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1. Introduction

In this article we consider the following one-dimensional nonlinear initial-boundary value problem:

pute — BPset + Yzrer = f(2,1) + (202(0 — 01)u, — dagu + 6agul) , ©€(0,1),0<t<T

(1.1a)
Coby — kbyp = g(x,1) + 2000uuys + Bpu,, z€(0,1),0<t<T (1.1b)
u(z,0) = up(x), w(x,0) = vo(z), 6(z,0) =b(x), =z € (0,1) (1.1c)
w(0,8) = u(1,t) = tpe(0,8) = Upe(1,8) =0, 0<t<T (1.1d)
0.(0,t) =6,(1,t) =0, 0<t<T (1.1e)

System (1.la-e) arises from the conservation laws governing the thermomechanical processes in
one-dimensional Shape Memory Alloys (SMA). These processes are characterized by solid-solid phase
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transitions (martensitic transformations). Equations (1.1a) and (1.1b) reflect the conservation of linear
momentum and energy, respectively. The functions and variables present in system (1.la-e) have the
following physical meaning: u(x,t) = transverse displacement, 6(x,t) = absolute temperature, C
specific heat, k& = thermal conductivity coefficient, 8 = viscosity constant, f(x,t) = distributed loads
(input), g(x,t) = distributed heat sources (input), 7' = prescribed final time, a2, a4, ag, 61, 7 are
positive constants -depending on the material being considered- appearing in the free energy potential
which is taken in the Landau-Ginzburg form

‘I’(E, 69“0) =-C,0In <0£> +C,0+C + a2(0 — 91)62 _ CM464 + a666 + %ei (12)
2

where € = u, is the linearized shear strain. The constants 6; and 6 in (1.2) are two critical temperatures
and C represents a fixed energy reference level. The body is assumed to be a simply supported unit-length
beam thermally insulated at both ends.

The PDE’s in (1.1a-b) are coupled and nonlinear due to the terms coming from the partial derivatives
of the free energy. The first equation can be regarded as a nonlinear hyperbolic equation in u while the
second is a nonlinear parabolic equation in € (for a detailed derivation of equations (1.1a-b) see [31]).

Although there are several representations for the free energy potential of pseudoelastic materials
(see for instance [13], [14], [29], [30], [34]) the form (1.2) seems to be the simplest one which is able
to reproduce several phenomena -such as hysteresis, shape memory and superelasticity- observed in real
materials under different external thermomechanical actions. For values of 6 close to 81, ¥ is a nonconvex
function of € and the stress-strain laws obtained from (1.2) are strongly temperature-dependent (see
Figure 1). At low temperatures these curves exhibit an elasto-plastic behavior at small loads and a second
elastic branch at large loads, which permits the body to withstand forces beyond the plastic yield, after
which, subsequent unloading produces residual deformation. In the intermediate temperature range the
behavior is superelastic, also called pseudoelastic. Here, a plastic yield is also found. However, loading
beyond this plastic yield followed by complete unloading does not lead to residual deformation because
of the existence of an intermediate elastic branch which the body reaches by creeping back after the
load falls beyond a certain critical value. Finally, in the high temperature range the behavior is almost
linearly elastic with higher modulus of elasticity for higher temperatures. Hysteresis loops are observed
in the stress-strain curves at low and intermediate temperatures (see [31] and the references therein).

Due to their unique characteristics SMA have already found a broad spectrum of applications among
which we find orthodontic and other dental devices ([4]), heat engines, temperature switches and fuses,
pipe coupling devices ([16]), hybrid composites ([27]) and several interesting applications in Medicine
([10], [16], [28]).

Since the discovery of NiTinol (a Nikel-Titanium alloy) by Buehler ([20]) in 1962 several mathe-
matical models were proposed and studied ([1], [2], [3], [13], [14], [19], [21], [22], [23], [35]). Most of this
models, however, were static and did not take into account the strong coupling between the mechanical
and thermal properties, which is one of the distinguishing features possessed by SMA. It was not until
recent years that mathematical models were able to deal with most of the unusual properties of SMA
and, at the same time, to allow for the inclusion of boundary and distributed external actions that can
be used as control variables ([24], [25], [29], [30], [33], [34], [31]). An extensive account on the recent
advances in the mathematical modelling of SMA can be found in [6]. This article follows the approach
introduced in [31].

