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Abstract:The nonlinear partial differential equations considered here arise from the conservation laws of
linear momentum and energy, and describe structural phase transitions in one-dimensional shape memory
solids with non-convex Landau-Ginzburg free energy potentials. In this article the theories of analytic
semigroups and real interpolation spaces for maximal accretive operators are used to show that the solutions
of the model depend continuously on the admissible parameters. Also, we show that the non-physical
parameters that define the free energy are identifiable from the model.

1. Introduction

In this article we consider the following initial-boundary value problem (IBVP).

PUtt — ﬂpuxﬁt + YUzzzz = f(ﬂf,t) + % [%ql(uwauﬁﬁag)] ’ S an S t S T7

Coby — kbyw = g(,1) + 2008uruqe + Bpuy, re€Q,0<t<T,
(1.1)S w(z,0) = ug(x), ut(z,0) = uy (), 0(z,0) = bO(x), =€,

u(0,t) = u(1,t) = uee(0,1) = uge(1,) =0, 0<t<T,

6.(0,t) =0, kO, (1,t) = k1 (60 (t) — 6(1,1)), 0<¢t<T.

The partial differential equations in (1.1) reflect the conservation of linear momentum and energy in
a one-dimensional shape memory body 2 = (0,1). The functions, variables and parameters involved in
(1.1) have the following physical meaning: u(z,t) = displacement; 6(z,t) = absolute temperature; p =
mass density; k& = thermal conductivity coefficient; C, = specific heat; § = viscosity coefficient; f(z,t) =
distributed forces acting on the body (input); g(x,t) = distributed heat sources (input); ug(z) = initial
displacement; w1 (x) = initial velocity; 6o (x) = initial temperature; Or(t) = temperature of the surrounding
medium (input); k1 = positive constant, proportional to the rate of thermal exchange at the right boundary,
and T is a prescribed final time. The function ¥, which represents the free energy density of the system, is
assumed to be a function of the linearized shear strain € = u,, the spatial derivative of the strain €, = ug;
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and the temperature 6, and is taken in the Landau-Ginzburg form

U(e,e.,0) = Uo(f) + (6 — 01)€* — age* + e’ + %ei,
9 (1.2)
‘110(9) = —Cvﬁlog (g) + Cv0 + C,
where 61, 62 are two critical temperatures and as, a4, ag, v are positive constants, all depending on the
material being considered and C' > 0 is a fixed reference energy level. Note that for values of 8 close to 6,
and ¢, fixed, the function ¥(e, €,, ) is a nonconvex function of e. This property is related to the hysteresis
phenomenon which caracterizes this type of materials in the low and intermediate temperature ranges. The
stress-strain relations are strongly temperature-dependent. The behavior is elastic, ideally-plastic at low
temperatures, superelastic at intermediate temperatures and almost linearly elastic in the high temperature
range. Shape memory and solid-solid phase transitions (martensitic transformations) are other peculiar
characteristics of these materials whose dynamical behavior is formally described by system (1.1). For a
detailed review of these and other properties and the derivations of the equations in (1.1) we refer the reader
to [28] and the references therein.

The boundary conditions mean that the beam is simply supported at both ends, thermally insulated at
the left end and, at the right end, the rate of thermal exchange with the surrounding medium is prescribed.
The nonlinear coupled equations in (1.1) are sometimes referred to as the equations of thermo-visco-elasto-
plasticity. In particular, the first equation in (1.1) can be regarded as a nonlinear beam equation in u, while
the second is a nonlinear heat equation in 6.

Initial boundary value problems of the type (1.1) have been studied by several authors ([16], [17], [22],
[26], [27], [30], etc.; see [28] for a review). The first results on existence of solutions for IBVP’s like (1.1) are
due to Sprekels ([30]). However, he imposed very strong growth conditions on the free energy ¥. In particular,
these conditions excluded the physically relevant case in which ¥ is given in the Landau-Ginzburg form (1.2).
Later on, Songmu ([26]) derived certain a-priori estimates from which he concluded that, if the initial data
is smooth enough, then any local solution of (1.1) with ¥ as in (1.2) can be extended globally in time. This
result was later generalized by Songmu and Sprekels ([27]) to include more general free energy functionals.
More recently, using a state-space approach ([28]) it was shown that the IBVP (1.1) can be written as a
semilinear Cauchy problem of the form 2(t) = A(q)z(t) + F(q,t,z), 2(0) = 2o, in an appropriate Hilbert
space Z,, where ¢ is a vector of admissible parameters, A(g) is a certain differential operator associated with
the linear part of the partial differential equations in (1.1) and F(q,t,z) corresponds to the nonlinear part
of the system. This approach provides a friendly framework for a suitable treatment of several problems
associated to (1.1) such as existence, uniqueness, regularity and asymptotic behavior of solutions, as well as
a powerful tool for numerical approximations, parameter estimation and control.

