
Modal Approximations for the Dynamis ofShape Memory Alloys Under ExternalThermomehanial AtionsP. Morin and R. D. SpiesPrograma Espeial de Matem�atia Apliada (PEMA)CONICET - Universidad Naional del LitoralG�uemes 3450 - 3000 Santa Fe - ARGENTINADepartamento de Matem�atiaFaultad de Ingenier��a Qu��miaUniversidad Naional del LitoralKeywords: Shape Memory Alloys, hysteresis, onservation laws, initial-boundary value problem, modal approximations.AbstratIn this artile an algorithm for numerially solving the non-linear system of partial di�erential equations (PDEs)that model the dynamis of martensiti phase transitions in one-dimensional Shape Memory Alloys is presented.The algorithm is based upon a state-spae formulation of the equations. The approximations are de�ned interms of the eigenvalues and eigenvetors of the operator assoiated to the linear part of the resulting semilinearCauhy problem. For the alloy Au23Cu30Zn47 numerial results are shown under the e�et of di�erent externaldistributed ations and for several initial onditions.1 IntrodutionIn this artile we onsider the following one-dimensional non-linear initial-boundary value problem (IBVP):�utt � ��uxxt + uxxxx =f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;x 2 (0; 1); 0 < t < T; (1)Cv�t � k�xx = g(x; t) + 2�2�uxuxt + ��u2xt;x 2 (0; 1); 0 < t < T; (2)u(x; 0) = u0(x); ut(x; 0) = v0(x); �(x; 0) = �0(x);x 2 (0; 1); (3)u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0;0 � t � T; (4)�x(0; t) = �x(1; t) = 0; 0 � t � T (5)where the subsripts \x" and \t" denote partial derivatives.Equations (1) to (5) arise from the onservation laws govern-ing the thermomehanial proesses taking plae in a one-dimensional unit-length Shape Memory Alloy (SMA). Theseproesses are haraterized by solid{solid phase transitions(martensiti transformations). Equations (1) and (2) reetthe onservation of linear momentum and energy, respe-tively. The funtions and variables present in Eqns. (1) to (5)have the following physial meaning: u(x; t) = transversedisplaement, �(x; t) = absolute temperature, � =mass den-sity, Cv = spei� heat, k = thermal ondutivity oeÆient,� = visosity onstant, f(x; t) = distributed loads (input),g(x; t) = distributed heat soures (input), T = presribed�nal time. The positive onstants �2, �4, �6, �1 and 

depend on the material being onsidered and they appearin the free energy potential whih is taken in the Landau-Ginzburg form	(�; �x; �) = �Cv� ln� ��2�+ Cv� + C+ �2(� � �1)�2 � �4�4 + �6�6 + 2 �2x; (6)where � = ux is the linearized shear strain. The onstants �1and �2 in Eqn. (6) are two ritial temperatures and C repre-sents a �xed energy referene level. The body is assumed tobe a simply supported unit-length beam thermally insulatedat both ends.The PDEs (1) and (2) are oupled and nonlinear due to theterms oming from the partial derivatives of the free energy.For a detailed aount of the origin of these equations seethe work by Spies (1995) and the referenes therein.Although there are several representations for the free en-ergy potential of SMA materials (Falk 1980, 1983; Songmu,1989; Songmu and Sprekels, 1989; Sprekels, 1989a), the formof Eqn. (6) seems to be the simplest one whih is able to re-produe several phenomena -suh as hysteresis, shape mem-ory and superelastiity- observed in real SMA materials un-der di�erent external thermomehanial ations. For valuesof � lose to �1, 	 is a nononvex funtion of � and the stress-strain laws obtained from Eqn. (6) are strongly temperature-dependent (see Fig. 1). At low temperatures these urvesexhibit an elasto-plasti behavior at small loads and a se-ond elasti branh at large loads, whih permits the bodyto withstand fores beyond the plasti yield, after whih,subsequent unloading produes residual deformation. In theintermediate temperature range the behavior is superelas-ti, also alled pseudoelasti. Here, a plasti yield is alsofound. However, loading beyond this plasti yield followedby omplete unloading does not lead to residual deformation.This is due to the existene of an intermediate elasti branhwhih the body reahes by reeping bak after the load falls