2. State-Space Formulation and Preliminaries

In this section we shall formulate the initial-boundary value problem (1.la-e) as an abstract semi-
linear Cauchy problem in an appropriate Hilbert space and briefly recall some preliminaries which will
be needed later on.

We define the admissible parameter set Q = {q = (p,k,Cy, 3, a2, s, 6,61,7)|q € RS, }, and for
q € Q the state space Z, as the Hilbert space HJ(0,1) N H?(0,1) x L?(0,1) x L?*(0,1) with the inner
product

/\
S =
T

>£7/01u'(m)u”()daz+p/lv( Yo @) da:+— 018

q



Next, for ¢ € Q, the operator A, on Z, is defined by

u u€ H*0,1), u(0) =u(l) =u"(0) =u"(1) =0
D(A,) = v | €Z,|ve H}0,1)NnH?(0,1)
6 6 € H*(0,1),6'(0) =6'(1) =0
u
and for z = | v | € D(4,),
0
u 0 I 0 u
Aq v = —%D‘l ﬁDZ 0 v
4 0 0 AD*) \¢

where D™ = 3‘9 —.
xr

We assume that the functions f(x,t), g(x,t) satisfy the following hypothesis.

(H1). For each fized t > 0, the functions f(z,t), g(x,t) are in L*(0,1) and there exist nonnegative
functions Ky(z), K,(z) € L*(0,1) such that

|f(.l',t1) - f(x>t2)| < Kf(x)|t1 - t2|> |g(x,t1) - g(z,t2)| < Kg(x)|t1 - t2|

for all z € (0,1), t1,t5 € [0,T].

uo ()
We also define z(z) = [ vo(x) | and F(q,t,2): @ x Rf x Z, — Z, by
Bo(x)
0
F(q,t,Z) = f2(q7t72) )
f3(q7t72)

where

pfa(q,t,2)(x) = f(x,t) + (20@(0 —01)ug — 4a4u2 + Gozgui)x ,
Cvfg(q,t,Z)(iL") = g(xat) + 2a29uwuzt + ﬂpuit'

With the above notation, the IBVP (1.1a-e) can be formally written as the following semilinear Cauchy
problem in the Hilbert space Z,:

(’P){ %z(t) =Auz(t) + F(g,t,z), 0<t<T 1)

The following results can be easily derived from theorems 3.7 and 3.11 in [31] with only slight
modifications in order to take into account for the slightly different boundary conditions being considered
here. Since the modifications needed are trivial and not important for the goals pursued by this article,
we do not give details here.

Theorem 2.1. ([31]) Let ¢ € Q, A, : D(A,) C Z; — Z, as previously defined. Then
i) A, is dissipative;
ii) The adjoint A} of A, is also dissipative and is given by D(A7) = D(A,),

u 0 I 0 u
Ayl v | = | 20" D> 0 v
6 0 0 £Dp? 6

iii) The operator A, has pure point spectrum o,(Aq) given by

op(Ay) = {AZ};O:l U {A;};o:l U {an};”:oa



where

AT = Vb (—r(q) + W) oy = _Cﬁnzﬁz

and

unzﬁ, T()_M

q) = .
p 2\/7

The corresponding normalized eigenvectors in Z, are, respectively,

en(x) knen(x) 0
/\Ien(m) ) kn/\fr_zen(w) ’ 0 ’
0 n=1,2,-- 0 n=1,2,-- XTL('T) n=0,1,---

where

1/2

)\-}-2 2
g2 = Pt AL sin(mnz), n=1,2,---,

st il o = |
pct Pl G )

1/2 1/2
Xo(z) = (Cﬁ> , Xn(x) = (é—k> cos(mnxz), n=1,2-;

iv) The operator A, generates an analytic semigroup of contractions T,(t) on Z,.

Theorem 2.2. ([31]) (Local existence of solutions) Let g € Q and A, as defined above. Then for any
initial data zo € D(Ay) there exists t1 = t1(20) such that the IVP (P) has a unique classical solution
zq(t) € C([0,¢1) : Z,) NC ((0,t1) = Zy).

