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Abstract

The nonlinear partial differential equations considered here arise from the con-
servation laws of linear momentum and energy, and describe structural phase transi-
tions (martensitic transformations) in one-dimensional Shape Memory Alloys (SMA)
with non-convex Landau-Ginzburg free energy potentials. This system is formally
written as a nonlinear abstract Cauchy problem in an appropriate Hilbert Space. A
quasilinearization-based algorithm for parameter identification in this kind of Cauchy
problems is proposed. Sufficient conditions for the convergence of the algorithm are
derived in terms of the regularity of the solutions with respect to the parameters.
Numerical examples are presented in which the algorithm is applied to recover the
non-physical parameters describing the free energy potential in SMA, both from exact
and noisy data.

Keywords: Parameter Identification, Shape Memory Alloys, Free Energy. Partial Differ-
ential Equations, Abstract Cauchy Problems, Quasilinearization.

1 Introduction

In this article the following one-dimensional nonlinear initial-boundary value problem is
considered:

ρutt − βρuxxt + γuxxxx = f(x, t) +
(

2α2(θ − θ1)ux − 4α4u
3
x + 6α6u

5
x

)

x
,

x ∈ (0, 1), 0 ≤ t ≤ T
(1)

Cvθt − kθxx = g(x, t) + 2α2θuxuxt + βρu2
xt, x ∈ (0, 1), 0 ≤ t ≤ T (2)

u(x, 0) = u0(x), ut(x, 0) = v0(x), θ(x, 0) = θ0(x), x ∈ (0, 1) (3)

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, 0 ≤ t ≤ T (4)

θx(0, t) = θx(1, t) = 0, 0 ≤ t ≤ T (5)

∗The work of the authors was supported in part by CONICET, Consejo Nacional de Investigaciones
Cient́ıficas y Técnicas of Argentina, UNL, Universidad Nacional del Litoral, Santa Fe, through project
CAI+D 94-0016-004-023, and Fundación Antorchas through project A-13434/1 - 000133.
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where the subscripts x and t denote partial derivatives with respect to x and t, respectively.
System (1)–(5) arises from the conservation laws governing the thermomechanical pro-

cesses in one-dimensional Shape Memory Alloys (SMA). These processes are characterized
by solid-solid phase transitions (martensitic transformations). Equations (1) and (2) reflect
the conservation of linear momentum and energy, respectively. The functions and variables
present in system (1)–(5) have the following physical meaning: u(x, t) = transverse dis-
placement, θ(x, t) = absolute temperature, Cv = specific heat, k = thermal conductivity
coefficient, β = viscosity constant, f(x, t) = distributed loads (input), g(x, t) = distributed
heat sources (input), T = prescribed final time, α2, α4, α6, θ1, γ are positive constants
—depending on the material being considered— appearing in the free energy potential
which is taken in the Landau-Ginzburg form

Ψ(ǫ, ǫx, θ) = −Cvθ ln

(

θ

θ2

)

+ Cvθ + C + α2(θ − θ1)ǫ
2 − α4ǫ

4 + α6ǫ
6 +

γ

2
ǫ2
x (6)

where ǫ = ux is the linearized shear strain. The constants θ1 and θ2 in (6) are two critical
temperatures and C represents a fixed energy reference level. The body is assumed to be
a simply supported unit-length beam thermally insulated at both ends. Other relevant
boundary conditions can equally be considered.

The PDE’s in (1)–(2) are coupled and nonlinear due to the terms coming from the
partial derivatives of the free energy. The first equation can be regarded as a nonlinear
hyperbolic equation in u while the second is a nonlinear parabolic equation in θ (for a
detailed derivation of equations (1)–(2) see [34]).

