
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 212, 292-315 (1997)Identi�ability of the Landau-Ginzburg Potentialin a Mathemati
al Model of Shape Memory AlloysPEDRO MORIN yandRUBEN D. SPIES y zInstituto de Desarrollo Te
nol�ogi
o para la Industria Qu��mi
a - INTECPrograma Espe
ial de Matem�ati
a Apli
ada - PEMACONICET - Universidad Na
ional del Litoral3000 Santa Fe - ArgentinaAbstra
t:The nonlinear partial di�erential equations 
onsidered here arise from the 
onservation laws oflinear momentum and energy, and des
ribe stru
tural phase transitions in one-dimensional shape memorysolids with non-
onvex Landau-Ginzburg free energy potentials. In this arti
le the theories of analyti
semigroups and real interpolation spa
es for maximal a

retive operators are used to show that the solutionsof the model depend 
ontinuously on the admissible parameters. Also, we show that the non-physi
alparameters that de�ne the free energy are identi�able from the model.1. Introdu
tionIn this arti
le we 
onsider the following initial-boundary value problem (IBVP).
(1:1)8>>>>><>>>>>: �utt � ��uxxt + 
uxxxx = f(x; t) + ��x � ���	(ux; uxx; �)� ; x 2 
; 0 � t � T;Cv�t � k�xx = g(x; t) + 2�2�uxuxt + ��u2xt; x 2 
; 0 � t � T;u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); x 2 
;u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0; 0 � t � T;�x(0; t) = 0; k�x(1; t) = k1 (��(t)� �(1; t)) ; 0 � t � T:The partial di�erential equations in (1.1) re
e
t the 
onservation of linear momentum and energy ina one-dimensional shape memory body 
 = (0; 1). The fun
tions, variables and parameters involved in(1.1) have the following physi
al meaning: u(x; t) = displa
ement; �(x; t) = absolute temperature; � =mass density; k = thermal 
ondu
tivity 
oeÆ
ient; Cv = spe
i�
 heat; � = vis
osity 
oeÆ
ient; f(x; t) =distributed for
es a
ting on the body (input); g(x; t) = distributed heat sour
es (input); u0(x) = initialdispla
ement; u1(x) = initial velo
ity; �0(x) = initial temperature; ��(t) = temperature of the surroundingmedium (input); k1 = positive 
onstant, proportional to the rate of thermal ex
hange at the right boundary,and T is a pres
ribed �nal time. The fun
tion 	, whi
h represents the free energy density of the system, isassumed to be a fun
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2and the temperature �, and is taken in the Landau-Ginzburg form	(�; �x; �) = 	0(�) + �2(� � �1)�2 � �4�4 + �6�6 + 
2 �2x;	0(�) = �Cv� log� ��2�+ Cv� + C; (1.2)where �1, �2 are two 
riti
al temperatures and �2, �4, �6, 
 are positive 
onstants, all depending on thematerial being 
onsidered and C � 0 is a �xed referen
e energy level. Note that for values of � 
lose to �1and �x �xed, the fun
tion 	(�; �x; �) is a non
onvex fun
tion of �. This property is related to the hysteresisphenomenon whi
h 
ara
terizes this type of materials in the low and intermediate temperature ranges. Thestress-strain relations are strongly temperature-dependent. The behavior is elasti
, ideally-plasti
 at lowtemperatures, superelasti
 at intermediate temperatures and almost linearly elasti
 in the high temperaturerange. Shape memory and solid-solid phase transitions (martensiti
 transformations) are other pe
uliar
hara
teristi
s of these materials whose dynami
al behavior is formally des
ribed by system (1.1). For adetailed review of these and other properties and the derivations of the equations in (1.1) we refer the readerto [28℄ and the referen
es therein.The boundary 
onditions mean that the beam is simply supported at both ends, thermally insulated atthe left end and, at the right end, the rate of thermal ex
hange with the surrounding medium is pres
ribed.The nonlinear 
oupled equations in (1.1) are sometimes referred to as the equations of thermo-vis
o-elasto-plasti
ity. In parti
ular, the �rst equation in (1.1) 
an be regarded as a nonlinear beam equation in u, whilethe se
ond is a nonlinear heat equation in �.Initial boundary value problems of the type (1.1) have been studied by several authors ([16℄, [17℄, [22℄,[26℄, [27℄, [30℄, et
.; see [28℄ for a review). The �rst results on existen
e of solutions for IBVP's like (1.1) aredue to Sprekels ([30℄). However, he imposed very strong growth 
onditions on the free energy 	. In parti
ular,these 
onditions ex
luded the physi
ally relevant 
ase in whi
h 	 is given in the Landau-Ginzburg form (1.2).Later on, Songmu ([26℄) derived 
ertain a-priori estimates from whi
h he 
on
luded that, if the initial datais smooth enough, then any lo
al solution of (1.1) with 	 as in (1.2) 
an be extended globally in time. Thisresult was later generalized by Songmu and Sprekels ([27℄) to in
lude more general free energy fun
tionals.More re
ently, using a state-spa
e approa
h ([28℄) it was shown that the IBVP (1.1) 
an be written as asemilinear Cau
hy problem of the form _z(t) = A(q)z(t) + F (q; t; z), z(0) = z0, in an appropriate Hilbertspa
e Zq , where q is a ve
tor of admissible parameters, A(q) is a 
ertain di�erential operator asso
iated withthe linear part of the partial di�erential equations in (1.1) and F (q; t; z) 
orresponds to the nonlinear partof the system. This approa
h provides a friendly framework for a suitable treatment of several problemsasso
iated to (1.1) su
h as existen
e, uniqueness, regularity and asymptoti
 behavior of solutions, as well asa powerful tool for numeri
al approximations, parameter estimation and 
ontrol.From a pra
ti
al point of view it would be very important to �nd the values of all the parameters in(1.1)-(1.2) that \best �t" experimental data for a given material. This is 
alled the parameter identi�
ationproblem (ID problem in the sequel). On
e this problem is solved, the next step is to determine how well thismodel 
an predi
t the dynami
s of a given shape memory material whi
h is subje
ted to 
ertain externalinputs. This is 
alled the model validation problem. Although numeri
al experiments performed with system(1.1) have shown that physi
ally reasonable results 
an be obtained for 
ertain values of the parameters (see[5℄ and [20℄), the ID problem still remains open.In order to establish the 
onvergen
e of 
omputational algorithms for parameter identi�
ation, one needsto show �rst that the solutions depend 
ontinuously on the parameters that one wants to estimate. In [29℄ itwas shown that the nonlinear term F (q; t; z) is Lips
hitz 
ontinuous in the state variable z in the topology ofthe graph of (�A(q))Æ , for any Æ > 34 . Although this result is ne
essary to show the 
ontinuous dependen
eof the solutions of (1.1) with respe
t to the parameter q, it is not suÆ
ient. In fa
t, it turns out that akey step in a
hieving this result involves proving that if fqng1n=1 is a sequen
e of admissible parameters
onverging to q, then the sequen
e of analyti
 semigroups T (t; qn) generated by A(qn), 
onverges stronglyto T (t; q) in the norm of the graph of (�A(q))Æ . This is a mu
h stronger result than the one we 
an obtainby a straighforward appli
ation of the well known Trotter-Kato Theorem (see [28, Theorem 4.1℄).2. Preliminaries and State-Spa
e FormulationIn the sequel, an isomorphism will be understood to denote a bounded invertible operator from a Bana
hspa
e onto another.