It will be useful to introduce some notation for certain interpolation spaces. If X is a Banach space
and p > 1, LE(X) will denote the Banach space of all Bochner measurable mappings u : [0,00) — X
such that ||u||’L’€(X) = [0 lu®)|% % < oo. If Xo, X; are two Banach spaces with Xq continuously and
densely embedded in Xy, p > 1 and v € (0,1), we denote with (Xo,Xl)Vm the space of averages, -or
“real” interpolation space-

(X07X1),/7p = {.Z' € X1

Ju; : [0, OO) = X;,i=0,1, t7Vug € Le(Xo),
t'="uy € LE(X1) and o = ug(t) + u1(t) a.e. '

Endowed with the norm

tiljuo € LQ(XO)a
Lexe) H I P ullrxy) | 1Y € LE(Xy) and o,
x = up(t) +uyi(t) a.e.

2ll(xo,x1),,, = inf 4 (It uol

v,p

(Xo,X 1),,71, is a Banach space. In the particular case when p = 2 and X, X; are Hilbert spaces, we shall
denote (Xo, X1),, = [Xo, X1], (see [5]).

If B is the infinitesimal generator of an analytic semigroup S(t) on a Banach space X such that
0 belongs to the resolvent set of B, p(B), then the fractional d-powers (—B)° are well defined, closed,
linear, invertible operators for any § > 0 (see [26, pp. 69-75]). Moreover, D ((—B)°®) endowed with the
topology of the graph norm ||z||s = ||(—B)‘5x|| is a Banach space. The following result can be found in
[5]:
Theorem 2.3. ([5]) Let X be a Hilbert space and B the infinitesimal generator of an analytic semigroup

on X such that 0 € p(B). Then, for any 6 € (0,1), the Hilbert Space (D ((—B)°) || - ||s) is isomorphic
to the interpolation space [D(B), X], _;.

From Theorem 2.1, it follows that {A € C : Re(A) > 0} C p(A4,). Hence the fractional powers of
I— A, are well defined, closed, linear, invertible operators and, for any § € (0,1), D ((I — Aq)‘s) endowed
with the norm ||z||s = || (I - Aq)5z||q is a Banach space, which we denote with Z, 5. This space coincides
with the interpolation space [D(4,), Z,],_;. The following result concerning the regularity of F' was
proved in [32].
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Theorem 2.4. ([32]) Assume (H1) holds. Let q € Q, 0 < ¢ <  and U a bounded subset of [0,T] x
D ((I — Aq)%JFE). Then there exists a constant L > 0 depending on U, € and q, such that

1F (@1, 20) = E(@, 13, 22)llg < L (It = ta] + [ = =I5, )

for every (t1,21), (t2,22) € U. Moreover, the constant L can be chosen independent of q on compact
subsets of Q.

Observation. The operator I — A, above can be replaced by nI — A, for any n > 0 without changing
any of the assertions. The choice n = 1 has no particular meaning,.

3. Spectral Approximations

In this section finite-dimensional approximating solutions to problem (P) are defined and their
convergence to the exact solution is shown.

In the sequel the parameter ¢ € Q will be fixed, so, wherever it is clear from the context, we shall
suppress it from the notation.

For fixed N € N let

sin Tnx sin Tnx 0
By (@) = [ Nisinana |, BN, (2) = | Arsinmne |, By, () = 0 :
0 0 cosm(n — 1)z
for n = 1,2,---, N, where A"~ are as in Theorem 2.1, and let us define Z~ to be the span of BN =

(o9}

{ﬂrjy(w)}fﬁl endowed with the Z-norm. Then U ZN is dense in Z and, since the s are eigenvectors
N=1
of A, it follows that Z¥ is invariant under A. Note also that Z% is itself a Hilbert space.
Next, we define the finite-dimensional approximating problem (PY) in ZV, as follows.
(PY) { LN (t) = ANZN(t) + FN(t,2N(t), 0<t<T
2N (0) = PNz
where PV : Z — Z" is the orthogonal projection of Z onto Z%, AN is the restriction of A to ZV and
o0

FN(t,z) = PNF(t,z). The density of U Z™ in Z implies the strong convergence of PN to the identity.

N=1
o0
Moreover, a straightforward calculation using the spectral decomposition of A shows that U Z" is also
N=1

dense in Z, 5 and ||PNz — z||6 —0,Vz€ Z,;.

Since ZV has finite dimension, the operator AN on ZV is bounded and linear, and a fortiori, it
generates a uniformly continuous semigroup of bounded linear operators TV (t) on ZV.

We have the following result on local existence of solutions of problem (PN )

Theorem 3.1. Let zg € Z. Then, for any positive integer N, there exists t¥ > 0 such that (PN) has a
unique solution on [0,t).