beyond a ertain ritial value. Finally, in the high tem-perature range the behavior is almost linearly elasti witha modulus of elastiity whih inreases with temperature.Hysteresis loops are observed in the stress-strain urves atlow and at intermediate temperatures (Spies, 1995, and thereferenes therein).It is known that ertain alloys exhibit a muh more om-pliated behavior. For example, ertain CuZnAl alloys showstrain hardening and nested hysteresis loops (Muller and Xu,1991). Although these phenomena an be aptured in anisothermal and stati setting (Spies, 1996), it is not yet learhow they an be inluded into the dynami equations (1)and (2).Due to their unique harateristis SMA have found abroad spetrum of appliations suh as orthodonti andother dental devies, heat engines, temperature swithes andfuses, pipe oupling devies (Funakubo, 1987), hybrid om-posites (Rogers et al., 1989) and several interesting applia-tions in Mediine (Castleman et al., 1976; Funakubo, 1987;Shmerling et al., 1975).Sine the disovery of NiTinol (a Nikel-Titanium alloy) byBuehler (Malloy, 1990) in 1962 several mathematial mod-els were proposed and studied (Ahenbah and Muller, 1982,1983; Falk 1980, 1983; Muller, 1979; Muller and Villaggio,1977; Muller and Wilmanski, 1980; Wilmansky, 1983). Mostof this models, however, were stati and did not take intoaount the strong oupling between the mehanial andthermal properties, whih is one of the distinguishing fea-tures possessed by SMA. It was not until reent years thatmathematial models were able to deal with most of the un-usual properties of SMA and, at the same time, to allowfor the inlusion of boundary and distributed external a-tions that an be used as ontrol variables (Niezgodka andSprekels, 1988, 1991; Songmu, 1989; Songmu and Sprekels,1989; Spies, 1995; Sprekels, 1989a, 1989b). This artilefollows a state-spae approah introdued reently (Spies,1995).2 State-Spae Formulation and Pre-liminariesIn this setion we shall formulate the initial-boundary valueproblem of Eqns. (1) to (5) as an abstrat semilinear Cauhyproblem in an appropriate Hilbert spae, and we shall brieyreall some preliminaries whih will be needed later on.We de�ne the state spae Z as the Hilbert spaeH10 (0; 1)\H2(0; 1)� L2(0; 1)� L2(0; 1) with the inner produt*0�uv�1A ;0�~u~v~�1A+ :=  Z 10 u00(x)~u00(x) dx+ � Z 10 v(x)~v(x) dx+ Cvk Z 10 �(x)~�(x) dx:Next, the operator A on Z is de�ned byD(A) = 8>>>><>>>>:0�uv�1A����������u 2 H4(0; 1);u(0) = u(1) = u00(0) = u00(1) = 0v 2 H10 (0; 1) \H2(0; 1)� 2 H2(0; 1); �0(0) = �0(1) = 0 9>>>>=>>>>; ;

and for z = 0�uv�1A 2 D(A),A0�uv�1A := 0� 0 I 0��D4 �D2 00 0 kCvD21A0�uv�1A ;where Dn := �n�xn .We assume that the funtions f(x; t) and g(x; t) satisfythe following hypothesis.(H1) For eah �xed t � 0, the funtions f(x; t) andg(x; t) are in L2(0; 1) and there exist nonnegativefuntions Kf (x) and Kg(x) 2 L2(0; 1) suh thatjf(x; t1)� f(x; t2)j � Kf (x)jt1 � t2j;and jg(x; t1)� g(x; t2)j � Kg(x)jt1 � t2j;for all x 2 (0; 1), and t1; t2 2 [0; T ℄.We also de�ne z0(x) = 0�u0(x)v0(x)�0(x)1A and F (t; z) : R+0 �Z ! Zby F (t; z) = 0� 0f2(t; z)f3(t; z)1A ;where�f2(t; z)(x) = f(x; t)+ �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;Cvf3(t; z)(x) = g(x; t) + 2�2�uxvx + ��v2x:With the above notation, the IBVP of Eqns. (1) to (5) an beformally written as the following semilinear Cauhy problemin the Hilbert spae Z:(P)8<: ddtz(t) = Az(t) + F (t; z); 0 � t � T;z(0) = z0 : (7)The following results follow immediately from theo-rems 3.7 and 3.11 of Spies (1995) with only slight modi�-ations aounting for the slightly di�erent boundary ondi-tions being onsidered here. Sine the modi�ations neededare trivial we do not give details here.Theorem 2.1. (Spies, 1995) Let A : D(A) � Z ! Z aspreviously de�ned. Then the set of eigenvalues �p(A) of theoperator A is given by�p(A) = ��+n	1n=1 [ ���n 	1n=1 [ f�ng1n=0 ;where�+;�n = p�n ��r �pr2 � 1� ; �n = � kCv n2�2and �n = n4�4� and r = �p�2p :The orresponding eigenvetors in Z are, respetively,0� sin(�nx)�+n sin(�nx)0 1An=1;2;��� ; 0� sin(�nx)��n sin(�nx)0 1An=1;2;��� ;and 0� 00os(�nx)1An=0;1;��� :