Although there are several representations for the free energy potential of pseudoelastic
materials ([34], [16], [40], [38], [37]) the form (6) seems to be the simplest one which is able
to reproduce several phenomena —such as hysteresis, shape memory and superelasticity—
observed in real materials under different external thermomechanical actions. For values
of θ close to θ1, Ψ is a nonconvex function of ǫ and the stress-strain laws obtained from
(6) are strongly temperature-dependent (see Figure 1). At low temperatures these curves
exhibit an elasto-plastic behavior at small loads and a second elastic branch at large loads,
which permits the body to withstand forces beyond the plastic yield, after which, subse-
quent unloading produces residual deformation. In the intermediate temperature range
the behavior is superelastic, also called pseudoelastic. Here, a plastic yield is also found.
However, loading beyond this plastic yield followed by complete unloading does not lead to
residual deformation because of the existence of an intermediate elastic branch which the
body reaches by creeping back after the load falls beyond a certain critical value. Finally,
in the high temperature range the behavior is almost linearly elastic with higher modulus
of elasticity for higher temperatures. Hysteresis loops are observed in the stress-strain
curves at low and intermediate temperatures (see [34] and references therein).

Due to their unique characteristics, SMA have already found a broad spectrum of
applications such as in the construction of orthodontic and other dental devices [4], heat
engines, temperature switches and fuses, pipe coupling devices [14], hybrid composites [32]
and several interesting applications in Medicine ([13], [14], [33]).

Since the discovery of NiTinol (a Nikel-Titanium alloy) by Buehler [23] in 1962 several
mathematical models were proposed and studied ([1], [2], [3], [15], [16], [22], [25], [26], [27],
[39]). Most of this models, however, were static and did not take into account the strong
coupling between the mechanical and thermal properties, which is one of the distinguishing
features possessed by SMA. It was not until recent years that mathematical models were
able to deal with most of the unusual properties of SMA and, at the same time, to allow
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for the inclusion of boundary and distributed external actions that can be used as control
variables ([28], [29], [40], [38], [36], [37], [34]). An extensive account on the recent advances
in the mathematical modeling of SMA can be found in [9].

From a practical point of view it would be very important to find the values of all
the parameters in (1)–(5) that “best fit” experimental data for a given material. This is
called the parameter identification problem (ID problem in the sequel). Among all the
constants appearing in (1)–(5), the parameters α2, α4, α6, and θ1 are non-physical and
cannot be determined from laboratory experiments. In this article, a quasilinearization-
based algorithm to recover these parameters, both from exact and noisy data, will be
developed, its convergence to an optimal parameter will be proved and numerical results
will be presented.

2 State-Space Formulation and Preliminaries

In this section, following the approach introduced in [34], the initial–boundary value prob-
lem (1)–(5) is formulated as an abstract Cauchy problem in an appropriate Hilbert space.

Define the admissible parameter set Q .
=

{

q = (α2, α4, α6, θ1)|q ∈ R
4
+

}

, and the state
space Z as the Hilbert space H1

0 (0, 1)∩H2(0, 1)×L2(0, 1)×L2(0, 1) with the inner product

〈





u

v

θ



 ,





ũ

ṽ

θ̃





〉

Z

.
= γ

∫ 1

0

u′′(x)ũ′′(x) dx + ρ

∫ 1

0

v(x)ṽ(x) dx +
Cv

k

∫ 1

0

θ(x)θ̃(x) dx.

Next, define the operator A on Z by

D(A) =











u

v

θ



 ∈ Z

∣

∣

∣

∣

∣

∣

u ∈ H4(0, 1), u(0) = u(1) = u′′(0) = u′′(1) = 0
v ∈ H1

0 (0, 1) ∩ H2(0, 1)
θ ∈ H2(0, 1), θ′(0) = θ′(1) = 0







and

A





u

v

θ





.
=





0 I 0
−γ

ρ
D4 βD2 0

0 0 k
Cv

D2









u

v

θ



 , for z =





u

v

θ



 ∈ D(A),

where Dn .
= ∂n

∂xn
.

The following standing hypothesis will be assumed on the functions f(x, t) and g(x, t).
(H1). For each fixed t ≥ 0, the functions f(x, t), g(x, t) are in L2(0, 1) and there exist

nonnegative functions Kf(x), Kg(x) ∈ L2(0, 1) such that

|f(x, t1) − f(x, t2)| ≤ Kf(x)|t1 − t2|, and |g(x, t1) − g(x, t2)| ≤ Kg(x)|t1 − t2|

for all x ∈ (0, 1), t1, t2 ∈ [0, T ].