Proof. Let 0 € (%, 1), zo € Z and N € N be fixed. By virtue of Theorem 2.4, there exists a constant
L(r,t") such that for any r >0 and t' >0

19(t,2) = F(s.w)ll < LGwt) (1t = o] + 1 = (= wl])
for every t,s € [0,¢'] and z,w € D ((I — A)°) with ||z||s < r, [Jwl||s < r. Then, for every ¢,s € [0,'], and
z,w € ZN with ||z||s < 7, |lw]|s < r we have
|EN (8, 2) = FN(s,w)llzv = || PY (F(t,2) = F(s,w))| ,

<|IF(t,2) — Fs,w)ll,
< L(r,t") (Jt = s| + (1 = 4)°(z = w)||z)
= L(r,t") (Jt = s| + [l — wlls)
< L(r,t)CO,N) (|t — s + [lz — wllz~)
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where the constant C'(J, N) appears because of the equivalence of the norms in Z¥.
Hence, the mapping (¢,z) — ANz + FN(t,2) is locally Lipschitz continuous from [0,7] x Z¥ into
Z™N and therefore there must exist ¢} > 0 such that problem (PV) has a unique solution on [0,¢)). W

The following result relates the semigroups 7'(t) and T (¢).
Lemma 3.2. Let T(t), TN (t), A, AN, Z and ZV be as above and let R(\; A) denote the resolvent of A
at \, R(A\;A) = (M — A)~L. Then

i) for every A € p(A), the space ZV is invariant under R()\; A);

ii) the restriction of T(t) to ZN coincides with T™ (t) for every t > 0, i.e.

T(t)|zv =TN(t) Vt>0.

Proof. i) Let A € p(A) and £ be an element of the basis Bn of ZN and define z = R()\; A)¢€. Then z is
an eigenvector of A corresponding to the same eigenvalue o of €. In fact, (A — A)Az = A¢ = o€, which
implies Az = R(\; A)o€ = oz. Since all the eigenvalues of A are simple, z must be a constant multiple
of ¢ and therefore z € ZV. Part i) then follows by the linearity of R(\; A).

ii) Since ZV is invariant under A, the operator AN, the part of A in ZV, defined by

DAN) = {ze DA)NZN : Az € ZN}
ANz = Az, ZED(AN),

coincides with A%, the restriction of A to ZV. Hence AN generates a uniformly continuous semigroup
on Z¥ and by part i), ZV is invariant under R(\; A) for every A with Re A > 0. By Theorem 4.5.5
in [26] it follows that AN = AN is the infinitesimal generator of the restriction of T'(t), the semigroup
generated by A, to ZN. [ |

We shall need the following generalization of Gronwall’s Lemma for singular kernels whose proof
can be found in [17, Lemma 7.1.1].

Lemma 3.3. ([17]) Let a(t) be a nonnegative, locally integrable function on 0 < t < T, L > 0 and
0 < d < 1. Then, there exists a constant K = K (8) such that every function u satisfying

u(t) < a(t) +L/0 ( L u(s) ds

t—s)d
on 0<t<T, also satisfies

u(t) <a(t)+ KL /t (ta(s))6 ds, for0<t<T.
o (t—s

We define the operator Ay = A — I with D(Ay) = D(A). From the properties of A it follows easily
that A; generates an exponentially stable analytic semigroup Ty(t). Moreover, Ty (t) = e 'T'(t). Also,
since 0 € p(Aj), the fractional powers (—Aj)® are well defined for any & € (0, 1).

We now proceed to state and prove our main result about the convergence of the approximating
solutions.

Theorem 3.4. Let§ € (2,1), 20 € D ((—Ar)°) and suppose 2™ (t), z(t) are solutions of (PN) and (P),
respectively, and let [0,t1) be the mazimal interval of existence of z(t). Then, for any t] < t; there exists
a constant Ny such that 2z (t) exists on [0,t,] for every N > Ny and 2™ (t) converges to z(t) in the norm
of Z for every t € [0,t}]. Moreover, the convergence holds in the norm of the graph of (—Ap)°.

Proof. Let é € (3,1), t{ <t and for each N € N let ¢t} > 0 be such that 2V (¢) exists on [0,¢1'). Then,
for t € [0, min{t;,t]}) and N € N

2Nt) = TN () PN 2o + /t TNt — s)PNF(s, 2" (s)) ds,
0

z(t) =T(t)zo0 + /0 T(t—s)F(s,z(s))ds.