3Let X be a Bana
h spa
e and X� its topologi
al dual. We denote with hx� ; xi or hx ; x�i the value of x�at x. For ea
h x 2 X we de�ne the duality set S(x) := fx� 2 X� : hx�; xi =kxk2 = kx�k2	. The Hahn-Bana
h theorem implies that S(x) is nonempty for every x 2 X . If A is alinear operator in X with domain D(A), we say that A is dissipative if for every x 2 D(A) there existsx� 2 S(x) su
h that RehAx; x�i � 0. We say that A is stri
tly dissipative if A is dissipative and the 
onditionRehAx; x�i = 0 for all x� 2 S(x) implies that x = 0. If X is a Hilbert spa
e then S(x) = fxg and therefore Ais dissipative i� RehAx; xi � 0 for every x 2 D(A). We say that the operator A is maximal dissipative if A isdissipative and it has no proper dissipative extension. We say that the operator A is (maximal) a

retive if�A is (maximal) dissipative. If the operator A is stri
tly dissipative and maximal dissipative, we will simplysay that A is stri
tly maximal dissipative.If A generates a strongly 
ontinuous semigroup T (t) on X then the type of T is de�ned to be the realnumber w0(T ) := inft>0 1t log kT (t)k. It 
an be shown that the type of a semigroup is either �nite or equals �1.Moreover, w0(T ) = limt!1 1t log kT (t)k. Also, the semigroup T (t) is of negative type i� T (t) is exponentiallystable, i.e., w0(T ) < 0 i� 9M � 1, � > 0 su
h that kT (t)k � Me��t for all t � 0 (see [2, pp 17-21℄). Ifthe semigroup T (t) generated by A is analyti
, then w0(T ) = sup�2�(A)Re � provided that �(A) 6= ; and, byde�nition, w0(T ) = �1 if �(A) = ; (see [2℄).Let us now return to our original problem (1.1)-(1.2). We de�ne the fun
tion L(x; t) := ��(t) 
os(2�x)and the transformation ~�(x; t) = �(x; t) � L(x; t). We also de�ne the admissible parameter set Q :=�q = (�; Cv ; �; �2; �4; �6; �1; 
) j q 2 IR8>0	, and the state spa
e Zq as the Hilbert spa
e H10 (0; 1)\H2(0; 1)�L2(0; 1)� L2(0; 1) endowed with the inner produ
t*0� uvw1A ;0� û̂v̂w1A+q := 
 Z 10 u00(x)û00(x) dx+ � Z 10 v(x)v̂(x) dx+ Cvk Z 10 w(x)ŵ(x) dx:The norm indu
ed by h�; �iq in Zq will be denoted by k � kq. Note that these norms are all equivalent and,moreover, they are uniformly equivalent on 
ompa
t subsets of Q. Then the initial-boundary value problem(1.1) with 	 as in (1.2) 
an be formally written as an abstra
t semilinear Cau
hy problem in Zq as follows:8<: ddtz(t) = A(q)z(t) + F (q; t; z(t)); 0 � t � Tz(0) = z0; (2.1)where z(t)(x) = 0� u(x; t)ut(x; t)~�(x; t) 1A,D (A(q)) := 8<:0� uvw1A 2 Zq ������ u 2 H4(0; 1); u(0) = u(1) = 0 = u00(0) = u00(1);v 2 H10 (0; 1) \H2(0; 1);w 2 H2(0; 1); w0(0) = 0; kw0(1) = �k1w(1) 9=; ; (2.2)and for 0� uvw1A 2 D (A(q)),A(q)0� uvw1A := 0� v�v00 � 
�u0000kCvw00 1A = 0� 0 I 0�
� �4�x4 � �2�x2 00 0 kCv �2�x2 1A0� uvw1A : (2.3)The element z0 is de�ned by z0(x) = 0� u0(x)u1(x)�0(x) � ��(0) 
os(2�x)1Aand the nonlinear mapping F (q; t; z) : Q� [0; T ℄� Zq ! Zq is de�ned byF (q; t; z) = F 0�q; t;0� uvw1A1A := 0� 0f2(q; t; z)f3(q; t; z)1A ; (2.4)