Also, define z0(x) =





u0(x)
v0(x)
θ0(x)



 and F (q, t, z) : Q × R
+
0 × D(Z) → Z by D(Z) =

H2(0, 1) × H1(0, 1) × H1(0, q), and F (q, t, z) =





0
f2(q, t, z)
f3(q, t, z)



 , where

ρf2(q, t, z)(x) = f(x, t) +
(

2α2(θ − θ1)ux − 4α4u
3
x + 6α6u

5
x

)

x
,

Cvf3(q, t, z)(x) = g(x, t) + 2α2θuxvt + βρv2
t .
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With this notation, the IBVP (1)–(5) can be formally written as the following nonlinear
Cauchy problem in the Hilbert space Z:

d

dt
z(t) = Az(t) + F (q, t, z), 0 ≤ t ≤ T z(0) = z0. (7)

The following preliminary results can be easily derived from theorems 3.7 and 3.11 in
[34] with only slight modifications in order to take into account for the different bound-
ary conditions being considered here. Since the modifications needed are trivial and not
important for the goals pursued by this article, details are not given here.

Theorem 1 ([34]). Let the operator A : D(A) ⊂ Z → Z be as previously defined. Then

(i) A is dissipative;

(ii) The adjoint A∗ of A is also dissipative and is given by D(A∗) = D(A), and

A∗





u

v

θ





.
=





0 −I 0
γ

ρ
D4 βD2 0

0 0 k
Cv

D2









u

v

θ





(iii) The operator A has pure point spectrum σp(A) given by

σp(A) =
{

λ+
n

}∞

n=1
∪

{

λ−
n

}∞

n=1
∪ {αn}∞n=0 ,

where

λ+,−
n =

√
µn

(

−r ±
√

r2 − 1
)

, αn = − k

Cv

n2π2 and µn =
γn4π4

ρ
, r =

β
√

ρ

2
√

γ
.

(iv) The operator A generates an analytic semigroup of contractions T (t) on Z.

Theorem 2 ([34], Local existence of solutions). Let q ∈ Q and let A be as defined
above. Then for any initial data z0 ∈ D(A) there exists t1 = t1(z0) such that the IVP (7)
has a unique classical solution z(t; q) ∈ C ([0, t1) : Z) ∩ C1 ((0, t1) : Z).

The following result, regarding the smoothness of the solution with respect to the
parameter can be found in [12].

Theorem 3 ([12]). Let A and F (q, t, z) be as defined above. Then the mapping q →
z(t; q) is Fréchet differentiable and its derivative zq(t; q) is locally Lipschitz continuous as
a mapping from Q into L∞(0, T : Z).

3 Parameter Identification

In this section, the parameter identification problem is stated and a quasilinearization-
based algorithm is proposed for the identification of the non-physical parameters appearing
in system (1)–(5).

Given n ∈ N let Y denote the space R
n and C be a bounded linear operator from Z

into Y , C ∈ L (Z, Y ). The operator C shall be referred to as the “observation operator”.
Let ẑi ∈ Y , be “observations” at times ti, i = 1, 2, . . . , m of the process described by the
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IVP (7). The “parameter identification problem” (ID problem in the sequel) associated to
problem (7) and the observations {ẑi}m

i=1 is:

(ID) : find q∗ ∈ Q that minimizes the error criterion

J(q)
.
=

1

2

m
∑

i=1

‖Cz(ti; q) − ẑi‖2
Y .

(8)

The following recursive algorithm is proposed.
Step 1: Given an estimate qk of q∗, approximate z(t; q) by its first order Taylor expansion

about qk, i.e., let zk+1(t; q)
.
= z(t; qk) + zq(t; q

k)
(

q − qk
)

.
Step 2: Define the modified error criterion by

Jk(q)
.
=

1

2

m
∑

i=1

∥

∥Czk+1(ti; q) − ẑi

∥

∥

2

Y

=
1

2

m
∑

i=1

∥

∥C
[

z(ti; q
k) + zq(ti; q

k)
(

q − qk
)]

− ẑi

∥

∥

2

Y
.

Step 3: Next, define qk+1 to be a minimizer of the modified error criterion Jk(q). In order
to find qk+1, differentiate Jk(q), set the result equal to zero and solve for q. Finally,
call this solution qk+1, replace k with k + 1 and repeat Step 1.