Therefore
127(8) = 2(®)ls = [[(=40)° (z"'(1) — (1)) |
< H D (TN ()P 20 — T()20) H
b [ =40 [ PV F6, Y 9) = T - R G 266 |
= o () + oY (1).
Since T'(t) commutes with (—AI)‘S,

= (- PNZO —20)|,
s I17(t) ||£<Z> || )° (PN20 = 20) |,

el
Similarly, for the integrand defining p (t) we have
||(—A1)‘5 [TN(t —s) PNF(s ZN(S)) T(t—s)F(s,z(s ) ||Z

= ||( A, JTt s) (PN F(s,2"(s)) = F(s,2() ] ,

< || — T(t—s ||£ ||PNF (s,2 (s)) —F(s,z(s))”z
<eft i C‘* ||PNF(s,z (5)) = F(s,2()]| , - (3.1)
But
||PNF(S, 2N (s)) — F(s, z(s))”Z < ||PN [F(s,2N(s)) — F(s,2(s))] ||Z -+ (PN — 1) F(s, z(s))”Z
<||F(s,2N(s)) = F(s,2(s)|| , + || (PN = 1) F(s,2(5)] , - )

Hence, from (3.1) and (3.2) it follows that

1

(0 < Coet [ oy P52 () = Flss2(0)] s

¢
/ 1
¢ N
+ Cseh /0 i) ||(P —I)F(s,z(s))”z ds
The integrand of the second term on the RHS above is bounded by =

- )5||F(S ,2(s)llz € L*(0,T),

uniformly in N, and converges to zero as N tends to infinity. By the Dominated Convergence Theorem
the second term of the last inequality tends to zero as N goes to infinity.
Summarizing, we have

C

a5 1F 2" (e) = Fs2())]| ds (3.3)

¢
=0 =20l <0+ [ -
t
where, for t € [0,#}], €V (t) < C for all N € N and €V (t) — 0 as N — oo. In particular / N(t)dt — 0
0

as N — oo. R R
Let K = K(J) be as in Lemma 3.3 and let us define K = C + CCK. Since 2% (0) = PNz, there
exists 6% > 0 such that ||z ||6 < M + 2K for all t € [0,6V], where M = supg<;<y ||2(t)[|s. Let L be

the Lipschitz constant for F' corresponding to the set U = [0, ]] x {||z||6 <M+ 2K}. Then, from (3.3)

|2 (t) - z(t)”(s < eN(t) + C'L/O G _15)6 |2 (s) — z(s)”a ds vt € 0,67],
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and, from Lemma 3.3
[N () — =) < Y1), Vte[o,8M], (3.4)

where fN(t) = V(1) + CKL fy 5 ds, for t € [0,1).
We shall now show that there exists Ny € N such that fN(t) < K Vt € [0,t}], VN > Ny. As we
shall later see this will imply not only the existence of 2™V (¢) on the whole interval [0,#], VN > Ny, but

also the bound ||z (t)||s < M + 2K, Vt € [0,}], VN > Np.

In fact, observe that
t N t
/ e’ (®) ds < / ¢ ds
o (t—s)° o (t—s)°

b1
0 S

O s
e

Choosing 1 = n(L) > 0 sufficiently small so that =9 <

for every t € [0, 7], it follows that

t N
/0 T _(35 < < for every t € [0, 7). (3.5)

Oun the other hand, if n <t < ¢}

[pun [ 24520

0 50
¢ s CeN(t—s)
<~
S 15" +/77 7 ds
c 1 [ty
< — 4 _
_2L+776/n € (t—s)ds
c 1 [h,
< 2 4 =
< 2L+n‘5/0 €' (s)ds
t
Then, since / ¢¥(s)ds — 0, then there exists Ny such that
0
EoeN(t) C
ds < — Wt t1] and N > No. 3.6
/Ov(t_s)g S_L 6[77: 1]&11 Z Vo ( )
From (3.5) and (3.6) it follows that
Nt <C+CCK =K Vtel0,t] and N > Ny, (3.7)

as wanted.
Consequently, from (3.4) and (3.7)

|2N(t) = 2(t)||, <K VYN > No and t € [0,6"],

which implies y
[N, <M+ K VN> Noandte[0,0"].