4where �f2(q; t; z)(x) = f(x; t) + ��x �2�2(w(x) + L(x; t)� �1)u0(x)� 4�4u0(x)3 + 6�6u0(x)5� ;Cvf3(q; t; z)(x) = g(x; t) + 2�2 (w(x) + L(x; t))u0(x)v0(x) + ��v0(x)2 � Cv�0�(t) 
os(2�x)� 4k�2L(x; t):The following results 
an be found in [28℄ and [29℄.Theorem 2.1. ([28℄) Let q 2 Q and the operator A(q) : D (A(q)) � Zq ! Zq as de�ned by (2.2)-(2.3).Theni) A(q) is stri
tly maximal dissipative;ii) The adjoint A�(q) is also stri
tly maximal dissipative and is given by D (A�(q)) = D (A(q)),A�(q)0� uvw1A = 0� �v�v00 + 
�u0000kCvw00 1A = 0� 0 �I 0
� �4�x4 � �2�x2 00 0 kCv �2�x2 1A0� uvw1A ; 0� uvw1A 2 D (A�(q)) ;iii) 0 2 � (A(q)), the resolvent set of A(q);iv) The spe
trum � (A(q)) of A(q) 
onsists only of eigenvalues, � (A(q)) = �p (A(q)) = f�+;�n ; �ng1n=1 where�+;�n = p�n ��r(q)�pr2(q)� 1�, �n = �k�2nCv , with �n = 
n4�4� , r(q) = �p�2p
 and f�ng1n=1 are all thepositive solutions of the equation tan � = k1k� . The 
orresponding set of normalized eigenve
tors in Zq isgiven by 8<:0� en�+n en0 1A ; 0� knenkn��n en0 1A ; 0� 00�n1A9=;1n=1 ;where en(x) =  2� ��n + j�+n j2�!1=2 sin(�nx), �n(x) =  k�nCv R �n0 
os2(�) d�!1=2 
os(�nx) and k2n = �n+j�+n j2�n+j��n j2 .v) The operator A(q) generates an analyti
 semigroup T (t; q) of negative type whi
h satis�es kT (t; q)kL(Zq) �e�!(q)t, for t � 0, where !(q), the type of T , is given by!(q) = 8<: min�k�21Cv ; ��22 � ; if �2� � 4
min�k�21Cv ; ��22 � �22p�p�2�� 4
� ; if �2� > 4
:We shall need some notation for 
ertain interpolation spa
es. If X is a Bana
h spa
e and p � 1, Lp�(X)will denote the Bana
h spa
e of all Bo
hner measurable mappings u : [0;1) ! X su
h that kukpLp�(X) :=R10 ku(t)kpX dtt < 1. If X0 and X1 are two Bana
h spa
es with X0 
ontinuously and densely embedded inX1, p � 1 and � 2 (0; 1), we denote by (X0; X1)�;p the spa
e of averages (or \real" interpolation spa
e)(X0; X1)�;p := �x 2 X1 ���� 9ui : [0;1)! Xi; i = 0; 1; t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) and x = u0(t) + u1(t) a.e. � :Endowed with the normkxk(X0;X1)�;p := inf8<:kt��u0kLp�(X0) + kt1��u1kLp�(X1) ������ t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) andx = u0(t) + u1(t) a.e. 9=; ;(X0; X1)�;p is a Bana
h spa
e. In the parti
ular 
ase when p = 2 and X0, X1 are Hilbert spa
es, we denote(X0; X1)�;2 = [X0; X1℄�.



5Sin
e 0 2 � (A(q)) and A(q) generates an analyti
 semigroup T (t; q), the fra
tional Æ-powers (�A(q))Æof �A(q) are well de�ned, 
losed, linear, invertible operators for any Æ � 0 (see [24, pp 69-75℄). Moreover,(�A(q))�Æ has the representation (�A(q))�Æ = 1�(Æ) Z 10 tÆ�1T (t; q) dt;where the integral 
onverges in the uniform operator topology for every Æ > 0. Also, the domainD �(�A(q))Æ�endowed with the topology of the norm of the graph of (�A(q))Æ is a Hilbert spa
e. Sin
e ((�A(q))Æ is bound-edly invertible this norm is equivalent to the norm kzkq;Æ := 