Observe that, unless zq(ti; q
k) = 0, for all i = 1, 2, . . . , m the functional Jk(q) is strictly

convex and therefore, there exists only one solution of Dq(J
k(q)) = 0 and this solution is

a minimizer. Also, the condition Dq(J
k(q)) = 0 is satisfied if and only if

m
∑

i=1

〈

C
[

zq(ti; q
k)h

]

, C
[

zq(ti; q
k)(q − qk)

]〉

Y
= −

m
∑

i=1

〈

C
[

zq(ti; q
k)h

]

, Cz(ti; q
k) − ẑi

〉

Y

for every h ∈ R
4.

Now let M(t; q) and M(t; q)∗ denote the matrix associated to the linear transformation
Czq(t; q) and its transposed, respectively. Then, by defining

D(q)
.
=

m
∑

i=1

M(ti; q)
∗ [M(ti; q)] ,

the algorithm reduces to

qk+1 = E(qk)
.
= qk −

[

D(qk)
]−1

m
∑

i=1

M(ti; q
k)∗

[

Cz(ti; q
k) − ẑi

]

whenever
[

D(qk)
]−1

exists.

4 Convergence of the Quasilinearization Algorithm

In this section the convergence of the algorithm introduced in the previous section is
studied. Sufficient conditions for the convergence of the algorithm are presented. The
following two preliminary lemmas will be needed.
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Lemma 4. Let t ∈ [0, T ] be fixed and M(t; q), q ∈ Q, as previously defined. Then the
mapping q → M(t; q) is continuous from Q → L(R4, Y ). Moreover, for any q ∈ Q, there
exist positive constants ηq and Lq depending on t such that

‖M(t; q) − M(t; q̃)‖ ≤ Lq |q − q̃| , ∀q̃ such that |q̃ − q| < ηq.

Proof. Let t ∈ [0, T ] be fixed. By Theorem 3, for all q ∈ Q there exist ηq > 0 and Lq > 0
such that ‖zq(t; q) − zq(t; q̃)‖L(R4,Z) ≤ Lq |q − q̃|

R4 whenever |q̃ − q| < ηq. Hence

‖M(t; q) − M(t; q̃)‖ = sup
h∈R4, |h|=1

‖[M(t; q) − M(t; q̃)] h‖Y

= sup
h∈R4, |h|=1

‖Czq(t; q)h − Czq(t; q̃)h‖Y

≤ ‖C‖L(Z,Y ) sup
h∈R4, |h|=1

{

‖zq(t; q) − zq(t; q̃)‖L(R4,Z) |h|
}

≤ ‖C‖L(Z,Y ) Lq |q − q̃|
R4

.
= Lq |q − q̃|

R4

for every q̃ such that |q − q̃| < ηq. �

The following lemma is an immediate consequence of Lemma 4 and its proof is therefore
omitted.

Lemma 5. Let D(q), q ∈ Q, be as defined above. Then the mapping q → D(q) is locally
Lipschitz continuous from Q → L(R4, R4).

Before stating the main results concerning the convergence of the quasilinearization
algorithm (QA), it is necessary to introduce the concept of point of attraction. Its definition
is given below as well as a sufficient condition for an iteration mapping on a Banach space
to have a point of attraction.

Definition 6. Let U be an open subset of a Banach space X and let E be a mapping from
U into X. Then, x∗ ∈ U is said to be a point of attraction of the iteration xk+1 = E(xk) if
there exists an open neighborhood S of x∗ such that S ⊂ U and for any x0 ∈ S, the iterates
xk ∈ U , for all k ≥ 1 and xk → x∗ as k → ∞.

Lemma 7 (Contraction mapping theorem). Let U be an open subset of a Banach
space X, E : U → X, x∗ ∈ U and suppose there is an open ball B = B(x∗, η) ⊂ U and
α ∈ (0, 1) such that

‖E(x) − x∗‖ ≤ α ‖x − x∗‖ , ∀x ∈ B.

Then x∗ is a point of attraction of the iteration xk+1 = E(xk).

