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2transitions (martensiti
 transformations). Equations (1.1a) and (1.1b) re
e
t the 
onservation of linearmomentum and energy, respe
tively. The fun
tions and variables present in system (1.1a-e) have thefollowing physi
al meaning: u(x; t) = transverse displa
ement, �(x; t) = absolute temperature, Cv =spe
i�
 heat, k = thermal 
ondu
tivity 
oeÆ
ient, � = vis
osity 
onstant, f(x; t) = distributed loads(input), g(x; t) = distributed heat sour
es (input), T = pres
ribed �nal time, �2, �4, �6, �1, 
 arepositive 
onstants -depending on the material being 
onsidered- appearing in the free energy potentialwhi
h is taken in the Landau-Ginzburg form	(�; �x; �) = �Cv� ln� ��2�+ Cv� + C + �2(� � �1)�2 � �4�4 + �6�6 + 
2 �2x (1.2)where � = ux is the linearized shear strain. The 
onstants �1 and �2 in (1.2) are two 
riti
al temperaturesand C represents a �xed energy referen
e level. The body is assumed to be a simply supported unit-lengthbeam thermally insulated at both ends.The PDE's in (1.1a-b) are 
oupled and nonlinear due to the terms 
oming from the partial derivativesof the free energy. The �rst equation 
an be regarded as a nonlinear hyperboli
 equation in u while these
ond is a nonlinear paraboli
 equation in � (for a detailed derivation of equations (1.1a-b) see [31℄).Although there are several representations for the free energy potential of pseudoelasti
 materials(see for instan
e [13℄, [14℄, [29℄, [30℄, [34℄) the form (1.2) seems to be the simplest one whi
h is ableto reprodu
e several phenomena -su
h as hysteresis, shape memory and superelasti
ity- observed in realmaterials under di�erent external thermome
hani
al a
tions. For values of � 
lose to �1, 	 is a non
onvexfun
tion of � and the stress-strain laws obtained from (1.2) are strongly temperature-dependent (seeFigure 1). At low temperatures these 
urves exhibit an elasto-plasti
 behavior at small loads and a se
ondelasti
 bran
h at large loads, whi
h permits the body to withstand for
es beyond the plasti
 yield, afterwhi
h, subsequent unloading produ
es residual deformation. In the intermediate temperature range thebehavior is superelasti
, also 
alled pseudoelasti
. Here, a plasti
 yield is also found. However, loadingbeyond this plasti
 yield followed by 
omplete unloading does not lead to residual deformation be
auseof the existen
e of an intermediate elasti
 bran
h whi
h the body rea
hes by 
reeping ba
k after theload falls beyond a 
ertain 
riti
al value. Finally, in the high temperature range the behavior is almostlinearly elasti
 with higher modulus of elasti
ity for higher temperatures. Hysteresis loops are observedin the stress-strain 
urves at low and intermediate temperatures (see [31℄ and the referen
es therein).Due to their unique 
hara
teristi
s SMA have already found a broad spe
trum of appli
ations amongwhi
h we �nd orthodonti
 and other dental devi
es ([4℄), heat engines, temperature swit
hes and fuses,pipe 
oupling devi
es ([16℄), hybrid 
omposites ([27℄) and several interesting appli
ations in Medi
ine([10℄, [16℄, [28℄).Sin
e the dis
overy of NiTinol (a Nikel-Titanium alloy) by Buehler ([20℄) in 1962 several mathe-mati
al models were proposed and studied ([1℄, [2℄, [3℄, [13℄, [14℄, [19℄, [21℄, [22℄, [23℄, [35℄). Most of thismodels, however, were stati
 and did not take into a

ount the strong 
oupling between the me
hani
aland thermal properties, whi
h is one of the distinguishing features possessed by SMA. It was not untilre
ent years that mathemati
al models were able to deal with most of the unusual properties of SMAand, at the same time, to allow for the in
lusion of boundary and distributed external a
tions that 
anbe used as 
ontrol variables ([24℄, [25℄, [29℄, [30℄, [33℄, [34℄, [31℄). An extensive a

ount on the re
entadvan
es in the mathemati
al modelling of SMA 
an be found in [6℄. This arti
le follows the approa
hintrodu
ed in [31℄.2. State-Spa
e Formulation and PreliminariesIn this se
tion we shall formulate the initial-boundary value problem (1.1a-e) as an abstra
t semi-linear Cau
hy problem in an appropriate Hilbert spa
e and brie
y re
all some preliminaries whi
h willbe needed later on.We de�ne the admissible parameter set Q := �q = (�; k; Cv ; �; �2; �4; �6; �1; 
)jq 2 R9+	, and forq 2 Q the state spa
e Zq as the Hilbert spa
e H10 (0; 1) \ H2(0; 1) � L2(0; 1) � L2(0; 1) with the innerprodu
t *0�uv�1A ;0� ~u~v~�1A+q := 
 Z 10 u00(x)~u00(x) dx+ � Z 10 v(x)~v(x) dx+ Cvk Z 10 �(x)~�(x) dx:



3Next, for q 2 Q, the operator Aq on Zq is de�ned byD(Aq) = 8<:0�uv�1A 2 Zq ������ u 2 H4(0; 1); u(0) = u(1) = u00(0) = u00(1) = 0v 2 H10 (0; 1) \H2(0; 1)� 2 H2(0; 1); �0(0) = �0(1) = 0 9=;and for z = 0�uv�1A 2 D(Aq), Aq0�uv�1A := 0� 0 I 0�
�D4 �D2 00 0 kCvD21A0�uv�1Awhere Dn := �n�xn .We assume that the fun
tions f(x; t), g(x; t) satisfy the following hypothesis.(H1). For ea
h �xed t � 0, the fun
tions f(x; t), g(x; t) are in L2(0; 1) and there exist nonnegativefun
tions Kf (x), Kg(x) 2 L2(0; 1) su
h thatjf(x; t1)� f(x; t2)j � Kf (x)jt1 � t2j; jg(x; t1)� g(x; t2)j � Kg(x)jt1 � t2jfor all x 2 (0; 1), t1; t2 2 [0; T ℄.We also de�ne z0(x) = 0�u0(x)v0(x)�0(x)1A and F (q; t; z) : Q� R+0 � Zq ! Zq byF (q; t; z) = 0� 0f2(q; t; z)f3(q; t; z)1A ;where �f2(q; t; z)(x) = f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;Cvf3(q; t; z)(x) = g(x; t) + 2�2�uxuxt + ��u2xt:With the above notation, the IBVP (1.1a-e) 
an be formally written as the following semilinear Cau
hyproblem in the Hilbert spa
e Zq:(P)� ddtz(t) = Aqz(t) + F (q; t; z); 0 � t � Tz(0) = z0 (2.1)The following results 
an be easily derived from theorems 3.7 and 3.11 in [31℄ with only slightmodi�
ations in order to take into a

ount for the slightly di�erent boundary 
onditions being 
onsideredhere. Sin
e the modi�
ations needed are trivial and not important for the goals pursued by this arti
le,we do not give details here.Theorem 2.1. ([31℄) Let q 2 Q, Aq : D(Aq) � Zq ! Zq as previously de�ned. Theni) Aq is dissipative;ii) The adjoint A�q of Aq is also dissipative and is given by D(A�q) = D(Aq),Aq0�uv�1A := 0� 0 �I 0
�D4 �D2 00 0 kCvD21A0�uv�1Aiii) The operator Aq has pure point spe
trum �p(Aq) given by�p(Aq) = ��+n	1n=1 [ ���n 	1n=1 [ f�ng1n=0 ;



4 where �+;�n = p�n ��r(q)�pr2(q)� 1� ; �n = � kCv n2�2and �n = 
n4�4� ; r(q) = �p�2p
 :The 
orresponding normalized eigenve
tors in Zq are, respe
tively,0� en(x)�+n en(x)0 1An=1;2;��� ; 0� knen(x)kn��n en(x)0 1An=1;2;��� ; 0� 00�n(x)1An=0;1;��� ;where k2n = �n + j�+n j2�n + j��n j2 ; en(x) = � 2�(�n + j�+n j2)�1=2 sin(�nx); n = 1; 2; � � � ;�0(x) = � kCv�1=2 ; �n(x) = � 2kCv�1=2 
os(�nx); n = 1; 2; � � � ;iv) The operator Aq generates an analyti
 semigroup of 
ontra
tions Tq(t) on Zq.Theorem 2.2. ([31℄) (Lo
al existen
e of solutions) Let q 2 Q and Aq as de�ned above. Then for anyinitial data z0 2 D(Aq) there exists t1 = t1(z0) su
h that the IVP (P) has a unique 
lassi
al solutionzq(t) 2 C ([0; t1) : Zq) \ C1 ((0; t1) : Zq).It will be useful to introdu
e some notation for 
ertain interpolation spa
es. If X is a Bana
h spa
eand p � 1, Lp�(X) will denote the Bana
h spa
e of all Bo
hner measurable mappings u : [0;1) ! Xsu
h that kukpLp�(X) := R10 ku(t)kpX dtt < 1. If X0, X1 are two Bana
h spa
es with X0 
ontinuously anddensely embedded in X1, p � 1 and � 2 (0; 1), we denote with (X0; X1)�;p the spa
e of averages, -or\real" interpolation spa
e-(X0; X1)�;p := �x 2 X1 ���� 9ui : [0;1)! Xi; i = 0; 1; t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) and x = u0(t) + u1(t) a.e. � :Endowed with the normkxk(X0;X1)�;p := inf8<:kt��u0kLp�(X0) + kt1��u1kLp�(X1) ������ t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) andx = u0(t) + u1(t) a.e. 9=; ;(X0; X1)�;p is a Bana
h spa
e. In the parti
ular 
ase when p = 2 and X0, X1 are Hilbert spa
es, we shalldenote (X0; X1)�;2 = [X0; X1℄� (see [5℄).If B is the in�nitesimal generator of an analyti
 semigroup S(t) on a Bana
h spa
e X su
h that0 belongs to the resolvent set of B, �(B), then the fra
tional Æ-powers (�B)Æ are well de�ned, 
losed,linear, invertible operators for any Æ > 0 (see [26, pp. 69-75℄). Moreover, D �(�B)Æ� endowed with thetopology of the graph norm kxkÆ := 