Also, the operator A generates an analyti semigroup of on-trations T (t) on Z.Theorem 2.2 (Loal existene of solutions). (Spies,1995) Let A be as de�ned above. Then, for any ini-tial data z0 2 D(A), there exists t1 = t1(z0) suhthat the IVP (P) has a unique lassial solutionz(t) 2 C ([0; t1) : Z) \ C1 ((0; t1) : Z).3 Finite Dimensional Approxima-tionsIn this setion �nite-dimensional modal approximations tosolutions of problem (P) are de�ned. For �xed N 2 N let�Nn (x) := 0� sin�nx�+n sin�nx0 1A ; �NN+n(x) := 0� sin�nx��n sin�nx0 1A ;and �N2N+n(x) := 0� 00os�(n� 1)x1A ;for n = 1; 2; � � � ; N , where �+;�n are as in Theorem 2.1, andlet us de�ne ZN to be the span of �̂N := ��Nn (x)	3Nn=1 en-dowed with the Z-norm. Then 1[N=1ZN is dense in Z and,sine the �Nn 's are eigenvetors of A, it follows that ZN isinvariant under A. Note also that ZN is itself a Hilbertspae.Next, we de�ne the �nite-dimensional approximatingproblem �PN� in ZN , as follows:�PN�8<: ddtzN(t) = ANzN (t) + FN(t; zN (t)); 0 � t � TzN(0) = PNz0 ;where PN : Z ! ZN is the orthogonal projetion of Zonto ZN , AN is the restrition of A to ZN and FN (t; z) :=PNF (t; z). The density of 1[N=1ZN in Z implies the strongonvergene of PN to the identity.Sine ZN has �nite dimension, the operator AN on ZN isbounded and linear, and a fortiori, it generates a uniformlyontinuous semigroup of bounded linear operators TN(t) onZN .The following results on loal existene of solutions ofproblem �PN� and their onvergene to the solution of (P)an be found in the work by Morin and Spies (1996).Theorem 3.1. (Morin and Spies, 1996) Let z0 2 Z. Then,for any positive integer N, there exists tN1 > 0 suh that�PN� has a unique lassial solution on [0; tN1 ).Theorem 3.2. (Morin and Spies, 1996) Let z0 2 D (A).Suppose that zN(t) and z(t) are solutions of �PN� and (P),respetively, and let [0; t1) be the maximal interval of exis-tene of z(t). Then, for any t01 < t1, there exists a onstantN0 suh that zN (t) exists on [0; t01℄ for every N � N0 andkzN(t)� z(t)kZ ! 0 for every t 2 [0; t01℄.Next we shall �nd the representation of the approximatingproblem �PN� in the basis �̂N of ZN . For this purpose, letwN be the vetor whose omponents are the oeÆients ofthe solution zN (t) = 0�uN(t)vN (t)�N (t)1A of �PN� in the basis �̂N .

Then wN (t) is the solution of the IVP� ~PN�( _wN (t) = ~ANwN (t) + ~FN �t; wN (t)�wN (0) = wN0 ;with ~AN = �QN��1KN ;~FN (t; w) = �QN��1RNF �t; QNw�= �QN��1RN 0� 0f2(t; QNw)f3(t; QNw)1A ;wN0 = �QN��1RN 0�u0u1�01A ;where the matries QN , KN and the mapping RN : ZN !R3N are de�ned by�QN�i;j = h�Ni ; �Nj i; �KN�i;j = h�Ni ; AN�Nj i;�RNz�i = h�Ni ; zi:i; j = 1; 2; � � � ; 3N .4 Desription of the AlgorithmIn this setion the matries QN , KN and the mapping RN :ZN ! R3N are onstruted. We will later use them toevaluate the linear and nonlinear part of the equation.The matrix QN turns out to beQN = 24QN1 QN2 0QN3 QN4 00 0 QN5 35where QNk , k = 1; 2; � � � ; 5 are all N �N diagonal matriesand, for every n = 1; 2; � � � ; N�QN1 �n;n = n4�4 + � j�+n j22 ;�QN2 �n;n = n4�4 + ��+n ��n2 ;�QN3 �n;n = �QN2 �n;n ;�QN4 �n;n = n4�4 + �j��n j22 ;and QN5 = diag�1; 12 ; 12 ; � � � ; 12� :Taking into aount that, being �Nn eigenfuntions of A,for n = 1; 2; : : : ; 3,A�Nn = �+n�Nn ;A�Nn+N = ��(n)�Nn+N ;A�Nn+2N = � kCv (n� 1)2�2�Nn+2N ;it turns out that KN = QNEN , where EN is a 3N � 3Ndiagonal matrix whose elements are given by�EN�n;n = �+n ;�EN�n+N;n+N = ��(n);�EN�n+2N;n+2N = � kCv (n� 1)2�2;