Proof. Whenever x0 ∈ B, ‖x1 − x∗‖ = ‖E(x0) − x∗‖ ≤ α ‖x0 − x∗‖, from which x1 ∈ B.
By induction,

∥

∥xk+1 − x∗
∥

∥ =
∥

∥E(xk) − x∗
∥

∥ ≤ α
∥

∥xk − x∗
∥

∥ ≤ αk+1
∥

∥x0 − x∗
∥

∥

and αk+1 ‖x0 − x∗‖ → 0 as k → ∞. �

Theorem 8 (Local convergence of the QA under exact fit-to-data assumption).
Let M(t; q), D(q), and E(q) be as defined in the previous section. Assume that there exist
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an open set U ⊂ Q and q∗ ∈ U such that [D(q∗)]−1 exists and J(q∗) = 0 (exact fit-to-data
assumption). Let E be the mapping defined at the end of the previous section. Then, for
every ǫ > 0, there exists a constant δ > 0 such that |q − q∗| < δ implies

|E(q) − q∗| ≤ K|q − q∗|2 + ǫ|q − q∗|

where K is a constant depending only on q∗ (not on ǫ). In particular, q∗ is a point of
attraction of the iteration qk+1 = E(qk).

Proof. By definition

E(q) = q − [D(q)]−1

{

m
∑

i=1

M(ti; q)
∗ (Cz(ti; q) − ẑi)

}

whenever [D(q)]−1 exists. Hence

E(q) − q∗ = q − [D(q)]−1

{

m
∑

i=1

M(ti; q)
∗ (Cz(ti; q) − ẑi)

}

− q∗

= [D(q)]−1

{

D(q) (q − q∗) −
m

∑

i=1

M(ti; q)
∗ (Cz(ti; q) − ẑi)

}

= [D(q)]−1

{

m
∑

i=1

M(ti; q)
∗ [M(ti; q) − M(ti; q

∗)] (q − q∗)

}

− [D(q)]−1

{

m
∑

i=1

M(ti; q)
∗ [Cz(ti; q) − Cz(ti; q

∗) − M(ti; q
∗) (q − q∗)]

}

− [D(q)]−1

{

m
∑

i=1

M(ti; q)
∗ [Cz(ti; q

∗) − ẑi]

}

.

Since J (q∗) = 0, the third term on the right hand side equals zero. Also, since [D(q∗)]−1

exists, by continuity there exist positive constants δ1 and D so that if |q − q∗| < δ1,
then

∥

∥[D(q)]−1
∥

∥ ≤ D. From Lemma 4 there exists M such that ‖M(ti; q)
∗‖ ≤ M for

i = 1, 2, . . . , m, whenever |q − q∗| < δ1.
Consequently,

|E(q) − q∗| ≤ DM

m
∑

i=1

‖[M (ti; q) − M (ti; q
∗)] (q − q∗)‖

+ DM

m
∑

i=1

‖Cz(ti; q) − Cz(ti; q
∗) − M(ti; q

∗) (q − q∗)‖

.
= A + B.

By Lemma 4, if |q − q∗| < ηq∗ , then A ≤ DMmLq∗ |q − q∗|2. Also, since

M(ti; q
∗) (q − q∗) = Czq(ti; q

∗) (q − q∗) ,

from the definition of the Fréchet derivative zq(t; q), for every ǫ > 0, there exists δ2 =
δ2(ǫ, q

∗) > 0 such that |q − q∗| < δ2 implies

‖Cz(ti; q) − Cz(ti; q
∗) − M(ti; q

∗) (q − q∗)‖ ≤ ǫ |q − q∗| ,
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i = 1, 2, . . . , m.
Summarizing,

|E(q) − q∗| ≤ DMm
[

Lq∗ |q − q∗|2 + ǫ |q − q∗|
]

for any q such that |q − q∗| < δ∗
.
= min {δ1, δ2, ηq∗}. By Lemma 7, q∗ is a point of attraction

of the iteration qk+1 = E(qk). �

It is important to note that in Theorem 8 an exact fit-to-data at the minimizer q∗ was
assumed. In practice, when working with real parameter identification problems, this is
not a realistic assumption due to possible observation, measuring and modeling errors. In
the next theorem this exact fit-to-data assumption is weakened.

Theorem 9 (Local convergence of the QA with noisy data). Let M(t; q), D(q), and
E(q) be as before. Assume that there exist an open set U ⊂ Q and q∗ ∈ U such that D(q∗)
is nonsingular and q∗ = E(q∗) (fixed point). Let D

.
= sup

{

‖D(q)‖−1 : |q − q∗| ≤ δ1

}

with
δ1 as in Theorem 8 and L the smallest constant satisfying

‖M(ti; q)
∗ − M(ti; q

∗)∗‖ ≤ L |q − q∗| , ∀ |q − q∗| < δ1, i = 1, 2, . . . , m,

and suppose
m

∑

i=1

‖Cz(ti; q
∗) − ẑi‖ <

1

DL .