From a practical point of view it would be very important to find the values of all the parameters in
(1.1)-(1.2) that “best fit” experimental data for a given material. This is called the parameter identification
problem (ID problem in the sequel). Once this problem is solved, the next step is to determine how well this
model can predict the dynamics of a given shape memory material which is subjected to certain external
inputs. This is called the model validation problem. Although numerical experiments performed with system
(1.1) have shown that physically reasonable results can be obtained for certain values of the parameters (see
[5] and [20]), the ID problem still remains open.

In order to establish the convergence of computational algorithms for parameter identification, one needs
to show first that the solutions depend continuously on the parameters that one wants to estimate. In [29] it
was shown that the nonlinear term F'(g,t, z) is Lipschitz continuous in the state variable z in the topology of
the graph of (—A(g))?, for any § > %. Although this result is necessary to show the continuous dependence
of the solutions of (1.1) with respect to the parameter ¢, it is not sufficient. In fact, it turns out that a
key step in achieving this result involves proving that if {g,}5°; is a sequence of admissible parameters
converging to ¢, then the sequence of analytic semigroups T'(¢;¢,) generated by A(g,), converges strongly
to T(t; ) in the norm of the graph of (—A(g))®. This is a much stronger result than the one we can obtain
by a straighforward application of the well known Trotter-Kato Theorem (see [28, Theorem 4.1]).

2. Preliminaries and State-Space Formulation

In the sequel, an isomorphism will be understood to denote a bounded invertible operator from a Banach
space onto another.
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Let X be a Banach space and X* its topological dual. We denote with (z*, x) or (z, =*) the value of z*
at . For each =z € X we define the duality set S(z) = {z*eX*: (z%z)=
|lz||* = |l*[|*}. The Hahn-Banach theorem implies that S(z) is nonempty for every = € X. If A is a
linear operator in X with domain D(A), we say that A is dissipative if for every & € D(A) there exists
x* € S(x) such that Re{Ax,z*) < 0. We say that A is strictly dissipative if A is dissipative and the condition
Re(Az,z*) = 0 for all z* € S(z) implies that x = 0. If X is a Hilbert space then S(z) = {z} and therefore A
is dissipative iff Re(Az, z) < 0 for every x € D(A). We say that the operator A is mazimal dissipative if A is
dissipative and it has no proper dissipative extension. We say that the operator A is (mazimal) accretive if
—A is (maximal) dissipative. If the operator A is strictly dissipative and maximal dissipative, we will simply
say that A is strictly maximal dissipative.

If A generates a strongly continuous semigroup T'(t) on X then the type of T is defined to be the real

number wy(T") = gg 7 log ||T'(t)|]. It can be shown that the type of a semigroup is either finite or equals —oo.

1
Moreover, wo (1) = tlim 7 log||T'(¢)|]. Also, the semigroup T'(t) is of negative type iff T'(¢) is exponentially
— 00

stable, i.e., wo(T) < 0 iff IM > 1, a > 0 such that ||T(¢)]| < Me™* for all t > 0 (see [2, pp 17-21]). If
the semigroup 7'(t) generated by A is analytic, then wo(T) = sup Re X provided that o(A4) # 0 and, by
A€o (A
definition, wy (T') = —oc0 if o(A4) = 0 (see [2]). W
Let us now return to our original problem (1.1)-(1.2). We define the function L(z,t) = 6p(t) cos(2mx)
and the transformation 6(z,t) = 6(z,t) — L(z,t). We also define the admissible parameter set Q =
{a=(p,Cy,B,02,04,06,01,7) | ¢ € R3,}, and the state space Z, as the Hilbert space H}(0,1)NH?(0,1) x
L?(0,1) x L?(0,1) endowed with the inner product

U
v )
w

The norm induced by (-,-), in Z; will be denoted by || - [[;. Note that these norms are all equivalent and,
moreover, they are uniformly equivalent on compact subsets of Q. Then the initial-boundary value problem
(1.1) with ¥ as in (1.2) can be formally written as an abstract semilinear Cauchy problem in Z, as follows:

> iy%%ﬂ@m%@dx+pﬂimwﬂwdx+%?A:M@w@ﬁk

q

ISEST~

42(t) = Alq)z(t) + F(q,t,2(t), 0<t<T

dt
(2.1)
z(0) = 2o,
u(x,t)
where z(t)(z) = | w(z,t) |,
0(x,1)
u u € HY(0,1), u(0) = u(1) = 0 =" (0) = u"(1),
D(A(g))=q | v | €2Z,|veH;0,1)nH*(0,1), ; (2.2)
w we H*(0,1), w'(0)=0, kuw'(l)=—kw(l)
U
and for | v | € D(A(q)),
w
u v 0 " .22 0 m
A | v | =[P =3u" | = | —oom P O v (2.3)
w Icv w'! 0 0 CLU%
The element zg is defined by
uo(x)
z2o0(z) = uy ()
Oo(z) — 6p(0) cos(2mx)
and the nonlinear mapping F'(q,t,2) : Q x [0,T] x Z; — Z, is defined by
U 0
F(q;t7z) =F gt | v = fZ(qat;z) ) (24)

w f3(q7t72)



where

pfa(a:t,2)(x) = f(z,) + a% 20 (w(@) + L(x,t) — 01)u' (z) — dagu’(2)” + Gaeu' ()°]

Cyf3(q,t,2)(x) = gz, t) + 20z (w(z) + Lz, t)) u' ()0 (z) + Bpv' (z)* — C,0}(t) cos(2mz)
— 4kn?L(x,t).