(�A(q))Æz

q. We shall denote by Zq;Æ theHilbert spa
e D �(�A(q))Æ� endowed with the k � kq;Æ-norm.Next, we state a few results whi
h will be needed throughout the rest of this arti
le. Their proofs 
anbe found in [29℄.Theorem 2.2. ([29℄) Let q 2 Q, A(q) : D (A(q)) � Zq ! Zq as de�ned by (2.2)-(2.3), 0 < Æ < 1 and Zq;Æas above. Then Zq;Æ = [D (A(q)) ; Zq℄1�Æ, in the sense of an isomorphism.The next lemma shows some relations between the spa
es Zq;Æ for di�erent q's.Lemma 2.3. ([29℄) Let Æ 2 (0; 1). Then,i) For any pair q, q� 2 Q the spa
es Zq;Æ and Zq�;Æ are isomorphi
.ii) Moreover, for any 
ompa
t subset QC of Q the norms fk � kq;Æ : q 2 QCg are uniformly equivalent,i.e., there exist 
onstants m > 0, M > 0, su
h that mkzkq;Æ � kzkq�;Æ � Mkzkq;Æ for every pair q,q� 2 QC and all z 2 D �(�A(q))Æ�\D �(�A(q�))Æ�.Consider the following standing hypotheses.(H1) There exist fun
tionsKf ,Kg 2 L2(0; 1),Kf (x) � 0 a.e.,Kg(x) � 0 a.e., su
h that jf(x; t1)� f(x; t2)j �Kf (x) jt1 � t2j and jg(x; t1)� g(x; t2)j � Kg(x) jt1 � t2j for a.e. x 2 (0; 1) and all t1, t2 2 [0; T ℄.(H2) �� 2 H1(0; T ) and �0� is lo
ally Lips
hitz 
ontinuous in (0; T ).Theorem 2.4. ([29℄) Let q 2 Q, 0 < � < 14 and assume that the hypotheses (H1) and (H2) hold. Then,i) for any bounded subset U of [0; T ℄� Zq; 34+� there exists a 
onstant L = L(q; U; ��; f; g) su
h thatkF (q; t1; z1)� F (q; t2; z2)kq � L�jt1 � t2j+ kz1 � z2kq; 34+��for all (t1; z1), (t2; z2) 2 U , i.e., the fun
tion F (q; t; z) : Q� [0; T ℄�Zq; 34+� ! Zq is lo
ally Lips
hitz
ontinuous in t and z. Moreover, the 
onstant L 
an be 
hosen independent of q on any 
ompa
tsubset of Q;ii) for any initial data z0 2 D�(�A(q)) 34+��, there exists t1 = t1(q; z0) > 0 su
h that the initial valueproblem (2.1) has a unique 
lassi
al solution z(t; q) 2 C ([0; t1) : Zq) \ C1 ((0; t1) : Zq). Moreoverddtz(t; q) 2 C 14��lo
 ((0; t1℄ : Zq), i.e., ddtz(t; q) is lo
ally H�older 
ontinuous on (0; t1℄ with exponent14 � �.Finally, the following theorem says that for any 
ompa
t subset QC of the admissible parameter set Q,it is possible to �nd a nontrivial 
ommon interval of existen
e for all solutions z(t; q), q 2 QC .Theorem 2.5. ([29℄) Let QC be a 
ompa
t subset of the admissible parameter set Q, q0 2 QC , z0 2 Zq0;Æ,where 34 < Æ < 1. Let �0; tM (q)� = �0; tM (q; z0)� denote the maximum interval of existen
e of the solutionz(t; q) with initial 
ondition z(0; q) = z0. ThentM (QC) := infq2QC tM (q) > 0



63. Continuous Dependen
e on the Model ParametersIn this se
tion we show that the mapping q ! z(� ; q) from the spa
e of admissible parameters Q intothe spa
e of solutions is 
ontinuous. More pre
isely, we show that if fqng1n=1 is a sequen
e in Q 
onvergingto q 2 Q, then the sequen
e fz(t; qn)g1n=1 
onverges to z(t; q) in some appropriate sense.Throughout this se
tion, to simplify the notation we shall denote with An = A(qn); A = A(q); Tn(t) =T (t; qn); T (t) = T (t; q), zn(t) = z(t; qn) and z(t) = z(t; q).We shall need the following lemmas.Lemma 3.1. Let fqng1n=1 be a sequen
e in Q, qn ! q 2 Q, and let A; An; T; Tn be as above. ThenkAnTn(t)z �AT (t)zkq ! 0 as n!1for every z 2 Zq and t > 0.Proof. Let z 2 Zq . Sin
e Tn(t), T (t) are analyti
 semigroups, Tn(t)z, T (t)z, are inD(An), D(A), respe
tively,8t > 0. From Theorem 3.5 in [28℄ it follows that there exists an angle �, 0 < � < �2 , su
h that�� := f0g [ f� 2 C : jarg �j < �2 + �g � �(A) \ 1\n=1 �(An):Now, let �2 < �1 < �2 +� and let � be the path 
omposed of the two rays re�i�1 ; rei�1 ; 0 � r <1; � orientedso that Im(�) in
reases along �. We have the following expresions (see [24℄)AT (t)z = 12�i Z� �e�tR(�;A)z d�; AnTn(t)z = 12�i Z� �e�tR(�;An)z d�;for every z 2 Zq; t > 0, where R(�;A) = (�I �A)�1, R(�;An) = (�I �An)�1.Then AT (t)z �AnTn(t)z = 12�i Z� �e�t (R(�;A)�R(�;An)) z d�: (3.1)By the Hille-Yosida theorem ([24℄)k�e�t (R(�;A)�R(�;An)) zkq � j�jeRe(�)t � 1j�j + Cj�j� kzkq� (1 + C)eRe(�)tkzkq 2 L1(�);where the 
onstant C appears be
ause of the uniform equivalen
e of the norms k � kqn and k � kq. Also forany �xed � 2 �, k (R(�;A)�R(�;An)) zkq ! 0 as n!1. In fa
t,k (R(�;A)�R(�;An)) zkq = kR(�;An) [(�I �An)R(�;A)� I ℄ zkq= kR(�;An)(A�An)R(�;A)zkq� kR(�;An)kL(Zq)k(A�An)R(�;A)zkqwhi
h 
onverges to zero as n goes to in�nity by virtue of the uniform boundedness of kR(�;An)kL(Zq) andthe strong 
onvergen
e of An to A (whi
h follows immediately from the de�nition of An and A, and the
onvergen
e of qn to q).The lemma then follows from (3.1) and the Dominated Convergen
e Theorem. �Lemma 3.2. Under the same hypotheses of Lemma 3.1

(�A)Æ(T (t)� Tn(t))z

q ! 0 as n!1for every z 2 Zq, Æ 2 [0; 1℄ and t � 0.Remark. Note that the assertion of Lemma 3.2 
ould be easily obtained if (�A)Æ 
ommuted with Tn(t).However, this is not true sin
e An does not 
ommute with A, as it 
an be easily veri�ed.