(�B)Æx

 is a Bana
h spa
e. The following result 
an be found in[5℄.Theorem 2.3. ([5℄) Let X be a Hilbert spa
e and B the in�nitesimal generator of an analyti
 semigroupon X su
h that 0 2 �(B). Then, for any Æ 2 (0; 1), the Hilbert Spa
e �D �(�B)Æ� ; k � kÆ� is isomorphi
to the interpolation spa
e [D(B); X ℄1�Æ.From Theorem 2.1, it follows that f� 2 C : Re(�) > 0g � �(Aq). Hen
e the fra
tional powers ofI�Aq are well de�ned, 
losed, linear, invertible operators and, for any Æ 2 (0; 1), D �(I �Aq)Æ� endowedwith the norm kzkÆ := 

(I �Aq)Æz

q is a Bana
h spa
e, whi
h we denote with Zq;Æ. This spa
e 
oin
ideswith the interpolation spa
e [D(Aq); Zq℄1�Æ . The following result 
on
erning the regularity of F wasproved in [32℄.



5Theorem 2.4. ([32℄) Assume (H1) holds. Let q 2 Q, 0 < � < 14 and U a bounded subset of [0; T ℄ �D �(I �Aq) 34+��. Then there exists a 
onstant L > 0 depending on U , � and q, su
h thatkF (q; t1; z1)� F (q; t2; z2)kq � L�jt1 � t2j+ kz1 � z2k 34+��for every (t1; z1); (t2; z2) 2 U . Moreover, the 
onstant L 
an be 
hosen independent of q on 
ompa
tsubsets of Q.Observation. The operator I �Aq above 
an be repla
ed by �I � Aq for any � > 0 without 
hangingany of the assertions. The 
hoi
e � = 1 has no parti
ular meaning.3. Spe
tral ApproximationsIn this se
tion �nite-dimensional approximating solutions to problem (P) are de�ned and their
onvergen
e to the exa
t solution is shown.In the sequel the parameter q 2 Q will be �xed, so, wherever it is 
lear from the 
ontext, we shallsuppress it from the notation.For �xed N 2 N let�Nn (x) := 0� sin�nx�+n sin�nx0 1A ; �NN+n(x) := 0� sin�nx��n sin�nx0 1A ; �N2N+n(x) := 0� 00
os�(n� 1)x1A ;for n = 1; 2; � � � ; N , where �+;�n are as in Theorem 2.1, and let us de�ne ZN to be the span of �̂N :=��Nn (x)	3Nn=1 endowed with the Z-norm. Then 1[N=1ZN is dense in Z and, sin
e the �Nn 's are eigenve
torsof A, it follows that ZN is invariant under A. Note also that ZN is itself a Hilbert spa
e.Next, we de�ne the �nite-dimensional approximating problem �PN� in ZN , as follows.�PN�� ddtzN (t) = ANzN(t) + FN (t; zN (t)); 0 � t � TzN(0) = PNz0where PN : Z ! ZN is the orthogonal proje
tion of Z onto ZN , AN is the restri
tion of A to ZN andFN (t; z) := PNF (t; z). The density of 1[N=1ZN in Z implies the strong 
onvergen
e of PN to the identity.Moreover, a straightforward 
al
ulation using the spe
tral de
omposition of A shows that 1[N=1ZN is alsodense in Zq;Æ and 

PNz � z

Æ ! 0, 8z 2 Zq;Æ .Sin
e ZN has �nite dimension, the operator AN on ZN is bounded and linear, and a fortiori, itgenerates a uniformly 
ontinuous semigroup of bounded linear operators TN(t) on ZN .We have the following result on lo
al existen
e of solutions of problem �PN�.Theorem 3.1. Let z0 2 Z. Then, for any positive integer N, there exists tN1 > 0 su
h that �PN� has aunique solution on [0; tN1 ).Proof. Let Æ 2 ( 34 ; 1), z0 2 Z and N 2 N be �xed. By virtue of Theorem 2.4, there exists a 
onstantL(r; t0) su
h that for any r > 0 and t0 > 0kF (t; z)� F (s; w)kZ � L(r; t0) �jt� sj+ k(I �A)Æ(z � w)kZ�for every t; s 2 [0; t0℄ and z; w 2 D �(I �A)Æ� with kzkÆ � r, kwkÆ � r. Then, for every t; s 2 [0; t0℄, andz; w 2 ZN with kzkÆ � r, kwkÆ � r we havekFN (t; z)� FN (s; w)kZN = 

PN (F (t; z)� F (s; w))

Z� kF (t; z)� F (s; w)kZ� L(r; t0) �jt� sj+ k(I �A)Æ(z � w)kZ�= L(r; t0) (jt� sj+ kz � wkÆ)� L(r; t0)C(Æ;N) (jt� sj+ kz � wkZN )