The following results can be found in [28] and [29].

Theorem 2.1. ([28]) Let ¢ € Q and the operator A(q) : D (A(q)) C Zy — Z4 as defined by (2.2)-(2.3).
Then

i) A(q) is strictly mazimal dissipative;

ii) The adjoint A*(q) is also strictly mazimal dissipative and is given by D (A*(q)) = D (A(q)),

u —v . 034 _8‘2 0 u u
* " nr o o *
A* (@) | v | = Pu k_'_ %’u’ = | p ozt Oua? 0 ) v, v | € D(A%(9));
k1 k 0o
w . w 0 0 O—vm w w

iii) 0 € p (A(q)), the resolvent set of A(q);
iv) The spectrum o (A(q)) of A(q) consists only of eigenvalues, o (A(q)) = o, (A(q)) = {\D~, an} -, where

44
AP = \/,u_n(—r(q) +/7%(q) — 1), a, = —kci, with w, = W—W, r(q) = byp and {7}, are all the
v p 2,7
positive solutions of the equation tan 7 = ]]:—71_ The corresponding set of normalized eigenvectors in Z, is
given by
en knen 0 >
MNen |, | kadjen |, | O ,
0 0 Xn 1

1/2 1/2
2 k, +2

here e (2) = | ————— | i . Xn(z) = — o) and k2 = Eotlal
where e, (x) (p ot |/\¢|2)> sin(rnxz), xn(x) (Cv ™ o5 (@) d§> cos(tpx) and k2 TS

v) The operator A(q) generates an analytic semigroup T'(t;q) of negative type which satisfies || T'(t; q)||z(z,) <
e« for t >0, where w(q), the type of T, is given by

min (475, 22°), if B2p < 4y

w(g) = >
. kT 71—2 ﬂ—Z .
mln(Cla 5 - 2\/;,\/520—47), if 3p > 4.

v

We shall need some notation for certain interpolation spaces. If X is a Banach space and p > 1, LY(X)
will denote the Banach space of all Bochner measurable mappings u : [0,00) — X such that ||u||1£p(X) =

I u(®)] 1;(% < oo. If Xy and X; are two Banach spaces with X, continuously and densely embedded in
Xi,p>1and 6 € (0,1), we denote by (Xo, X1), , the space of averages (or “real” interpolation space)

(X07X1)9,p = {I S X1

Ju; : [0,00) — X;,1=0,1, t_ouo € LQ(X()),
t1=%,; € LE(X)) and = = ug(t) + uy(t) a.e.

Endowed with the norm

t~%uy € LE(Xy),
LP(Xo) T ||t179u1||L5(X1) t170u1 S LQ(Xl) and ,
x =up(t) +uy(t) a.e

.. _0
el cxp x,, = inf 1ol

(Xo, X1)07p is a Banach space. In the particular case when p = 2 and Xy, X; are Hilbert spaces, we denote
(X0, X1)p, = [Xo, X1]y-
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Since 0 € p(A(g)) and A(q) generates an analytic semigroup T'(¢; q), the fractional d-powers (—A(q))6

of —A(q) are well defined, closed, linear, invertible operators for any 6 > 0 (see [24, pp 69-75]). Moreover,
(—A(q))_‘s has the representation

(~A(g)~ = ﬁ / T (),

where the integral converges in the uniform operator topology for every § > 0. Also, the domain D ((—A(q))é)
endowed with the topology of the norm of the graph of (—A(q))6 is a Hilbert space. Since ((—A(q))a is bound-
edly invertible this norm is equivalent to the norm ||z|/4s = ||(—A(q))‘5z||q. We shall denote by Z, s the

Hilbert space D ((—A(q))°) endowed with the || - ||4,s-norm.
Next, we state a few results which will be needed throughout the rest of this article. Their proofs can
be found in [29].

Theorem 2.2. ([29]) Let g € Q, A(q) : D (A(q)) C Zy — Z, as defined by (2.2)-(2.3), 0 < <1 and Z, 4
as above. Then Zy, 5 = [D (A(q)), Z4],_s, in the sense of an isomorphism.

The next lemma shows some relations between the spaces Z, s for different ¢’s.

Lemma 2.3. ([29]) Let 6 € (0,1). Then,

i) For any pair q, ¢* € Q the spaces Z, 5 and Z, 5 are isomorphic.
il) Moreover, for any compact subset Qc of Q the norms {|| - || : ¢ € Qc} are uniformly equivalent,
i.e., there exist constants m > 0, M > 0, such that m||z||q6 < ||2llg=.6 < M||2|lq,5 for every pair g,

q* € Qc and all z € D ((—A(q))a) N
D ((~A@)’)-

Consider the following standing hypotheses.