7Proof of Lemma 3.2. It suÆ
es to show the result for Æ = 1. We writekA(T (t)� Tn(t))zk = 

[AT (t)�AnTn(t) + (I �AA�1n )AnTn(t)℄z

q� k(AT (t)�AnTn(t))zkq + 

I �AA�1n 

L(Zq) kAnTn(t)zkq :As a 
onsequen
e of Lemma 3.1 the �rst term on the right of the above inequality tends to zero as ngoes to in�nity and the sequen
e fkAnTn(t)zkqg1n=1 is bounded. A straightforward 
al
ulation using thede�nition of A(q) shows that for any pair of admissible parameters q; ~q 2 Q , q = (�; Cv ; �; �2; �4; �6; �1; 
),~q = (~�; ~Cv ; ~�; ~�2; ~�4; ~�6; ~�1; ~
) and any z = 0� uvw1A 2 ZqA(~q)A�1(q)z = 0B� u�~� � � �~
~�
�u00 + �~
~�
 v�Cv~Cv�w 1CA ; (3.2)from whi
h it follows immediately that kI �AA�1n kL(Zq) ! 0 as n!1. The theorem then follows. �Lemma 3.3. Let QC be a 
ompa
t subset of Q. Then for any Æ 2 [0; 1℄ there exists a 
onstant C dependingonly on Æ and QC su
h that 

(�A(q1))Æ(�A(q2))�Æ

L(Zq3 ) � Cfor every q1; q2; q3 2 QC .Proof. From (3.2) it follows that there exists a 
onstantM depending only onQC su
h that kA(~q)A�1(q)zk~q �Mkzk~q for every q; ~q 2 QC ; z 2 Zq . Letting � = A�1(q)z we obtainkA(~q)�k~q �MkA(q)�k~q for all q; ~q 2 QC ; � 2 D(A(q)): (3.3)Sin
e the k � kq-norms are uniformly equivalent for q 2 QC , it follows from (3.3) and Theorem 2.2 that thenorms k � kq;Æ are also uniformly equivalent for q 2 QC . Thus, for any q1; q2; q3 2 QCk(�A(q1))Æ(�A(q2))�Æzkq3 � C1k(�A(q1))Æ(�A(q2))�Æzkq1= C1k(�A(q2))�Æzkq1;Æ� C1 C2k(�A(q2))�Æzkq2;Æ= C1 C2kzkq2� C1 C2 C3kzkq3:= Ckzkq3 ;where the 
onstants Ci, i = 1; 2; 3, depend only on QC and Æ. �Remark. Sin
e Tn(t) is an analyti
 semigroup of 
ontra
tions, by a well known result on semigroup theory([24℄), there exists a 
onstant ~CÆ independent of n su
h that

(�An)ÆTn(t)

L(Zqn ) � ~CÆtÆ j 
os�njwhere �n is any angle in (�2 ; �) for whi
h�(An) � f0g [ f� 2 C : j arg�j � �ng:As we mentioned in the proof of Lemma 3.1, the angle �n above 
an be 
hosen independent of n. Hen
e,there exists a 
onstant CÆ depending only on Æ su
h thatk(�An)ÆTn(t)kL(Zqn ) � CÆtÆ 8n = 1; 2; � � � :Next, we state a lemma whose proof 
an be found in [15, Lemma 7.1.1℄.



8Lemma 3.4. Suppose L � 0, 0 < Æ < 1 and a(t) is a nonnegative fun
tion, lo
ally integrable on 0 � t � T .Let u(t) be a real-valued fun
tion de�ned on [0; T ℄ satisfyingu(t) � a(t) + L Z t0 1(t� s)Æ u(s) dson this interval. Then, there exists a 
onstant K depending only on Æ su
h thatu(t) � a(t) +KL Z t0 a(s)(t� s)Æ ds for 0 � t < T:The following theorem will be essential for the main result of this se
tion.Theorem 3.5. Let Æ 2 � 34 ; 1�, fqng1n=1 � Q, qn ! q 2 Q and zn(t); z(t) be the solutions 
orresponding tothe parameters qn and q, respe
tively, of the IVP (2.1) with initial data z0 2 D �(�A)Æ�, and let [0; t1) bethe maximal interval of existen
e of z(t). Then, for any t01 < t1 there are 
onstants N0, D > 0 su
h thatzn(t) exists on [0; t01℄ for every n � N0 andkzn(t)kq;Æ � D; 8n � N0; 8t 2 [0; t01℄:Proof. Let Æ 2 � 34 ; 1�, 0 < t01 < t1, and tn1 > 0 be su
h that zn(t) exists on [0; tn1 ) for ea
h n 2 IN. Then, fort 2 [0;minft01; tn1g),z(t) = T (t)z0 + Z t0 T (t� s)F (q; s; z(s)) ds; zn(t) = Tn(t)z0 + Z t0 Tn(t� s)F (qn; s; zn(s)) ds:Consequently,kz(t)� zn(t)kq;Æ = k(�A)Æz(t)� (�A)Æzn(t)kq� 

(�A)Æ (T (t)� Tn(t)) z0

q+ 



Z t0 (�A)ÆT (t� s)F (q; s; z(s))� (�A)ÆTn(t� s)F (qn; s; zn(s)) ds



q� 

(�A)Æ (T (t)� Tn(t)) z0

q+ 



Z to (�A)ÆT (t� s)F (q; s; z(s))� (�A)ÆTn(t� s)F (q; s; z(s)) ds



q+ 



Z t0 (�A)ÆTn(t� s) [F (q; s; z(s))� F (qn; s; z(s))℄ ds



q+ 



Z t0 (�A)ÆTn(t� s) [F (qn; s; z(s))� F (qn; s; zn(s))℄ ds



q_=In1 (t) + In2 (t) + In3 (t) + In4 (t):Note that, even when this last inequality holds only for t in [0;minft01; tn1g), the real valued fun
tions In1 (t),In2 (t) and In3 (t) are well de�ned on [0; t01℄.The following estimates hold:In3 (t) � Z t0 k(�A)ÆTn(t� s)kL(Zq)kF (q; s; z(s))� F (qn; s; z(s))kq ds� C1 Z t0 k(�An)ÆTn(t� s)kL(Zqn )kF (q; s; z(s))� F (qn; s; z(s))kq ds� C1 Z t0 CÆ(t� s)Æ kF (q; s; z(s))� F (qn; s; z(s))kq ds:The se
ond and third inequality follow from Lemma 3.3 and the Remark previous to Lemma 3.4, respe
tively.Now, kF (q; s; z(s))�F (qn; s; z(s))kq ! 0 as n!1 and there exists a 
onstant C2 independent of n su
h that



