT (t� s)kL(Zq) + k(�A)ÆTn(t� s)kL(Zq)� k(�A)ÆT (t� s)kL(Zq) + Ck(�An)ÆTn(t� s)kL(Zqn )� CÆ(t� s)Æ + C CÆ(t� s)Æ = C4(t� s)Æ :On the other hand, for any s 2 [0; t01℄ we havek(�A)Æ (T (t� s)� Tn(t� s))F (q; s; z(s))kq ! 0 as n!1by Lemma 3.2. Therefore In2 (t) ! 0 as n ! 1 by the Dominated Convergen
eTheorem, and also In2 (t) � C3C41� Æ t1�Æ, 8n, 8t 2 [0; t01℄.In regard to In1 (t) observe thatIn1 (t) = 

(�A)Æ (Tn(t)� T (t)) z0

q= 

(�A)Æ(�An)�Æ(�An)ÆTn(t)z0 � (�A)ÆT (t)z0

q� C 

Tn(t)(�An)Æz0

q + 

T (t)(�A)Æz0

q� C kTn(t)kL(Zq) C 

(�A)Æz0

q + kT (t)kL(Zq) 

(�A)Æz0

q� C5 

(�A)Æz0

q ;where we have used that z0 2 D �(�A)Æ� and the semigroups are 
ontra
tive. Also,by Lemma 3.2 In1 (t)! 0 as n!1.Similarly,In4 (t) � Z t0 k(�A)ÆTn(t� s)kL(Zq)kF (qn; s; z(s))� F (qn; s; zn(s))kq ds� C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds:From the above estimates on In1 (t), In2 (t), In3 (t) and In4 (t), there followskz(t)� zn(t)kq;Æ � �n(t) +C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds (3.5)where, for all t 2 [0; t01℄, �n(t) := In1 (t) + In2 (t) + In3 (t) satis�es 0 � �n(t) � C7for all n 2 IN and �n(t) ! 0 as n ! 1. In parti
ular, these 
onditions implyR t010 �n(t) dt! 0 as n!1.Let K = K(Æ) be as in Lemma 3.4 and de�ne ~K := C7 + C6C7K and M :=sup0�t�t01 kz(t)kq;Æ. From the 
ontinuity of z(t) it follows that M < 1. Letn 2 IN. Sin
e z(0) = zn(0) = z0, there exists Æn > 0 su
h that kzn(t)kq;Æ �



M + 2 ~K for all t 2 [0; Æn℄. Let L be a Lips
hitz 
onstant for F on the setU := [0; t01℄ � nkzkÆ �M + 2 ~Ko, valid for q and all the qn's. Then, from (3.5)and Lemma 3.4, we havekzn(t)� z(t)kq;Æ � fn(t) on 0 � t � Æn; (3.6)where fn(t) := �n(t) + C6LK Z t0 �n(s)(t� s)Æ ds, for t 2 [0; t01℄.Now, Z t0 �n(s)(t� s)Æ ds � Z t0 C7(t� s)Æ ds= C7 Z t0 1sÆ ds= C71� Æ t1�Æ:Choosing � = �(L) > 0 suÆ
iently small so that t1�Æ � 1� Æ2L for every t 2 [0; �℄, itfollows that Z t0 �n(s)(t� s)Æ ds � C72L for every t 2 [0; �℄: (3.7)On the other hand, if � < t � t01Z t0 �n(t)(t� s)Æ ds = Z t0 �n(t� s)sÆ ds= Z �0 �n(t� s)sÆ ds+ Z t� �n(t� s)sÆ ds� C72L + 1�Æ Z t0 �n(t� s) ds� C72L + 1�Æ Z t010 �n(s) ds:Hen
e, sin
e R t010 �n(s) ds! 0, there exists N0 su
h thatZ t0 �n(t)(t� s)Æ � C72L + C72L = C7L 8t 2 [�; t01℄ and n � N0: (3.8)From (3.7) and (3.8) it follows thatfn(t) � C7 + C6C7K 8t 2 [0; t01℄ and n � N0: (3.9)Consequently, from (3.6) and (3.9)kzn(t)� z(t)kq;Æ � ~K 8n � N0 and t 2 [0; Æn℄;



whi
h implies kzn(t)kq;Æ �M + ~K 8n � N0 and t 2 [0; Æn℄: (3.10)Finally, let n � N0 be �xed. We 
laim that zn(t) exists on [0; t01℄ and for t 2 [0; t01℄,kzn(t)kq;Æ < M+2 ~K. In fa
t, suppose, on the 
ontrary, that there exists t� � t01 su
hthat kzn(t�)kq;Æ = M + 2 ~K and kzn(t)kq;Æ < M + 2 ~K for 0 � t < t�. Then, in (3.6),Æn 
an be repla
ed by t� and (3.10) follows with Æn = t�, i.e. kzn(t)kq;Æ � M + ~Kon [0; t�℄. This 
ontradi
ts kzn(t�)kq;Æ =M + 2 ~K. The theorem then follows takingD = M + 2 ~K. �Theorem 3.6. Under the same hypotheses of Theorem 3.5kzn(t)� z(t)kq;Æ ! 0; as n!1for every t 2 [0; t1).Remark. If the initial data is smooth enough, then the results in [28℄ and [32℄imply that t1 = 1 and therefore, this theorem ensures the k � kq;Æ-
onvergen
e ofzn(t) to z(t) on the whole interval [0;1).Proof of Theorem 3.6. Let Æ 2 �34 ; 1� and t01 < t1. By Theorem 3.5 there existN0 2 IN and D > 0 su
h that zn(t) exists and kzn(t)kq;Æ � D on [0; t01℄ for everyn � N0. Following the steps of Theorem 3.5 we see that for every t 2 [0; t01℄ andn � N0kz(t)� zn(t)kq;Æ � �n(t) + C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds� �n(t) + LC6 Z t0 1(t� s)Æ kz(s)� zn(s)kq;Æ dswhere 0 � �n(t) � C7 and �n(t) ! 0 as n ! 1 for every t 2 [0; t01℄. In thelast inequality we have used the fa
t that F is lo
ally Lips
hitz 
ontinuous andkzn(t)kq;Æ � D, 8n � N0, 8t 2 [0; t01℄.Hen
e, by Lemma 3.4, there exists K > 0 su
h thatkz(t)� zn(t)kq;Æ � �n(t) +K Z t0 �n(s)(t� s)Æ ds �! 0 as n!1:Sin
e t01 is arbitrary, the theorem follows. �4. CONCLUSIONSIn this paper we have shown that the solutions of the IBVP (1.1), with free en-ergy potential 	 in the Landau-Ginzburg form (1.2), depend 
ontinuously on the



parameters �; Cv; �; �2; �4; �6; �1 and 
. In parti
ular, we have shown that iffqn = (�n; Cv;n; �n; �2;n; �4;n; �6;n; �1;n; 
n)g1n=1 is a sequen
e of admissible parame-ters 
onverging to the admissible parameter q, then not only z(t; qn)! z(t; q) in thenorm of Zq, but also in the stronger k � kq;Æ-norm (Æ = 34 + �). This 
onstitutes animportant step towards solving the parameter identi�ability and the ID problemsfor system (1.1). These problems, to whi
h we are already devoting e�orts, involvealso showing that the mapping q ! z(� ; q) from the admissible parameter set Q intothe spa
e of solutions is lo
ally one-to-one. Results on this issue will be publishedin a forth
oming arti
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