n = 1; 2; : : : ; N . In partiular, sine ~AN = �QN��1KN wehave that ~AN = EN .To evaluate the nonlinear term ~F (t; w) of the equation, we�rst reonstrut u, ux, uxx, v, vx, � and �0 from the vetorof oeÆients w on a 101-point regular grid and evaluate f2and f3 on that grid.The omputation of �RNz�n = h�Nn ; zi, is made throughnumerial integration using the Simpson's rule with a step-size of 10�2.We �rst used an expliit fourth order Runge-Kuttamethod. Due to the nonlinearities of the system this methodwas found to be very unstable and ineÆient. The eÆienyof the numerial algorithm was greatly improved using a hy-brid impliit-expliit Euler method whih ensures stabilityfor muh larger step sizes. Basially, this method onsists ofapproximating the linear part of ddtz(t) in an impliit waywhile an expliit form is used for the nonlinear part. Morepreisely, the following time disretization sheme was used:wN0 = N ;1�t �wNk+1 � wNk � = ~ANwNk+1 + ~FN �k�t; wNk � ;k = 0; 1; : : : .5 Numerial ExperimentsIn this setion numerial results obtained using the �nite di-mensional approximating sheme introdued in the previoussetions are presented. We shall make use of the parametervalues reported by Falk (1980) for the alloy Au23Cu30Zn47:�2 = 24 J m�3K�1, �4 = 1:5 � 105 J m�3, �6 = 7:5 �106 J m�3K�1, �1 = 2080K, Cv = 2:9 J m�3K�1, k =1:9w m�1K�1, � = 11:1 g m�3, � = 1,  = 10�12 J m�1.Figure 1 shows the stress-strain urves obtained from thepotential de�ned by Eqn. (6) used with these parametervalues. The doted lines indiate the unstable parts of theurves, while the horizontal lines indiate possible hysteresisloops.For the numerial results presented below we used thehybrid method desribed above withN = 32 and �t = 10�5.5.1 Experiment 1: Low-temperaturesteady-stateFor this experiment we took f = g � 0, �0(x) � 2000 K andu0(x) = PNh(x), whereh(x) = (0:05x; if 0 � x � 0:5;0:05(1� x); if 0:5 � x � 1;and v0 � 0. Thus, the beam is initially in the low tem-perature range omposed of two segments of martensites,namely, martensite M+ on 0 � x < 12 and martensite M�on 12 < x � 1 (5% initial strain). The evolution of displae-ment and temperature an be observed in Figs. 2a and 2b,respetively. This evolution is due to the fat that the ini-tial ondition z0(x) = 0�u0(x)v0(x)�0(x)1A does not orrespond to asteady-state of the system of Eqns. (1) to (5). The systemevolves until a steady-state orresponding to two symmetrisegments of martensites M+ and M� (�= 11:25% strain) andto a onstant temperature � �= 2220 K is reahed. Figure 2shows in more detail the displaement pro�le during the �rst250 milliseonds.
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() � = 6000 KFigure 1: Stress-Strain urves for di�erent temperatures ob-tained from Eqn. (6) used with the values of �2, �4, �6 and�1 reported by Falk (1980). The dotted lines represent un-stable parts of the urves. Horizontal lines indiate possiblehysteresis loops.



(a)
(b)
()Figure 2: Low temperature steady-state. Evolution of dis-plaement (a, ) and temperature (b) from an unsteady lowtemperature initial ondition.