(H1) There exist functions K¢, K, € L*(0,1), K¢(z) > 0 a.e., K ,(z) > 0 a.e., such that | f(z,t1) — f(z,t2)] <
Ky(x)|t1 —t2] and |g(,t1) — g(x,t2)] < Ky(x) [t1 — t2] for a.e. © € (0,1) and all ¢1, t2 € [0, T.
(H2) 6 € HY(0,T) and 6} is locally Lipschitz continuous in (0,T).

Theorem 2.4. ([29]) Let ¢ € Q, 0 < € < 1 and assume that the hypotheses (H1) and (H2) hold. Then,
i) for any bounded subset U of [0,T] x Zq7%+6 there exists a constant L = L(q,U, 0y, f, g) such that

1F(q, t1,21) — Fq,t2, 22)|l, < L (|t1 — ta| +[]z1 - z2||q7%+e)

for all (t1,z1), (t2,22) € U, i.e., the function F(q,t,z): Q x [0,T] x Zq7%+6 — Zg is locally Lipschitz
continuous in t and z. Moreover, the constant L can be chosen independent of ¢ on any compact
subset of Q;
3
il) for any initial data zo € D ((—A(q))1+6), there exists t1 = t1(q,z0) > 0 such that the initial value
problem (2.1) has a unique classical solution z(t;q) € C ([0,t1) : Z,) N C* ((0,t1) : Z;). Moreover

l*ﬁ - - . - -
2(tq) € Ci ((0,t] : Zy), dee., %z(t;q) is locally Holder continuous on (0,t1] with exponent

1
2 €.

Finally, the following theorem says that for any compact subset Q¢ of the admissible parameter set Q,
it is possible to find a nontrivial common interval of existence for all solutions z(t; q), ¢ € Qc¢-

Theorem 2.5. ([29]) Let Q¢ be a compact subset of the admissible parameter set Q, qo € Qc, 20 € Zy, 5,
where % <6< 1. Let [O,tM(q)) = [O,tM(q,zo)) denote the mazimum interval of existence of the solution
z(t; q) with initial condition z(0;q) = zo. Then

tM = inf tM 0
(Qc) qéngc (q) >
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3. Continuous Dependence on the Model Parameters

In this section we show that the mapping ¢ — z(-;¢) from the space of admissible parameters Q into

the space of solutions is continuous. More precisely, we show that if {g,}%2, is a sequence in Q converging

to g € Q, then the sequence {z(t;¢,)}22, converges to z(t;¢) in some appropriate sense.

Throughout this section, to simplify the notation we shall denote with A,, = A(g,), 4 = A(q), T,.(t) =
T(t;qn), T(t) = T(t;q), z.(t) = z(t;qn) and 2(t) = z(t; q).

We shall need the following lemmas.

Lemma 3.1. Let {g,}32, be a sequence in Q, q, — q € Q, and let A, Ay, T, T, be as above. Then
AT, (t)z — AT (t)z||g — O as m — 00

for every z € Z, and t > 0.

Proof. Let z € Z,. Since T,(t), T'(t) are analytic semigroups, Ty, (t)z, T'(t)z, are in D(A,), D(A), respectively,
Vt > 0. From Theorem 3.5 in [28] it follows that there exists an angle 6, 0 < 6 < 7, such that

Egi{O}U{/\E(D:|arg)\|<g+0}Cp(A)ﬂ M p(An).

Now, let < 6; < 5 +6 and let ' be the path composed of the two rays re 1 rei1t (0 <r < oo, I' oriented
so that Im(\) increases along I'. We have the following expresions (see [24])

_ 1 B _ L/ ARy
AT (t)z = 27m,/r/\e R(X\;A)z dA, AT, (t)z = = F/\e R(\; Ap)zdA,

for every z € Z,, t > 0, where R(\; A) = (A — A)7, R(A\; A,) = (M — A4,)7 .
Then

AT(t)z — A, T, (t)z = 2% /F AeM (R(A; A) — R(A; Ay)) 2 dA. (3.1)

By the Hille-Yosida theorem ([24])
At . _ reve (1 C
[Ae™ (R(X; A) = R(A; An)) 2llg < [Ale BYREDY 12114
< (1+C)e* M l2||, € LY(T),

where the constant C appears because of the uniform equivalence of the norms || - ||4, and || - ||;. Also for
any fixed A € T, || (R(A\; A) — R(A\; An)) 2|lg = 0 as n — oo. In fact,

| (R(A; A) = R(A; An)) 2llg = [[R(X; An) [(AT — Ap) R(X; A) — 1] 2]l
= [|R(A; An) (A — Ap) R(X; A)zlg
SR An)lle(zy) I(A = An) R(A; A)zllg
which converges to zero as n goes to infinity by virtue of the uniform boundedness of ||R(A; A,)||z(z,) and
the strong convergence of A,, to A (which follows immediately from the definition of A,, and A, and the

convergence of g, to q).
The lemma then follows from (3.1) and the Dominated Convergence Theorem.

Lemma 3.2. Under the same hypotheses of Lemma 3.1
||(—A)‘5(T(t) - Tn(t))z”q =0 as n — oo

for every z € Z;, § €[0,1] and t > 0.