Now, let N' > Np be fixed. Then 2z (t) exists on [0,#] and for t € [0,#], |2V (t)]|, < M +2K. In
fact, suppose, on the contrary, that there exists t* < #{ such that ||z/V(¢*)||, = M + 2K and ||z"(¢)||; <
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M + 2K for 0 < t < t*. Then, from (3.4) ||ZN(t) —z(t)”(s < fN() < K on [0,t*), and therefore,
||ZN(t)||6 < M + K on [0,t*). By the continuity of 2V (), we must have ||zN(t*)||6 < M + K, which
contradicts ||zN(t*)||6 =M +2K.

At this point we have shown that VN > No, ||2V (t)|ls < M +2K, Vt € [0,t;]. Therefore, for N > Ny,
6N can be chosen strictly greater than t|. Hence (3.4) holds in [0,#}], i.e.

12V(@) = =), < FY @), VEeo,t].

Finally, since by virtue of the Dominated Convergence Theorem, f~(t) — 0 Vt € [0,#}] as N — oo,
the theorem follows. [ |

4. Time Discretization

In this section we shall first find the representation of the approximating problem (P%) in the basis
BN of ZN. For this purpose, let w" be the vector whose components are the coefficients of the solution

u™(t)
ZN(t) = [ v™(t) | of problem (PN) in the basis fy. Then w™ () is the solution of the IVP
o (1)
(b { 10 = A0 Y )
wh(0) =4
with
~ 1 - _1 -1 Uo
AN = (@) KN, FN(tw) = (QY)T RVF (,QNw), AN =(@QY) RV | w |,
bo

where the matrices @, K and the mapping R : Z¥ — R3*" are defined by
(QN)i,j = lgv,ﬂj\f%; (KN)M = zN’ANﬂjwq’ (RNZ)i = (B ’z>q7

i,j=1,2,--- ,3N.
For the time discretization, the following hybrid implicit-explicit Euler method was used:

wy =7
Ait(wkN_i_l—w,]cV):AkaN+1+FN(kAt,wkN), k=0,1,---.

The convergence of the solutions of the corresponding time-discretized system to the solution of (75N )

as At — 0 follows immediately from the following theorem.

Theorem 4.1. Let n be a positive integer, B € L(R™), G : [0,T] x R* — R™ be a continuous function
such that G(t,-) is Lipschitz continuous in R” for any t € [0,T], with constant K independent of t.
Assume that the IVP
{ W'(t) = BW(t) + G(t,W(t)), W(t) € R",
W(0) =W,y

has a unique solution W(-) in [0,T] such that W' (t) is bounded in [0,T]. Given 0 < h < 1/||B|| and
wo € R* define N(h) = [T'/h] (the integer part of N/h) and given wy, define w;, j =1,---,N(h), by

Wjt1 :wj+thj+]_ —|—hG(jh,wj), j=0,1,.--- ,N(h)—].

Then, there exists a constant C such that

max Wk~ | < TSR | Wy — ol + hC [T (SRR —1]
7j=0,1,---,
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If, moreover, h < 1/2||B|| then

max _|W(jh) —w;| < 2TEFIBI W, — wo| + RC [62T(K+”BH) -1/.
J=0,1,--,N(h)

Remark: It is not difficult to show that the conclusions of this theorem remain valid under the weaker
assumptions G locally Lipschitz and W' Lipschitz continuous.

Proof. Let 0 < h < 1/||B|| and define W; = W (jh). Using the Taylor approximation theorem
h2
Wit = W+ hW'(jh) + 7W” (&.n)
h2
= W; + hBW; + hG (jh, W;) + 7W” (&n) -
where &, € (jh, (j + 1)h). Defining e; = W; — w; we then have
. . h? "
ej+1 = j + hB (W) —wji1) + h[G (jh, W)) = G (jh,wy)] + W (§n)
. . h?
= ej + hBej1 + h[G (jh, Wy) = G (jh,wj)] + hB (W) = Wisr) + W' (n)
or equivalently
h2
¢jr1 = hBejry = ¢j + h[G (jh, W)) = G (jh, wy)] + hB (Wj = W) + W (§n) -
Therefore,
. . h2 n
(L= hlIBI) [ej1] < lejl + R|G (77, Wj) = G (Ghy wi)| + RIBI[W; = Wita| + = [W7 (&0)]
2 3 h?
< lesl + hEC Jej| + B2BIL W' (&0)] + % W (€10)

where &, € (jh, (j + 1)h).
Letting C' be an upper bound for |W'(t)| + |W"(t)| in [0,T7], it follows that

ey < LHHE |e'|+h20(1+||B||).
TS 1 —hB) Y 1 h||B||

By induction one has

. ) 1ink |’
1+ hK r| ol h?C(1+B]) [PhHBII} -1

MASP——— Rk
= A3 [ 7

Now, since (1 + z)? < €/® for any # > —1 and j € N, we have that

J J
[iiﬂi}:b_hﬁiﬁﬂ]<aﬂﬁﬁhggﬁﬂﬂ)