6where the 
onstant C(Æ;N) appears be
ause of the equivalen
e of the norms in ZN .Hen
e, the mapping (t; z) ! ANz + FN (t; z) is lo
ally Lips
hitz 
ontinuous from [0; T ℄� ZN intoZN and therefore there must exist tN1 > 0 su
h that problem �PN� has a unique solution on [0; tN1 ). �The following result relates the semigroups T (t) and TN(t).Lemma 3.2. Let T (t), TN(t), A, AN , Z and ZN be as above and let R(�;A) denote the resolvent of Aat �, R(�;A) := (�I �A)�1. Theni) for every � 2 �(A), the spa
e ZN is invariant under R(�;A);ii) the restri
tion of T (t) to ZN 
oin
ides with TN(t) for every t � 0, i.e.T (t)jZN = TN(t) 8t � 0:Proof. i) Let � 2 �(A) and � be an element of the basis �̂N of ZN and de�ne z := R(�;A)�. Then z isan eigenve
tor of A 
orresponding to the same eigenvalue � of �. In fa
t, (�I �A)Az = A� = ��, whi
himplies Az = R(�;A)�� = �z. Sin
e all the eigenvalues of A are simple, z must be a 
onstant multipleof � and therefore z 2 ZN . Part i) then follows by the linearity of R(�;A).ii) Sin
e ZN is invariant under A, the operator ~AN , the part of A in ZN , de�ned byD( ~AN ) := �z 2 D(A) \ ZN : Az 2 ZN	~ANz := Az; z 2 D � ~AN� ;
oin
ides with AN , the restri
tion of A to ZN . Hen
e ~AN generates a uniformly 
ontinuous semigroupon ZN and by part i), ZN is invariant under R(�;A) for every � with Re � > 0. By Theorem 4.5.5in [26℄ it follows that ~AN = AN is the in�nitesimal generator of the restri
tion of T (t), the semigroupgenerated by A, to ZN . �We shall need the following generalization of Gronwall's Lemma for singular kernels whose proof
an be found in [17, Lemma 7.1.1℄.Lemma 3.3. ([17℄) Let a(t) be a nonnegative, lo
ally integrable fun
tion on 0 � t � T , L � 0 and0 < Æ < 1. Then, there exists a 
onstant K = K(Æ) su
h that every fun
tion u satisfyingu(t) � a(t) + L Z t0 1(t� s)Æ u(s) dson 0 � t � T , also satis�esu(t) � a(t) +KL Z t0 a(s)(t� s)Æ ds; for 0 � t < T:We de�ne the operator AI := A� I with D(AI ) = D(A). From the properties of A it follows easilythat AI generates an exponentially stable analyti
 semigroup TI(t). Moreover, TI(t) = e�tT (t). Also,sin
e 0 2 �(AI ), the fra
tional powers (�AI)Æ are well de�ned for any Æ 2 (0; 1).We now pro
eed to state and prove our main result about the 
onvergen
e of the approximatingsolutions.Theorem 3.4. Let Æ 2 � 34 ; 1�, z0 2 D �(�AI)Æ� and suppose zN(t), z(t) are solutions of �PN� and (P),respe
tively, and let [0; t1) be the maximal interval of existen
e of z(t). Then, for any t01 < t1 there existsa 
onstant N0 su
h that zN(t) exists on [0; t01℄ for every N � N0 and zN(t) 
onverges to z(t) in the normof Z for every t 2 [0; t01℄. Moreover, the 
onvergen
e holds in the norm of the graph of (�AI)Æ.Proof. Let Æ 2 � 34 ; 1�, t01 < t1 and for ea
h N 2 N let tN1 > 0 be su
h that zN(t) exists on [0; tN1 ). Then,for t 2 [0;minft01; tN1 g) and N 2 NzN (t) = TN(t)PNz0 + Z t0 TN(t� s)PNF (s; zN (s)) ds;z(t) = T (t)z0 + Z t0 T (t� s)F (s; z(s)) ds:



7ThereforekzN(t)� z(t)kÆ = 

(�AI )Æ �zN (t)� z(t)�

� 


(�AI)Æ �TN(t)PNz0 � T (t)z0�


+ Z t0 


(�AI)Æ �TN(t� s)PNF (s; zN (s))� T (t� s)F (s; z(s))�


 ds:= �N1 (t) + �N2 (t):Sin
e T (t) 
ommutes with (�AI)Æ,�N1 (t) = 

(�AI )ÆT (t) �PNz0 � z0�

Z� kT (t)kL(Z) 

(�AI)Æ �PNz0 � z0�

Z� 

PNz0 � z0

Æ :Similarly, for the integrand de�ning �N2 (t) we have

(�AI)Æ �TN(t� s) PNF (s; zN(s))� T (t� s)F (s; z(s))�

Z= 

(�AI)ÆT (t� s) �PNF (s; zN (s))� F (s; z(s))�

Z� 

(�AI)ÆT (t� s)

L(Z) 

PNF (s; zN(s))� F (s; z(s))

Z� et01 CÆ(t� s)Æ 

PNF (s; zN(s))� F (s; z(s))

Z : (3.1)But 

PNF (s; zN(s)) � F (s; z(s))