Remark. Note that the assertion of Lemma 3.2 could be easily obtained if (—A4)° commuted with T, (t).
However, this is not true since A, does not commute with A, as it can be easily verified.
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Proof of Lemma 3.2. It suffices to show the result for § = 1. We write
JA(T () = Tu()zll = |[AT(8) — ApTn(t) + (I — AATH AT 1))z,

< (AT (1)~ ATa)zll, + 17— 4431 ) IALTH (0], -
As a consequence of Lemma 3.1 the first term on the right of the above inequality tends to zero as n
goes to infinity and the sequence {||A,T,(t)z||;}.—, is bounded. A straightforward calculation using the
definition of A(q) shows that for any pair of admissible parameters ¢,§ € Q , ¢ = (p, Cy, B, @2, a4, ag,01,7),

u
G=(p,Cy,B,as,au,d6,01,7) and any z = | v € Z4
w
u
3 _ R3PY )\, 1 PY
A@Age= | (B-88)u+ 80 ) (3.2)

from which it follows immediately that || — AA;'||z(z,) — 0 as n — oo. The theorem then follows.
u

Lemma 3.3. Let Q¢ be a compact subset of Q. Then for any 6 € [0, 1] there exists a constant C' depending
only on 6 and Q¢ such that

(=42’ (~A4(@2) | ¢z, S C
for every q1, g2, g3 € Qc-.

Proof. From (3.2) it follows that there exists a constant M depending only on Q¢ such that ||A(G) A~ (q)z||7 <
M]||z||; for every q,4 € Qc, z € Z,. Letting n = A~ (¢q)z we obtain

lA(@Dnllz < M||Alg)nll;  for all ¢, € Qc, n € D(A(q)). (3.3)
Since the || - ||g-norms are uniformly equivalent for ¢ € Q¢, it follows from (3.3) and Theorem 2.2 that the
norms || - ||4,6 are also uniformly equivalent for ¢ € Q¢. Thus, for any ¢1, ¢2,¢3 € Q¢

1(=A(01)° (= A(g2)) " 2llgs < CLll(=A(q1))* (= A(g2)) °2lay
= C1[[(—A(g2)) " 2llgr.0
< C1 Cal(—Alg2) " 2llgs 0
= C1 Co|2llge
< C1 02 G|zl g
= Cllzllgs

where the constants C;, i = 1,2, 3, depend only on Q¢ and §.
[ |

Remark. Since 7,,(t) is an analytic semigroup of contractions, by a well known result on semigroup theory
([24]), there exists a constant Cj independent of n such that

¢
|4 Ta®ei,) S FToosr]

where v, is any angle in (5, ) for which
p(An) D{0}U{A € C:|argA| < vy}

As we mentioned in the proof of Lemma 3.1, the angle v,, above can be chosen independent of n. Hence,
there exists a constant Cs depending only on § such that

Cs
||(_An)6Tn(t)”£(an) < t_5 Vn=12--

Next, we state a lemma whose proof can be found in [15, Lemma 7.1.1].
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Lemma 3.4. Suppose L >0, 0 < <1 and a(t) is a nonnegative function, locally integrable on 0 <t <T.
Let u(t) be a real-valued function defined on [0,T] satisfying

u(t) < a(t) + L/o ﬁu(s) ds

on this interval. Then, there exists a constant K depending only on § such that

u(t) Sa(t)-l—KL/t (ta(s))a ds for0<t<T.
o (t—s

The following theorem will be essential for the main result of this section.

Theorem 3.5. Let § € (%, 1), {32, C Q, qn — q € Q and zy(t), z(t) be the solutions corresponding to
the parameters g, and q, respectively, of the IVP (2.1) with initial data zo € D ((—A)‘S), and let [0,t1) be
the mazimal interval of existence of z(t). Then, for any t| < t; there are constants Ny, D > 0 such that
zn(t) exists on [0,t}] for every n > Ny and

lza®llos <D, V¥n > No, Ve € [0,4]

Proof. Let 6 € (2,1), 0 <t} < t1, and t7 > 0 be such that z,(t) exists on [0,¢}) for each n € IN. Then, for
n
1

t € [0, min{¢}, ¢

3
1
b,
2(t) =T (t)z0 + /0 T(t—s)F(q,s,2(s))ds, zn(t) =Ts(t)zo + /0 Ty (t — s)F(qn, s, zn(s)) ds.

Consequently,

12(t) = 2a(®)llg.s = [1(=4)°2(8) = (=A)°za(B)llg
<[|(=4)° (T (1) = Tu(1)) 20|,

+ /0 (AT (t = 5)F(q,5,2(5)) = (=A)Tu(t = 8)F (4, 5, 2(5)) ds

<[ (1) = Tu(®)) 20|,

q

+ / (—A)T(t — $)F(g, 5, 2(5)) — (=AY To(t — )F(q, 5, 2(s)) ds

q

+ / (=AY To(t — ) [F(g, 5, 2(5)) — F(gms 5, 2(5))] ds

q

+ / (=AY Tt — ) [F(gus 5, 2(5)) — F(gms ,20(5))] ds

=I7(t) + I3 (t) + I3 (t) + I ().

q

Note that, even when this last inequality holds only for ¢ in [0, min{¢},¢7}), the real valued functions I7(¢),
I7(t) and I} (t) are well defined on [0, #]].
The following estimates hold:

/ = AP Tt = etz |E (@5, 2(5)) — Fams s 2(s)) ]y ds
<c / (=40 Tt = 9)llc(z, ) IIF (@ 5, 2(5)) = Flgun 5, 2(5))]ly ds

<af (tf—s)éuF(q,s,z(s)) — F(gnss,2(5)) g ds.