9kF (q; s; z(s))� F (qn; s; z(s))kq � C2 for every s 2 [0; t01℄. These assertions follow easily from the 
ontinuityof z(s) and the de�nition of the fun
tion F . Therefore, In3 (t) ! 0 as n ! 1 on [0; t01℄ by the DominatedConvergen
e Theorem and also In3 (t) � C1C2CÆ1� Æ t1�Æ , 8n 2 IN, 8t 2 [0; t01℄.To estimate In2 (t), observe thatIn2 (t) � Z t0 k(�A)Æ (T (t� s)� Tn(t� s))F (q; s; z(s))kq ds:Now, kF (q; s; z(s))kq is bounded on [0; t01℄, say kF (q; s; z(s))kq � C3, 8t 2 [0; t01℄ andk(�A)Æ(T (t� s)�Tn(t� s))kL(Zq)� k(�A)ÆT (t� s)kL(Zq) + k(�A)ÆTn(t� s)kL(Zq)� k(�A)ÆT (t� s)kL(Zq) + Ck(�An)ÆTn(t� s)kL(Zqn )� CÆ(t� s)Æ + C CÆ(t� s)Æ _= C4(t� s)Æ :On the other hand, for any s 2 [0; t01℄ we have k(�A)Æ (T (t� s)� Tn(t� s))F (q; s; z(s))kq ! 0 asn ! 1 by Lemma 3.2. Therefore In2 (t) ! 0 as n ! 1 by the Dominated Convergen
e Theorem and alsoIn2 (t) � C3C41� Æ t1�Æ, 8n 2 IN, 8t 2 [0; t01℄.In regard to In1 (t) observe that by Lemma 3.2, In1 (t)! 0 as n!1 and alsoIn1 (t) = 

(�A)Æ (Tn(t)� T (t)) z0

q= 

(�A)Æ(�An)�Æ(�An)ÆTn(t)z0 � (�A)ÆT (t)z0

q� C 

Tn(t)(�An)Æz0

q + 

T (t)(�A)Æz0

q� C kTn(t)kL(Zq) C 

(�A)Æz0

q + kT (t)kL(Zq) 

(�A)Æz0

q� C5 

(�A)Æz0

q ;where we have used the fa
t that z0 2 D �(�A)Æ�.Similarly, In4 (t) � Z t0 k(�A)ÆTn(t� s)kL(Zq)kF (qn; s; z(s))� F (qn; s; zn(s))kq ds� C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds:From the above estimates on In1 (t), In2 (t), In3 (t) and In4 (t),kz(t)� zn(t)kq;Æ � �n(t) + C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds (3.4)for every t 2 [0;minft01; tn1g), where, for all t 2 [0; t01℄, �n(t) := In1 (t) + In2 (t) + In3 (t) satis�es 0 � �n(t) � C7for all n 2 IN and �n(t)! 0 as n!1. In parti
ular, R t010 �n(t) dt! 0 as n!1.Let K = K(Æ) be as in Lemma 3.4 and let us de�ne ~K := C7 + C6C7K and M := sup0�t�t01 kz(t)kq;Æ.From the 
ontinuity of z(t) it follows that M < 1 sin
e t01 < t1. Sin
e z(0) = zn(0) = z0, for ea
h n 2 INthere exists Æn > 0 su
h that kzn(t)kq;Æ � M + 2 ~K for all t 2 [0; Æn℄. Let L be the Lips
hitz 
onstant ofTheorem 2.4(i) for F , 
orresponding to the set U := [0; t01℄ � nkzkq;Æ �M + 2 ~Ko, for q and all the qn's.Then, from (3.4) and Lemma 3.4, we havekzn(t)� z(t)kq;Æ � fn(t) on 0 � t � Æn; (3.5)where fn(t) := �n(t) + C6LK Z t0 �n(s)(t� s)Æ ds, for t 2 [0; t01℄.