Z � 

PN �F (s; zN (s))� F (s; z(s))�

Z + 

�PN � I�F (s; z(s))

Z� 

F (s; zN(s)) � F (s; z(s))

Z + 

�PN � I�F (s; z(s))

Z : (3.2)Hen
e, from (3.1) and (3.2) it follows that�N2 (t) � CÆet01 Z t0 1(t� s)Æ 

F (s; zN(s))� F (s; z(s))

Z ds+ CÆet01 Z t0 1(t� s)Æ 

(PN � I)F (s; z(s))

Z ds:The integrand of the se
ond term on the RHS above is bounded by 2(t� s)Æ kF (s; z(s))kZ 2 L1(0; T ),uniformly in N , and 
onverges to zero as N tends to in�nity. By the Dominated Convergen
e Theoremthe se
ond term of the last inequality tends to zero as N goes to in�nity.Summarizing, we havekzN(t)� z(t)kÆ � �N (t) + Z t0 ~C(t� s)Æ 

F (s; zN(s)) � F (s; z(s))

 ds (3.3)where, for t 2 [0; t01℄, �N (t) � C for all N 2 N and �N (t)! 0 as N !1. In parti
ular Z t010 �N(t) dt! 0as N !1.Let K = K(Æ) be as in Lemma 3.3 and let us de�ne ~K := C + C ~CK. Sin
e zN(0) = PNz0 thereexists ÆN > 0 su
h that 

zN (t)

Æ �M + 2 ~K for all t 2 [0; ÆN ℄, where M := sup0�t�t01 kz(t)kÆ. Let L bethe Lips
hitz 
onstant for F 
orresponding to the set U := [0; t01℄�nkzkÆ �M + 2 ~Ko. Then, from (3.3)

zN(t)� z(t)

Æ � �N (t) + ~CL Z t0 1(t� s)Æ 

zN(s)� z(s)

Æ ds 8t 2 [0; ÆN ℄;



8and, from Lemma 3.3 

zN(t)� z(t)

Æ � fN (t); 8t 2 [0; ÆN ℄; (3.4)where fN (t) := �N (t) + ~CKL R t0 �N (s)(t�s)Æ ds, for t 2 [0; t01℄.We shall now show that there exists N0 2 N su
h that fN (t) � ~K 8t 2 [0; t01℄, 8N � N0. As weshall later see this will imply not only the existen
e of zN(t) on the whole interval [0; t01℄, 8N � N0, butalso the bound kzN(t)kÆ �M + 2 ~K, 8t 2 [0; t01℄, 8N � N0.In fa
t, observe that Z t0 �N(t)(t� s)Æ ds � Z t0 C(t� s)Æ ds� Z t0 C 1sÆ ds= C1� Æ t1�Æ :Choosing � = �(L) > 0 suÆ
iently small so that t1�Æ � 1� Æ2L for every t 2 [0; �℄, it follows thatZ t0 �N (t)(t� s)Æ � C2L for every t 2 [0; �℄: (3.5)On the other hand, if � < t � t01Z t0 �N (t)(t� s)Æ ds = Z t0 �N (t� s)sÆ ds= Z �0 �N(t� s)sÆ ds+ Z t� �N(t� s)sÆ ds� C1� Æ �1�Æ + Z t� �N (t� s)�Æ ds� C2L + 1�Æ Z t� �N (t� s) ds� C2L + 1�Æ Z t010 �N(s) ds:Then, sin
e Z t010 �N(s) ds! 0, then there exists N0 su
h thatZ t0 �N (t)(t� s)Æ ds � CL 8t 2 [�; t01℄ and N � N0: (3.6)From (3.5) and (3.6) it follows thatfN(t) � C + C ~CK = ~K 8t 2 [0; t01℄ and N � N0; (3.7)as wanted.Consequently, from (3.4) and (3.7)

zN(t)� z(t)

Æ � ~K 8N � N0 and t 2 [0; ÆN ℄;whi
h implies 

zN(t)

Æ �M + ~K 8N � N0 and t 2 [0; ÆN ℄:Now, let N � N0 be �xed. Then zN(t) exists on [0; t01℄ and for t 2 [0; t01℄, 

zN (t)

Æ � M + 2 ~K. Infa
t, suppose, on the 
ontrary, that there exists t� < t01 su
h that 

zN (t�)

Æ =M +2 ~K and 

zN(t)

Æ <



9M + 2 ~K for 0 � t < t�. Then, from (3.4) 

zN(t)� z(t)

Æ � fN (t) � ~K on [0; t�), and therefore,

zN(t)

Æ � M + ~K on [0; t�). By the 
ontinuity of zN(t), we must have 

zN(t�)

Æ � M + ~K, whi
h
ontradi
ts 

zN (t�)

Æ =M + 2 ~K.At this point we have shown that 8N � N0, kzN(t)kÆ �M+2 ~K, 8t 2 [0; t01℄. Therefore, forN � N0,ÆN 
an be 
hosen stri
tly greater than t01. Hen
e (3.4) holds in [0; t01℄, i.e.

zN(t)� z(t)