The second and third inequality follow from Lemma 3.3 and the Remark previous to Lemma 3.4, respectively.
Now, ||F(g, s, 2(s))—F(gn, s,2(s))|lq = 0 as n — oo and there exists a constant C independent of n such that
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1E(q,s,2(s)) — F(gn,s,2(s))|lq < Cs for every s € [0,t]]. These assertions follow easily from the continuity

of z(s) and the definition of the function F'. Therefore, I} (t) — 0 as n — oo on [0,t}] by the Dominated

C1CC
Convergence Theorem and also IF(t) < %tl_‘s, Vn € IN, Vt € [0,¢].
To estimate I}'(t), observe that
05 [ AP (6= 9) = Talt = ) a5, 26Dl .

Now, ||F(q, s, 2(5))]||q is bounded on [0,#], say ||F(q, s, z(s))||ly < Cs, Vt € [0,t}] and

1(=A)°(T(t = 8)=Tult — )ll(z,)
<N=A°T(t = 5)llcz,) + 1(=A)°Tult — 5)llc(z,)
< (=A°T(t = $)llcizy + Cl(=A0)°Tu(t = $)llz(2,,)
Cs cds . (4

S Taoe G-

On the other hand, for any s € [0,t;] we have [|[(=A)° (T'(t —s) — Tn(t — s)) F(q,s,2(s))|l; = 0 as

n — oo by Lemma 3.2. Therefore I1'(t) — 0 as n — oo by the Dominated Convergence Theorem and also
CsC

I(t) < 13 ;tl o ¥nelN,vtelo,t]

In regard to I*(t) observe that by Lemma 3.2, I7*(¢t) — 0 as n — oo and also

(1) = |(=4)° (Tult) = T(1)) 20,

— (=AY (~A0) ™ (— A Tu ()20 — (A T(0)z0],
(1)(~
)

< C || Tu(t)( z0|| +||Tt A5z0||q
< Tt ||£(Z O [[(=A 20|, + IOl 2z, [ (-4 0],
< s -z,

where we have used the fact that zo € D ((—A4)°).
Similarly,

/ (=AY Tt = )2 I F (@ 5, 2(5)) = F(gus 3, 2a(s) , ds

< Cq /0 ﬁum,s,z(s)) = £(gn 5, 2n(5))llq ds.

From the above estimates on I7*(t), I2(t), I3 (t) and I (),

1266 = 20l < a(®) + Co | Gl 2(6) = Flan, s (o)l ds (34)

for every t € [0, min{¢},tT}), where, for all ¢ € [0,8]], €,(¢t) = IT7(t) + I}(t) + I} (¢t) satisfies 0 < €,(t) < Cr
for all n € IN and €,(¢t) — 0 as n — oo. In particular, fgll en(t)dt — 0 as n — 0.

Let K = K(0) be as in Lemma 3.4 and let us define K' = C7 + CsC7K and M = supg<y<yr [|2(2)][q0-
From the continuity of z(t) it follows that M < oo since ] < ¢;. Since z(0) = z,(0) = zp, for each n € IN
there exists 6, > 0 such that ||z, (t)|l,.s < M + 2K for all t € [0,0,]. Let L be the Lipschitz constant of

Theorem 2.4(i) for F, corresponding to the set U = [0,¢]] X {||z||q,5 <M+ 2I~(}, for ¢ and all the g,’s.
Then, from (3.4) and Lemma 3.4, we have

lzn(t) —2(B)ll, 5 < fult) on0<t < by, (3.5)

where f,(t) —en()+06LK/ _ds, for t € [0, 4],



10

Now,

[ 7 [ G

t
1
:C’f/(; 5_‘5d8

Cr 16
= —t .
1-4
Choosing n = (L) > 0 sufficiently small so that #'~% < 2_L for every t € [0, 7], it follows that
Lels) g O
T—s) s < 5y forevery t € [0,n]. (3.6)

On the other hand, if n <t < ¢}

[ et [ 250
:/077 fn(;— 5) ds+/t Gn(l;d— s) ds

t —
< Cr 771_6+/ en(t —s) ds
0 n

1- no
1 t
§%+F/Oen(t—s)ds

C; 1 (4
< i+$/@ €n(s) ds.

Hence, since fotl €n(s) ds — 0, there exists Ny such that

¢ € (S) 07 C7 C7
L <—4 —==— ! > . .
/0 (t—s)5d8_2L+2L 2 Vi € [n,t1] and n > Ny (3.7)

By virtue of (3.6) and (3.7) one has
fult) S Cr+CeCrK =K Vte[0,t] and n > Ny. (3.8)
Consequently, from (3.5) and (3.8),
lzn(t) = 2(t)ll, s <K Vn > No and t € [0,4,],

which implies
len@®ll, s <M+ K Vn>Ngandt € [0,6,].