5.2 Experiment 2: High-temperaturesteady-stateHere we took �0(x) � 6000 K and u0, v0, f and g as in Ex-periment 1. The evolution of displaement and temperatureis shown in Fig. 3a and 3b, respetively. The beam osil-lates until the steady-state de�ned by a zero deformationand a onstant temperature � �= 505:60 K is reahed. Thisis in agreement with the fat that above the austenite-�nishtemperature � = Af (in this ase Af �= 2830 K) the steady-states satisfy the Eqns. u � 0 and � � onst. Due to thehigh-temperature unsteady initial ondition the beam imme-diately bends downward approahing the state u � 0 whilethe temperature dereases slightly, originating the dampedosillations observed in Figs. 3a and 3b. The osillations ofthe middle-point of the beam are shown in Fig. 3.
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()Figure 3: High temperature steady-state. (a) displaementpro�le; (b) temperature pro�le; () middle-point displae-ment.5.3 Experiment 3: Pulse at lowtemperatureIn this experiment we studied the e�ets of a distributedfore onsisting of a pulse around the middle-point of thebeam when the initial temperature is below the martensite



�nish temperature � = Mf �= 2080 K. We took u0(x) =v0(x) � 0, �0(x) � 2000 K, g(x; t) � 0 andf(x; t) = 8><>:5� 104; if 0:4 � x � 0:6and 0 < t < 0:5� 10�3;0; otherwise.Initially, points around the enter move upward while thee�et of the pulse propagates to the endpoints of the beam(Figs. 4a and 4). At exatly the time at whih this e�etreahes the endpoints, the middle-point deetion reahes amaximum. Then, small damped osillations begin to takeplae (Fig. 4) around the �nal equilibrium state whih or-responds to two symmetri segments of martensites M+, M�(�= 11:05% strain) and to a onstant temperature � �= 2260K (Fig. 4b).

(a)
(b)
()Figure 4: Pulse at low temperature. (a), () displaementpro�le; (b) temperature pro�le.5.4 Experiment 4: Pulse at hightemperatureIn this ase we investigated the e�ets of a pulse aroundthe middle-point of the beam, whih was set initially at aonstant temperature above Af . We took �0(x) � 6000 Kand u0, v0, f and g as in Experiment 3. At the beginning, thebeam bends upward until the pulse is swithed o� (Fig. 5).Immediately afterwards, damped osillations begin to our.

These osillations take plae around the �nal equilibriumstate de�ned by u � 0 and by a onstant temperature � �=6020 K (Figs. 5a and 5b). Reall that above the austenite�nish temperature the only unloaded steady-state is u � 0.

(a)
(b)
()Figure 5: Pulse at high temperature. (a), () displaementpro�le; (b) temperature pro�le.5.5 Experiment 5: Waiting-HeatingHere, we observed the e�ets of heating the beam when itis set initially at an equilibrium state orresponding to twosymmetri segments of martensites M+ and M�. For this,we took as the initial data the �nal steady-state of Experi-ment 1 (11.25 % initial strain, �0(x) � 2220 K), f(x; t) � 0and the heat soure g(x; t) onsisting of a uniformly spatiallydistributed heat pulse as followsg(x; t) = (5� 104; if 0:2 < t < 0:25;0; otherwise.The system remains at the initial state until the heatpulse is swithed on. At this time the temperature startsto inrease (Fig. 6b), the martensite rystals are onvertedinto austenite and the beam bends downward showing smalldamping osillations around zero deformation (Fig. 6a).These osillations are quikly damped and the beam reahesthe steady-state de�ned by u � 0 and � �= 3360 K.



(a)
(b)Figure 6: Waiting-Heating. (a) displaement and (b) tem-perature pro�les.5.6 Experiment 6: Heating-Waiting-Cooling (Two-way shape memorye�et)For this experiment we took again as initial data the �nalsteady-state of Experiment 1. We also took f(x; t) � 0 andthe distributed heat soure g(x; t) onsisting of an initialuniformly distributed heat pulse whih is swithed o� aftert = 0:05 se. At t = 1:45 se. the opposite heat pulse isapplied until t = 1:50 se. when it is swithed o�. Morepreisely,g(x; t) =8><>:8� 103; if t < 0:05;�8� 103; if 1:45 < t < 1:50;0; otherwise.The temperature raises uniformly up to nearly 3360 Kwhile the beam approahes the undeformed state. After theheat pulse is swithed o�, the temperature remains at about3360 K while the displaement shows small damped osilla-tions around u � 0 due to inertial e�ets. The sample isnow ompletely in the austenite phase. At t = 1:45, whenthe opposite pulse is applied, the temperature dereases uni-formly and remains at about 2220 K, while the beam under-goes a proess of reverse transformation. This proess takesthe beam bak to the original initial on�guration showingthe so-alled two-way shape memory phenomenon (Figs. 7ato 7d).6 ConlusionsIn this artile, disrete spetral or modal approximations tothe nonlinear partial di�erential equations that model thedynamis of thermomehanial martensiti transformationsin one-dimensional shape memory alloys with non-onvexLandau-Ginzburg potentials were developed.The numerial experiments performed using this shemeshow that under di�erent initial onditions and distributed
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