Æ � fN (t); 8t 2 [0; t01℄:Finally, sin
e by virtue of the Dominated Convergen
e Theorem, fN(t)! 0 8t 2 [0; t01℄ as N !1,the theorem follows. �4. Time Dis
retizationIn this se
tion we shall �rst �nd the representation of the approximating problem �PN� in the basis�̂N of ZN . For this purpose, let wN be the ve
tor whose 
omponents are the 
oeÆ
ients of the solutionzN(t) = 0�uN(t)vN (t)�N (t)1A of problem �PN� in the basis �̂N . Then wN (t) is the solution of the IVP� ~PN�� _wN (t) = ~ANwN (t) + ~FN �t; wN (t)�wN (0) = 
Nwith ~AN = �QN��1KN ; ~FN (t; w) = �QN��1RNF �t; QNw� ; 
N = �QN��1RN 0�u0u1�0 1A ;where the matri
es QN , KN and the mapping RN : ZN ! R3N are de�ned by�QN�i;j = 
�Ni ; �Nj �q ; �KN�i;j = 
�Ni ; AN�Nj �q ; �RNz�i = 
�Ni ; z�q ;i; j = 1; 2; � � � ; 3N .For the time dis
retization, the following hybrid impli
it-expli
it Euler method was used:wN0 = 
N1�t �wNk+1 � wNk � = ~ANwNk+1 + ~FN �k�t; wNk � ; k = 0; 1; � � � :The 
onvergen
e of the solutions of the 
orresponding time-dis
retized system to the solution of � ~PN�as �t! 0 follows immediately from the following theorem.Theorem 4.1. Let n be a positive integer, B 2 L(Rn ), G : [0; T ℄� Rn ! Rn be a 
ontinuous fun
tionsu
h that G(t; �) is Lips
hitz 
ontinuous in Rn for any t 2 [0; T ℄, with 
onstant K independent of t.Assume that the IVP � W 0(t) = BW (t) +G(t;W (t)); W (t) 2 Rn ;W (0) =W0has a unique solution W (�) in [0; T ℄ su
h that W 00(t) is bounded in [0; T ℄. Given 0 < h < 1=kBk andw0 2 Rn de�ne N(h) = [T=h℄ (the integer part of N=h) and given w0, de�ne wj , j = 1; � � � ; N(h), bywj+1 = wj + hBwj+1 + hG(jh; wj); j = 0; 1; � � � ; N(h)� 1:Then, there exists a 
onstant ~C su
h thatmaxj=0;1;��� ;N(h) jW (jh)� wj j � eT( K+kBk1�hkBk) jW0 � w0j+ h ~C heT( K+kBk1�hkBk ) � 1i :



10If, moreover, h < 1=2kBk thenmaxj=0;1;��� ;N(h) jW (jh)� wj j � e2T (K+kBk) jW0 � w0j+ h ~C he2T (K+kBk) � 1i :Remark: It is not diÆ
ult to show that the 
on
lusions of this theorem remain valid under the weakerassumptions G lo
ally Lips
hitz and W 0 Lips
hitz 
ontinuous.Proof. Let 0 < h < 1=kBk and de�ne Wj =W (jh). Using the Taylor approximation theoremWj+1 =Wj + hW 0(jh) + h22 W 00 (�j;h)=Wj + hBWj + hG (jh;Wj) + h22 W 00 (�j;h) :where �j;h 2 (jh; (j + 1)h). De�ning ej =Wj � wj we then haveej+1 = ej + hB (Wj � wj+1) + h [G (jh;Wj)�G (jh; wj)℄ + h22 W 00 (�j;h)= ej + hBej+1 + h [G (jh;Wj)�G (jh; wj)℄ + hB (Wj �Wj+1) + h22 W 00 (�j;h) ;or equivalentlyej+1 � hBej+1 = ej + h [G (jh;Wj)�G (jh; wj)℄ + hB (Wj �Wj+1) + h22 W 00 (�j;h) :Therefore,(1� hkBk) jej+1j � jej j+ h jG (jh;Wj)�G (jh; wj)j+ hkBk jWj �Wj+1j+ h22 jW 00 (�j;h)j� jej j+ hK jej j+ h2kBk ���W 0 �~�j;h����+ h22 jW 00 (�j;h)jwhere ~�j;h 2 (jh; (j + 1)h).Letting C be an upper bound for jW 0(t)j+ jW 00(t)j in [0; T ℄, it follows thatjej+1j � 1 + hK1� hkBk jej j+ h2 C (1 + kBk)1� hkBk :By indu
tion one has jej j � � 1 + hK1� hkBk�j je0j+ h2 C (1 + kBk)1� hkBk h 1+hK1�hkBkij � 11+hK1�hkBk � 1 :Now, sin
e (1 + x)j � ejx for any x > �1 and j 2 N, we have that� 1 + hK1� hkBk�j = �1 + hK + kBk1� hkBk�j � ejh( K+kBk1�hkBk ) � eT( K+kBk1�hkBk )and h 1+hK1�hkBkij � 11+hK1�hkBk � 1 = h 1+hK1�hkBkij � 1hK+kBk1�hkBkHen
e jWj � wj j � eT( K+kBk1�hkBk) jW0 � w0j+ hC 1 + kBkK + kBk heT( K+kBk1�hkBk ) � 1i