Finally, let n > Ny be fixed. Then z,(¢) exists on [0,#}] and for ¢ € [0,#,], [[2n(?)], 5 < M +2K. In fact,
suppose, on the contrary, that there exists t* <t} such that ||z, (¢")||, s = M + 2K and [[z,(?)]|, ; < M +2K
for 0 < ¢t < t*. Then, from (3.5) ||zn(t) — 2(t)||, 5 < fn(t) < K on [0,¢*) and therefore ||z, (t)||, 5 < M + K
on [0,¢*). By the continuity of z,(t), we must have [[z,,(t")[|, ; < M + K, which contradicts |[z,,(t")[|, s =

M + 2K. The theorem then follows by taking D = M + 2K. |

Theorem 3.6. (Parameter Continuity) Under the same hypotheses of Theorem 3.5

lzn(t) —2(®)ll, s =0, asn— o0
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for every t € [0,11).

Proof. Let 6 € (%, ) and t] < t;. By Theorem 3.5 there exist constants Ng € IN and D > 0 such that for
every n > No, z,(t) exists on [0,#]] and satisfies ||z, ()|, s < D on that interval. Following the same steps
of Theorem 3.5 we find that for every ¢ € [0,¢]] and n > Ny

1266 = 20l < a(®) + Co | Gl .2(6)) = Flanr s (o)l ds

< eult) + ICo | =ssllos) = 2@l ds

where 0 < €,(t) < C7 and €,(t) = 0 as n — oo for every t € [0,t}]. In the last inequality we have used
the fact that F is locally Lipschitz continuous and ||z, (¢)||, s < D, Vn > No, Vt € [0,#}], as it was shown in
Theorem 3.5.

Hence, by Lemma 3.4, there exists K > 0 such that

t
12(8) = 2n(®)lles < enlt) + KLCB/ (f”(z))a ds — 0 asn—oo  Vie[0,a]
T

Since t{ is arbitrary, the theorem follows. |

4. Parameter Identifiability

As we mentioned in the introduction, the parameter identifiability is an important issue when solving
ID problems. Roughly speaking, the parameter identifiability can be thought of as the continuity and local
invertibility of the mapping ¢ — z(-; ¢) from the space Q of admissible parameters into the space of solutions
(see [1]). Following are two results on this matter.

Theorem 4.1. Let § € (%71)’ q = (p;Cv7ﬂ77;a27a47a6;91) € Q; and q~ = (ﬁ?évagai/ad% d4;d67é1) € Q

} 5 up()
with p = p, Cy = Cy, B =B, and v = 7. Let zo(x) = | vo(z) | € D ((—A(g))°) and suppose that the
wo ()
solutions z(t;q) and z(t;q) of (2.1) coincide on Ty < t < Ts for some 0 < Ty < Ty. Assume further that
u(-,1)
z(t;q) = | v(-,t) | is such that v(-,t*) Z 0 for some t* € (T1,T>). Then g = §.
w(' 7t)
Remark. Note that the hypotheses of this theorem are satisfied if 77 = 0 and the initial condition zy =
ug
vo | is chosen such that vy Z 0.
Wo

Proof. Since v(-,t*) £ 0 and v(0,¢*) = v(1,t*) = 0 there exists & € Q such that v, (Z,¢*) # 0. By continuity
vy (Z,t) A0 on t* —e <t < t* + € for some € > 0. Given that v, = u,; there must exist £ € (t* — ¢,t* + ¢€)
such that

ug (&,1) #0. (4.1)
On the other hand,

2(tq) = Al@)z(t;q) + Fq, 8, 2(t ) and 2(8;§) = A(Q)z(t;9) + F (G, t,2(8;9)) Vit € [T1,T>]. (4.2)

But, p=p, C, =C,, B =B, v = 7 imply A(q) = A(q) since the operator A(q) does not depend on any of
the rest of the variables in g. Thus, since z(t;¢) = z(t; §) Vt € [T, T>] equation (4.2) imply

F(q,t,z(t,q)) = F((j,t,z(t,(j)) vt € [T17T2]7



12

and, using the definition of F'(q,t, 2),

% 200 (w(w,t) + L(z,t) — 01)ug (2, 1) — dagug (2, t)® + 6aguy (z,t)°]
_ 83 (2685 (wiie, ) + L, 1) = B (e, ) — Aéiausg (2, )° + 6y (2, )]
x (4.3a)
and
Oé?(w(w;t) + L(Cﬂ,t))ux(iﬂ,t)’l)z(ﬂf,t) = ONéQ(’lU(CU,t) + L(Cﬂ,t))ux(iﬂ,t)’l)z(ﬂf,t) (43b)

forall x € Q, t € [T1, T3]
From (4.3b) it follows that

(a2 - d2)0($at)uz($at)vz(w7t) = 0; Vr € Q; te [T17T2]

where 6(z,t) = w(z,t) + L(z,t) = w(x,t) +0p(t) cos(2rz). Since u,(%,)v,(2,%) # 0 and 6 > 0, we conclude
that ae = &a. Consequently, equation (4.3a) now reads

tee (1) (2(12(91 —01) + 12(q — a)ug (2, 8)? — 30(ag — a6)ux(x,t)4) -0 (4.4)

Vx € Q, te [Tl,TQ].