10Now, Z t0 �n(s)(t� s)Æ ds � Z t0 C7(t� s)Æ ds= C7 Z t0 1sÆ ds= C71� Æ t1�Æ :Choosing � = �(L) > 0 suÆ
iently small so that t1�Æ � 1� Æ2L for every t 2 [0; �℄, it follows thatZ t0 �n(s)(t� s)Æ ds � C72L for every t 2 [0; �℄: (3.6)On the other hand, if � < t � t01Z t0 �n(s)(t� s)Æ ds = Z t0 �n(t� s)sÆ ds= Z �0 �n(t� s)sÆ ds+ Z t� �n(t� s)sÆ ds� C71� Æ �1�Æ + Z t� �n(t� s)�Æ ds� C72L + 1�Æ Z t0 �n(t� s) ds� C72L + 1�Æ Z t010 �n(s) ds:Hen
e, sin
e R t010 �n(s) ds! 0, there exists N0 su
h thatZ t0 �n(s)(t� s)Æ ds � C72L + C72L = C7L 8t 2 [�; t01℄ and n � N0: (3.7)By virtue of (3.6) and (3.7) one hasfn(t) � C7 + C6C7K = ~K 8t 2 [0; t01℄ and n � N0: (3.8)Consequently, from (3.5) and (3.8),kzn(t)� z(t)kq;Æ � ~K 8n � N0 and t 2 [0; Æn℄;whi
h implies kzn(t)kq;Æ �M + ~K 8n � N0 and t 2 [0; Æn℄:Finally, let n � N0 be �xed. Then zn(t) exists on [0; t01℄ and for t 2 [0; t01℄, kzn(t)kq;Æ �M +2 ~K. In fa
t,suppose, on the 
ontrary, that there exists t� < t01 su
h that kzn(t�)kq;Æ =M+2 ~K and kzn(t)kq;Æ < M+2 ~Kfor 0 < t < t�. Then, from (3.5) kzn(t)� z(t)kq;Æ � fn(t) � ~K on [0; t�) and therefore kzn(t)kq;Æ � M + ~Kon [0; t�). By the 
ontinuity of zn(t), we must have kzn(t�)kq;Æ � M + ~K, whi
h 
ontradi
ts kzn(t�)kq;Æ =M + 2 ~K. The theorem then follows by taking D =M + 2 ~K. �Theorem 3.6. (Parameter Continuity) Under the same hypotheses of Theorem 3.5kzn(t)� z(t)kq;Æ ! 0; as n!1



11for every t 2 [0; t1).Proof. Let Æ 2 � 34 ; 1� and t01 < t1. By Theorem 3.5 there exist 
onstants N0 2 IN and D > 0 su
h that forevery n � N0, zn(t) exists on [0; t01℄ and satis�es kzn(t)kq;Æ � D on that interval. Following the same stepsof Theorem 3.5 we �nd that for every t 2 [0; t01℄ and n � N0kz(t)� zn(t)kq;Æ � �n(t) + C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds� �n(t) + LC6 Z t0 1(t� s)Æ kz(s)� zn(s)kq;Æ dswhere 0 � �n(t) � C7 and �n(t) ! 0 as n ! 1 for every t 2 [0; t01℄. In the last inequality we have usedthe fa
t that F is lo
ally Lips
hitz 
ontinuous and kzn(t)kq;Æ � D, 8n � N0, 8t 2 [0; t01℄, as it was shown inTheorem 3.5.Hen
e, by Lemma 3.4, there exists K > 0 su
h thatkz(t)� zn(t)kq;Æ � �n(t) +KLC6 Z t0 �n(s)(t� s)Æ ds �! 0 as n!1 8t 2 [0; t01℄:Sin
e t01 is arbitrary, the theorem follows. �4. Parameter Identi�abilityAs we mentioned in the introdu
tion, the parameter identi�ability is an important issue when solvingID problems. Roughly speaking, the parameter identi�ability 
an be thought of as the 
ontinuity and lo
alinvertibility of the mapping q �! z(� ; q) from the spa
eQ of admissible parameters into the spa
e of solutions(see [1℄). Following are two results on this matter.Theorem 4.1. Let Æ 2 � 34 ; 1�, q = (�; Cv; �; 
; �2; �4; �6; �1) 2 Q, and ~q = (~�; ~Cv; ~�; ~
; ~�2; ~�4; ~�6; ~�1) 2 Qwith � = ~�, Cv = ~Cv, � = ~�, and 
 = ~
. Let z0(x) = 0� u0(x)v0(x)w0(x)1A 2 D �(�A(q))Æ� and suppose that thesolutions z(t; q) and z(t; ~q) of (2.1) 
oin
ide on T1 � t � T2 for some 0 � T1 < T2. Assume further thatz(t; q) = 0� u(� ; t)v(� ; t)w(� ; t)1A is su
h that v(� ; t�) 6� 0 for some t� 2 (T1; T2). Then q = ~q.Remark. Note that the hypotheses of this theorem are satis�ed if T1 = 0 and the initial 
ondition z0 =0� u0v0w01A is 
hosen su
h that v0 6� 0.Proof. Sin
e v(� ; t�) 6� 0 and v(0; t�) = v(1; t�) = 0 there exists x̂ 2 
 su
h that vx(x̂; t�) 6= 0. By 
ontinuityvx(x̂; t) 6= 0 on t� � � < t < t� + � for some � > 0. Given that vx = uxt there must exist t̂ 2 (t� � �; t� + �)su
h that ux(x̂; t̂) 6= 0: (4.1)On the other hand,_z(t; q) = A(q)z(t; q) + F (q; t; z(t; q)) and _z(t; ~q) = A(~q)z(t; ~q) + F (~q; t; z(t; ~q)) 8t 2 [T1; T2℄: (4.2)But, � = ~�, Cv = ~Cv , � = ~�, 
 = ~
 imply A(q) = A(~q) sin
e the operator A(q) does not depend on any ofthe rest of the variables in q. Thus, sin
e z(t; q) = z(t; ~q) 8t 2 [T1; T2℄ equation (4.2) implyF (q; t; z(t; q)) = F (~q; t; z(t; ~q)) 8t 2 [T1; T2℄;