11for any j = 0; 1; : : : ; N(h). This proves the �rst part of the theorem. The �nal assertion follows fromthe fa
t that 1� hkBk > 1=2 if h < 1=2kBk. �
Comment: The previous theorem together with the result of Theorem 3.4 ensures the 
onvergen
eof the fully-dis
retized system to the solutions of (2.1) as N ! 1 and �t ! 0 in an appropriate way.Moreover, for �xed N , Theorem 4.1 shows that the order of 
onvergen
e of the time-dis
retized equationsto the solution of � ~PN� is O(�t). However, we have not obtained an order of 
onvergen
e for the fully-dis
retized system. Moreover, due to the intrinsi
 nature of the spe
tral approximations being used, itis not expe
ted that su
h an order of 
onvergen
e 
ould be obtained.5. Numeri
al ResultsFor the numeri
al results presented below we used this hybrid method with N = 32 and �t = 10�5and the parameter values reported by F. Falk in [13℄ for the alloy Au23Cu30Zn47: �2 = 24 J 
m�3K�1,�4 = 1:5�105 J 
m�3, �6 = 7:5�106 J 
m�3K�1, �1 = 208K, Cv = 2:9 J 
m�3K�1, k = 1:9w 
m�1K�1,� = 11:1 g 
m�3. We also took 
 = 10�12 J 
m�1 as reported in [15℄. For the value of � we 
hose � = 1.This 
hoi
e has no parti
ular physi
al meaning. To our knowledge, there are no reports of values of� for real materials although there seems to be eviden
e that for some SMA, � is either very small orzero. Figure 1 shows the stress-strain 
urves obtained from the potential (1.2) for these values of theparameters. The doted lines indi
ate the unstable parts of the 
urves, while the horizontal lines indi
atepossible hysteresis loops.It is important to mention that the results in this arti
le depend stronly on the hypothesis � > 0,that is on the assumption that there are vis
ous stresses in the material. This approa
h does not workif � = 0. For the non-vis
ous 
ase � = 0 we refer the reader to [30℄, [34℄, [29℄. An algorithm for thenumeri
al approximation of the solutions in this 
ase was introdu
ed by Niezgodka and Sprekels in [25℄.Further numeri
al and stability results 
an be found in [18℄.
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Figure 1: Stress-Strain 
urves for di�erenttemperatures obtained from (1.2) with the val-ues of �2, �4, �6 and �1 as in [13℄. The dot-ted lines represent unstable parts of the 
urves.Horizontal lines indi
ate possible hysteresis loops.
Experiment 1: Low-temperature steady-state.For this experiment we took f = g � 0, �0(x) � 2000 K, u0(x) = PNh(x), whereh(x) = � 0:05x; if 0 � x � 0:5;0:05(1� x); if 0:5 � x � 1;and v0 � 0. Thus, the beam is initially in the low temperature range 
omposed of two segments ofmartensites, namely, martensite M+ on 0 � x < 12 and martensite M� on 12 < x � 1 (5% initial strain).The evolution of displa
ement and temperature 
an be observed in Figures 2a and 2b, respe
tively. Thisevolution is due to the fa
t that the initial 
ondition z0(x) = 0�u0(x)v0(x)�0(x)1A does not 
orrespond to a steady-state of system (1.1a-e). The system evolves until a steady-state 
omposed of two symmetri
 segmentsof martensites M+ and M� (�= 11:25% strain) and 
onstant temperature � �= 2220 K is rea
hed. Figure2
 shows in more detail the displa
ement pro�le during the �rst 250 millise
onds.

(a) (b)
(
)

Figure 2: Low temperature steady-state. Evo-lution of displa
ement (a, 
) and temperature(b) from an unsteady low temperature initial
ondition.
Experiment 2: High-temperature steady-state.



13Here we took �0(x) � 6000 K and u0, v0, f and g as in Experiment 1. The evolution of displa
ementand temperature is shown in Figures 3a and 3b, respe
tively. The beam os
illates until the steady-state 
onsisting of zero deformation and 
onstant temperature � �= 505:60 K is rea
hed. This is inagreement with the fa
t that above the austenite-�nish temperature � = Af (in this 
ase Af �= 2830 K)the steady-states satisfy u � 0, � � 
onst. Due to the high-temperature unsteady initial 
ondition thebeam immediately bends downward approa
hing the state u � 0 while temperature de
reases slightly,originating the damped os
illations observed in Figures 3a and 3b. The os
illations of the middle-pointof the beam 
an be appre
iated in Figure 3
.
(a) (b)
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Figure 3: High temperature steady-state. (a)displa
ement pro�le; (b) temperature pro�le;(
) middle-point displa
ement.