Now, if u,, (z, ﬂ were identically equal to zero on €2 then, using the boundary conditions, we would have
u(-,t) = 0 and u,(-,f) = 0 which obviously contradicts (4.1). Therefore, there must exist a,b,0 < a < b < 1
such that u,,(z,) # 0 for a < x < b, which implies u,(z,) cannot be constant on (a,b). Therefore the
functions 1, u,(x,t)? and u, (z,)* are linearly independent as functions of 2 on (a,b). Hence, from (4.4) we

obtain ay = @4, ag = g and 0, = 6, and the theorem follows.
[ |

Under slightly more restrictive hypotheses as those of Theorem 4.1, it is possible to obtain one-to-oneness
also with respect to the parameter . The following theorem shows this result.
) ) uo(x)
Theorem 4.2. Let 6 € (2,1), ¢,G € Q with p = p, C, = Cy, B = B; 20(z) = | vo(z) | € D((—A(g)%))
wo(x)
and suppose that the solutions z(t;q) and z(t;G) of (2.1) coincide on Ty < t < Ts for some 0 < Ty < Ts.
Assume further that v(-,t) # 0 for some t € [Ty, Tz]. If, in addition either of the following two conditions
hold, then q = q.
(1) There exists t* € [T1,T>] such that wypy.(0,t%) # 0 oF Ugpes(1,t%) # 0.
(ii) There existst* € [T1,Ts] such that the functions Uzzes (-, t*), Uze (-, %), Upe (3t ) g (%)%, Uy (-, ) ug (-, %)
are linearly independent as functions of x on .

Proof. Following the same steps as in Theorem 4.1, the functions u(z,t), v(z,t), 8(z,t) must satisfy
0
Zumm(:ﬂ,t) + p [2&2(0($,t) —01)u,(z,t) — 4a4uw(:n,t)3 + 6aguy (az,t)5]
p x

= lumm(az,t) + 81 [2072(0(56,75) — él)uw(:ﬂ,t) — 4d4uw(:n,t)3 + 6aguy (az,t)5
p z

(4.5a)
and
(a2 — @2)0(z, t)ug (x,t)vy(z,t) =0, Vo e Qandte[Th,Ts]. (4.5b)
As in Theorem 4.1, equation (4.5b) implies as = @» and consequently (4.5a) yields
=%
— Uggaz w;t
5 (z,1)
+ g (2, 1) (2a2(91 — 1) + 12(c — @)ug (2, £)? — 30(as — ég)ua(, t)4) =0 (4.6)

Vo € Q, t e [Tl,Tz].
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Suppose condition (i) holds and wlog assume wzz,(0,t*) # 0. Then, evaluating equation (4.6) at z =0
and t = t* yields @umm(o, t*) = 0, which implies v = 4. Equation (4.6) now takes the form

U (@, 1) (2%(01 — 01) + 12(as — G )ug(x,1)” — 30(ag — @6%(%“4) =0

Vo € Q, Vt € [T}, Ts]. Following the same reasoning as in Theorem 4.1, the above identity implies 6; = 6;,
Qy = O~é4, Qg = d6-
On the other hand, if condition (ii) holds then the result follows immediately from equation (4.6) and
the linear independence of the functions wazes (-, t*), Uee (-, %), Uge (-, 1)ue (-, %)% and v, (-, t%)ug (-, %)%,
u

Theorems 4.1 and 4.2 together with the continuity results of section 3 imply, under the appropriate
hypotheses, the identifiability of problem (1.1) with respect to the parameters that define the free energy of
the system.

5. Conclusions

In this paper we have shown that the solutions of the IBVP (1.1), with free energy potential ¥ in the
Landau-Ginzburg form (1.2), depend continuously on the parameters p, Cy, 3, a2, a4, ag, 61 and 7. In par-

ticular, we have shown that if {qn = (Pn, Cv.ns Bn, 02 n,
Q4 m, Q60,0105 Tn) }o, 18 a sequence of admissible parameters converging to the admissible parameter g,
then not only z(t;¢,) — z(t;¢) in the norm of Z,, but also in the stronger || - [|s,s-norm (6 = 2 + ¢).

We have also shown that under rather weak hypotheses, the free energy potential ¥ as given by (1.2) is
identifiable from the IBVP (1.1). More precisely, if the conditions of Theorem 4.2 hold, then the mapping
(a2, aq,a6,01,7) — z(-;¢) is continuous and invertible. Although this is a partial result since it does not
imply the invertibility of the mapping ¢ — z(-;¢), it is appropriate to emphasize its importance from a
practical point of view in the sense that the parameters as, a4, ag, 81 and v are the only non-physical
parameters appearing in the model.
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