1—n| Bl 1—n|B|l] ~
and ) )
[M]] 1 [M]] 1
1-h||B]| _[1=k[BI
1+hK - K+ B||
1-h||B] 1 hl—h||B\|
Hence

1+ ||B]| [eT( K+ B|

K+|B|l
W — w;| < eTGRIB0 [y — wol + hO— AL [RGB —
L K+ B
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for any 5 = 0,1,...,N(h). This proves the first part of the theorem. The final assertion follows from
the fact that 1 — h||B|| > 1/2if h < 1/2||B]]. ]

Comment: The previous theorem together with the result of Theorem 3.4 ensures the convergence
of the fully-discretized system to the solutions of (2.1) as N — oo and At — 0 in an appropriate way.
Moreover, for fixed IV, Theorem 4.1 shows that the order of convergence of the time-discretized equations

to the solution of (75N ) is O(At). However, we have not obtained an order of convergence for the fully-

discretized system. Moreover, due to the intrinsic nature of the spectral approximations being used, it
is not expected that such an order of convergence could be obtained.

5. Numerical Results

For the numerical results presented below we used this hybrid method with N = 32 and At = 10—°
and the parameter values reported by F. Falk in [13] for the alloy Aus3CugeZngr: as =24 Jem 3 K1,
as =15x10° Jem™3, ag = 7.5x108 Jem3 K160, =208 K,C, =29Jcem 2 K1, k=19wem ' K1,
p=11.1gem=3. We also took v = 107'2 Jem ™! as reported in [15]. For the value of 3 we chose 3 = 1.
This choice has no particular physical meaning. To our knowledge, there are no reports of values of
[ for real materials although there seems to be evidence that for some SMA, f is either very small or
zero. Figure 1 shows the stress-strain curves obtained from the potential (1.2) for these values of the
parameters. The doted lines indicate the unstable parts of the curves, while the horizontal lines indicate
possible hysteresis loops.

It is important to mention that the results in this article depend stronly on the hypothesis § > 0,
that is on the assumption that there are viscous stresses in the material. This approach does not work
if 8 = 0. For the non-viscous case # = 0 we refer the reader to [30], [34], [29]. An algorithm for the
numerical approximation of the solutions in this case was introduced by Niezgodka and Sprekels in [25].
Further numerical and stability results can be found in [18].
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Experiment 1: Low-temperature steady-state.
For this experiment we took f =g =0, y(z)

h@):{onmg

0.05(1 — ),

Figure 1: Stress-Strain curves for different
temperatures obtained from (1.2) with the val-
ues of as, a4, ag and #; as in [13]. The dot-
ted lines represent unstable parts of the curves.
Horizontal lines indicate possible hysteresis loops.

= 200° K, ug(x) = PNh(z), where

if0<z<0.5,
if0.5<z <1,

and vg = 0. Thus, the beam is initially in the low temperature range composed of two segments of
martensites, namely, martensite My on 0 < z < % and martensite M_ on % <z <1 (5% initial strain).
The evolution of displacement and temperature can be observed in Figures 2a and 2b, respectively. This

evolution is due to the fact that the initial condition zo(z)

uo(x)
= | vo(x) | does not correspond to a steady-

bo(z)

state of system (1.la-e). The system evolves until a steady-state composed of two symmetric segments
of martensites M, and M_ (= 11.25% strain) and constant temperature § = 222° K is reached. Figure
2c¢ shows in more detail the displacement profile during the first 250 milliseconds.
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600° K and ug, vo, f and g as in Experiment 1. The evolution of displacement

and temperature is shown in Figures 3a and 3b, respectively.