12and, using the de�nition of F (q; t; z),��x [2�2(w(x; t) + L(x; t)� �1)ux(x; t)� 4�4ux(x; t)3 + 6�6ux(x; t)5�= ��x h2~�2(w(x; t) + L(x; t)� ~�1)ux(x; t) � 4~�4ux(x; t)3 + 6~�6ux(x; t)5i (4.3a)and �2(w(x; t) + L(x; t))ux(x; t)vx(x; t) = ~�2(w(x; t) + L(x; t))ux(x; t)vx(x; t) (4.3b)for all x 2 
, t 2 [T1; T2℄.From (4.3b) it follows that(�2 � ~�2)�(x; t)ux(x; t)vx(x; t) = 0; 8x 2 
; t 2 [T1; T2℄where �(x; t) = w(x; t)+L(x; t) = w(x; t)+ ��(t) 
os(2�x). Sin
e ux(x̂; t̂)vx(x̂; t̂) 6= 0 and � > 0, we 
on
ludethat �2 = ~�2. Consequently, equation (4.3a) now readsuxx(x; t)�2�2(�1 � ~�1) + 12(�4 � ~�4)ux(x; t)2 � 30(�6 � ~�6)ux(x; t)4� = 0 (4.4)8x 2 
; t 2 [T1; T2℄.Now, if uxx(x; t̂) were identi
ally equal to zero on 
 then, using the boundary 
onditions, we would haveu(� ; t̂) � 0 and ux(� ; t̂) � 0 whi
h obviously 
ontradi
ts (4.1). Therefore, there must exist a; b, 0 < a < b < 1su
h that uxx(x; t̂) 6= 0 for a < x < b, whi
h implies ux(x; t̂) 
annot be 
onstant on (a; b). Therefore thefun
tions 1, ux(x; t̂)2 and ux(x; t̂)4 are linearly independent as fun
tions of x on (a; b). Hen
e, from (4.4) weobtain �4 = ~�4, �6 = ~�6 and �1 = ~�1, and the theorem follows. �Under slightly more restri
tive hypotheses as those of Theorem 4.1, it is possible to obtain one-to-onenessalso with respe
t to the parameter 
. The following theorem shows this result.Theorem 4.2. Let Æ 2 � 34 ; 1�, q; ~q 2 Q with � = ~�, Cv = ~Cv, � = ~�; z0(x) = 0� u0(x)v0(x)w0(x)1A 2 D �(�A(q)Æ)�and suppose that the solutions z(t; q) and z(t; ~q) of (2.1) 
oin
ide on T1 � t � T2 for some 0 � T1 < T2.Assume further that v(�; t̂) 6� 0 for some t̂ 2 [T1; T2℄. If, in addition either of the following two 
onditionshold, then q = ~q.(i) There exists t� 2 [T1; T2℄ su
h that uxxxx(0; t�) 6= 0 or uxxxx(1; t�) 6= 0.(ii) There exists t� 2 [T1; T2℄ su
h that the fun
tions uxxxx(�; t�), uxx(�; t�), uxx(�; t�)ux(�; t�)2, uxx(�; t�)ux(�; t�)4are linearly independent as fun
tions of x on 
.Proof. Following the same steps as in Theorem 4.1, the fun
tions u(x; t), v(x; t), �(x; t) must satisfy
�uxxxx(x; t) + ��x �2�2(�(x; t)� �1)ux(x; t) � 4�4ux(x; t)3 + 6�6ux(x; t)5�= ~
�uxxxx(x; t) + ��x h2~�2(�(x; t)� ~�1)ux(x; t) � 4~�4ux(x; t)3 + 6~�6ux(x; t)5i (4.5a)and (�2 � ~�2)�(x; t)ux(x; t)vx(x; t) = 0; 8x 2 
 and t 2 [T1; T2℄ : (4.5b)As in Theorem 4.1, equation (4.5b) implies �2 = ~�2 and 
onsequently (4.5a) yields(
 � ~
)� uxxxx(x; t)+ uxx(x; t)�2�2(�1 � ~�1) + 12(�4 � ~�4)ux(x; t)2 � 30(�6 � ~�6)ux(x; t)4� = 0 (4.6)8x 2 
; t 2 [T1; T2℄.



13Suppose 
ondition (i) holds and wlog assume uxxxx(0; t�) 6= 0. Then, evaluating equation (4.6) at x = 0and t = t� yields (
�~
)� uxxxx(0; t�) = 0, whi
h implies 
 = ~
. Equation (4.6) now takes the formuxx(x; t)�2�2(�1 � ~�1) + 12(�4 � ~�4)ux(x; t)2 � 30(�6 � ~�6)ux(x; t)4� = 08x 2 
; 8t 2 [T1; T2℄. Following the same reasoning as in Theorem 4.1, the above identity implies �1 = ~�1,�4 = ~�4, �6 = ~�6.On the other hand, if 
ondition (ii) holds then the result follows immediately from equation (4.6) andthe linear independen
e of the fun
tions uxxxx(�; t�), uxx(�; t�), uxx(�; t�)ux(�; t�)2 and uxx(�; t�)ux(�; t�)4. �Theorems 4.1 and 4.2 together with the 
ontinuity results of se
tion 3 imply, under the appropriatehypotheses, the identi�ability of problem (1.1) with respe
t to the parameters that de�ne the free energy ofthe system.5. Con
lusionsIn this paper we have shown that the solutions of the IBVP (1.1), with free energy potential 	 in theLandau-Ginzburg form (1.2), depend 
ontinuously on the parameters �; Cv ; �; �2; �4; �6; �1 and 
. In par-ti
ular, we have shown that if fqn = (�n; Cv;n; �n; �2;n;�4;n; �6;n; �1;n; 
n)g1n=1 is a sequen
e of admissible parameters 
onverging to the admissible parameter q,then not only z(t; qn) ! z(t; q) in the norm of Zq, but also in the stronger k � kq;Æ-norm (Æ = 34 + �).We have also shown that under rather weak hypotheses, the free energy potential 	 as given by (1.2) isidenti�able from the IBVP (1.1). More pre
isely, if the 
onditions of Theorem 4.2 hold, then the mapping(�2; �4; �6; �1; 
) �! z(� ; q) is 
ontinuous and invertible. Although this is a partial result sin
e it does notimply the invertibility of the mapping q �! z(� ; q), it is appropriate to emphasize its importan
e from apra
ti
al point of view in the sense that the parameters �2, �4, �6, �1 and 
 are the only non-physi
alparameters appearing in the model. Referen
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