Experiment 3: Pulse at low temperature.In this experiment we studied the e�e
ts of a distributed for
e 
onsisting of a pulse around themiddle-point of the beam when the initial temperature is below the martensite �nish temperature � =Mf �= 2080 K. We took u0(x) = v0(x) � 0, �0(x) � 2000 K, g(x; t) � 0 andf(x; t) = � 5� 104; if 0:4 � x � 0:6 and 0 < t < 0:5� 10�3;0; otherwise.Initially, points around the 
enter move upward while the e�e
t of the pulse propagates to theendpoints of the beam (Figures 4a, 4
). At exa
tly the time this e�e
t rea
hes the endpoints, themiddle-point de
e
tion rea
hes a maximum and small damped os
illations begin to take pla
e (Figure4
) around the �nal equilibrium state 
onsisting of two symmetri
 segments of martensites M+, M�(�= 11:05% strain) and 
onstant temperature � �= 2260 K (Figure 4b).
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(a) (b)
(
)

Figure 4: Pulse at low temperature. (a), (
)displa
ement pro�le; (b) temperature pro�le.
Experiment 4: Pulse at high temperature.In this 
ase we investigated the e�e
ts of a pulse around the middle-point of the beam, whi
h wasset initially at a 
onstant temperature above Af . We took �0(x) � 6000 K and u0, v0, f and g as inExperiment 3. At the beginning, the beam bends upward until the pulse is swit
hed o� (Figure 5
).Immediately afterwards, damped os
illations begin to o

ur. These os
illations take pla
e around the�nal equilibrium state 
onsisting of u � 0 and 
onstant temperature � �= 6020 K (Figures 5a, 5b). Re
allthat above the austenite �nish temperature the only unloaded steady-state is u � 0.

(a) (b)
(
)

Figure 5: Pulse at high temperature. (a), (
)displa
ement pro�le; (b) temperature pro�le.
Experiment 5: Waiting-Heating.Here, we observed the e�e
ts of heating the beam when it is set initially at an equilibrium state
onsisting of two symmetri
 segments of martensites M+ and M�. For this, we took as the initial data



15the �nal steady-state of Experiment 1 (11.25% initial strain, �0(x) � 2220 K), f(x; t) � 0 and the heatsour
e g(x; t) 
onsisting of a uniformly spatially distributed heat pulse as followsg(x; t) = � 5� 104; if 0:2 < t < 0:25;0; otherwise.The system remains at the initial state until the heat pulse is swit
hed on. At this time thetemperature starts to in
rease (Figure 6b), the martensite 
rystals are 
onverted into austenite and thebeam bends downward showing small damping os
illations around zero deformation (Figure 6a). Theseos
illations are qui
kly damped and the beam rea
hes the steady-state u � 0, � �= 3360 K.
(a) (b)Figure 6: Waiting-Heating. (a) displa
ement and (b) temperature pro�les.Experiment 6: Heating-Waiting-Cooling (Two-way shape memory e�e
t)For this experiment we took again as initial data the �nal steady-state of Experiment 1. We alsotook f(x; t) � 0 and the distributed heat sour
e g(x; t) 
onsisting of an initial uniformly distributed heatpulse whi
h is swit
hed o� after t = 0:05 se
. At t = 1:45 se
. the opposite heat pulse is applied untilt = 1:50 se
. when it is swit
hed o�. More pre
isely,g(x; t) = 8><>: 8� 103; if t < 0:05;�8� 103; if 1:45 < t < 1:50;0; otherwise.The temperature raises uniformly up to nearly 3360 K while the beam approa
hes the undeformedstate. After the heat pulse is swit
hed o�, temperature remains at about 3360 K while displa
ementshows small damped os
illations around u � 0 due to inertial e�e
ts. The sample is now 
ompletely inthe austenite phase. At t = 1:45, when the opposite pulse is applied, the temperature de
reases uniformlyand remains at about 2220 K, while the beam undergoes a pro
ess of reverse transformation whi
h takesit ba
k to the original initial 
on�guration showing the so-
alled two-way shape memory phenomenon(Figures 7a-d).
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) (d)Figure 7: Heating-Waiting-Cooling. (a) displa
ement pro�le; (b) temperature pro�le; (
)middle-point displa
ement; (d) middle-point temperature.6. Con
lusionsIn this arti
le, dis
rete spe
tral approximations to the nonlinear partial di�erential equations thatmodel the dynami
s of thermome
hani
al martensiti
 transformations in one-dimensional shape memoryalloys with non-
onvex Landau-Ginzburg potentials were developed.By using the theories of analyti
 semigroups and interpolation spa
es and a generalization of Gron-wall's lemma for singular kernels, the 
onvergen
e of the approximations was shown to hold not only inthe state-spa
e norm but also in the stronger k � kÆ-norm.The numeri
al experiments performed using this s
heme show that under di�erent initial 
onditionsand distributed external a
tions the model (1.1) is able to produ
e solutions whose qualitative behavioris found to be in 
lose agreement with laboratory experiments performed on Shape Memory Alloys undersimilar 
onditions.From a pra
ti
al point of view it would be very important to �nd the values of the ve
tor parameterq that \best �t" experimental data for a given alloy. This is 
alled the parameter identi�
ation problemabout whi
h no results are yet known. In this regard the s
heme presented here provides a friendlymathemati
al framework for atta
king this problem. E�orts in this dire
tion are already underway andresults will be published in a forth
oming arti
le.A
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