Here we took 6y(z)

The beam oscillates until the steady-

505.69 K is reached. This is in

(a3

state consisting of zero deformation and constant temperature 6

2830 K)

const. Due to the high-temperature unsteady initial condition the

0,0 =

agreement with the fact that above the austenite-finish temperature § = Ay (in this case Ay

the steady-states satisfy u

0 while temperature decreases slightly,

beam immediately bends downward approaching the state u

originating the damped oscillations observed in Figures 3a and 3b. The oscillations of the middle-point

of the beam can be appreciated in Figure 3c.
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3

Experiment

In this experiment we studied the effects of a distributed force consisting of a pulse around the

middle-point of the beam when the initial temperature is below the martensite finish temperature 6

0 and

0, 6p(z) = 200° K, g(z,t)

vo(z) =

208% K. We took ug(z) =

Mfg

’

if04<z<06and0<t<0.5x1073

)
R
g
—
<5}
<
+~
1S
o
(e
—
VA -
n o
—
I
~~
-~
8
SN—r
S~

Initially, points around the center move upward while the effect of the pulse propagates to the

endpoints of the beam (Figures 4a, 4c).

At exactly the time this effect reaches the endpoints, the

middle-point deflection reaches a maximum and small damped oscillations begin to take place (Figure
4c) around the final equilibrium state consisting of two symmetric segments of martensites M, M_

226° K (Figure 4b).

11.05% strain) and constant temperature 6 =

o

(
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0 and the heat
At this time the

temperature starts to increase (Figure 6b), the martensite crystals are converted into austenite and the

beam bends downward showing small damping oscillations around zero deformation (Figure 6a). These

336" K.

~

0,0

7

2220 K), f(a,1)

t) consisting of a uniformly spatially distributed heat pulse as follows

)

/)
)

N
N

S
=
=

=
D

(z)

bo

\

’

if 1.45 <t < 1.50

if 0.2<t<0.25
if t < 0.05,
otherwise.

otherwise.
0 due to inertial effects. The sample is now completely in

5 x 104,

7

—8 x 10,

8 x 102,
0

The temperature raises uniformly up to nearly 336° K while the beam approaches the undeformed

state. After the heat pulse is switched off, temperature remains at about 336° K while displacement

shows small damped oscillations around u

g(z,t) =

W
N
N\

N
Nk
RS

W
AN

N
N

AN
Waiting-Heating. (a) displacement and (b) temperature profiles.

Heating- Waiting-Cooling (Two-way shape memory effect)

0 and the distributed heat source g(x,t) consisting of an initial uniformly distributed heat

)

T

(

Figure 6
For this experiment we took again as initial data the final steady-state of Experiment 1. We also

The system remains at the initial state until the heat pulse is switched on.
took f(x,t)

pulse which is switched off after ¢ = 0.05 sec. At t = 1.45 sec. the opposite heat pulse is applied until

t = 1.50 sec. when it is switched off. More precisely,
the austenite phase. At ¢t = 1.45, when the opposite pulse is applied, the temperature decreases uniformly

and remains at about 222° K, while the beam undergoes a process of reverse transformation which takes
it back to the original initial configuration showing the so-called two-way shape memory phenomenon

oscillations are quickly damped and the beam reaches the steady-state u
(Figures Ta-d).

the final steady-state of Experiment 1 (11.25% initial strain
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Figure 7: Heating-Waiting-Cooling. (a) displacement profile; (b) temperature profile; (c)
middle-point displacement; (d) middle-point temperature.

6. Conclusions

In this article, discrete spectral approximations to the nonlinear partial differential equations that
model the dynamics of thermomechanical martensitic transformations in one-dimensional shape memory
alloys with non-convex Landau-Ginzburg potentials were developed.

By using the theories of analytic semigroups and interpolation spaces and a generalization of Gron-
wall’s lemma for singular kernels, the convergence of the approximations was shown to hold not only in
the state-space norm but also in the stronger || - ||s-norm.

The numerical experiments performed using this scheme show that under different initial conditions
and distributed external actions the model (1.1) is able to produce solutions whose qualitative behavior
is found to be in close agreement with laboratory experiments performed on Shape Memory Alloys under
similar conditions.

From a practical point of view it would be very important to find the values of the vector parameter
q that “best fit” experimental data for a given alloy. This is called the parameter identification problem
about which no results are yet known. In this regard the scheme presented here provides a friendly
mathematical framework for attacking this problem. Efforts in this direction are already underway and
results will be published in a forthcoming article.

Acknowledgements. The authors want to thank an anonymous referee for several important comments
and suggestions and for bringing reference [18] to their attention.
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