Then q∗ is a point of attraction of the iteration qk+1 = E
(

qk
)

.

Proof. Following the same steps as in the proof of Theorem 8, it follows that

|E(q) − q∗| ≤ DMm
[

L |q − q∗|2 + ǫ |q − q∗|
]

+

∣

∣

∣

∣

[D(q)]−1
m

∑

i=1

M(ti; q)
∗ [Cz(ti; q

∗) − ẑi]

∣

∣

∣

∣

.

(9)

But,

m
∑

i=1

M(ti; q
∗)∗ [Cz(ti; q

∗) − ẑi] = 0, (10)

since, by assumption, q∗ = E(q∗). Combining (9) and (10)

|E(q) − q∗| ≤ DMm
[

L |q − q∗|2 + ǫ |q − q∗|
]

+ D

∥

∥

∥

∥

∥

m
∑

i=1

[M(ti; q)
∗ − M(ti; q

∗)∗] [Cz(ti; q
∗) − ẑi]

∥

∥

∥

∥

∥

≤ DMm
[

L |q − q∗|2 + ǫ |q − q∗|
]

+ DL |q − q∗|
m

∑

i=1

‖Cz(ti; q
∗) − ẑi‖

= DMm
[

L |q − q∗|2 + ǫ |q − q∗|
]

+ γ |q − q∗|

where γ < 1 by hypothesis. This concludes the proof. �
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5 Numerical Results

Here, the algorithm proposed in the previous sections is applied to the identification of the
non-physical parameters appearing in (1)–(5). Measurements are taken at several points
in the space-time domain and are specified in the examples.

In the following examples, the parameter values reported by F. Falk in [15] for the alloy
Au23Cu30Zn47 are used. These values are: α2 = 24 J cm−3 K−1, α4 = 1.5 × 105 J cm−3,
α6 = 7.5 × 106 J cm−3 K−1, θ1 = 208 K, Cv = 2.9 J cm−3 K−1, k = 1.9 w cm−1 K−1,
ρ = 11.1 g cm−3. Also the value of γ was chosen to be γ = 10−12 J cm−1 as reported
in [17], and β was chosen to be β = 1 (this choice has no particular physical meaning).
Figure 1 shows the stress-strain curves obtained from the potential (6) for these values
of the parameters. The doted lines indicate the unstable parts of the curves, while the
horizontal lines indicate possible hysteresis loops.
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Figure 1: Stress-Strain curves obtained with Ψ as in (6) with α2, α4, α6 and θ1 as
in [15], for different temperatures: (a) θ = 2000K; (b) θ = 2600K; (c) θ = 4000K;
(d) θ = 6000K. Dotted lines indicate unstable parts of the curves. Horizontal lines
indicate possible hysteresis loops.

Under certain general conditions, the identifiability of these parameters can be proved
(see [24]). The choice of the examples below was done in order to fulfill these conditions.

The parameter to be estimated is q∗ = (α2, α4, α6, θ1) = (24, 1.5×105, 7.5×106, 208).
Example 1: Exact data.
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For this example the initial data is chosen to be u0 ≡ 0, v0 ≡ 0, θ0 ≡ 200 K, g(x, t) ≡ 0,

f(x, t) =

{

1 × 105, if 0.4 ≤ x ≤ 0.6,

0, otherwise

and T = 0.01. First, u(t, x, q∗) and θ(t, x, q∗) are obtained by numerically solving the
problem. For this purpose, the spectral method proposed in [19] is used. The observations

are then taken to be ẑi =

{(

u(xj, ti; q
∗)

θ(xj , ti; q
∗)

)}9

j=1

, where ti = 0.001 i, i = 1, 2, . . . , 10, and

xj = 0.1 j, j = 1, 2, . . . , 9. We start with an initial estimate q0 = (50, 3 × 105, 15 ×
106, 420), approximately equal to twice q∗. The results of the iterations produced by the
quasilinearization algorithm are shown in Table 1. Figure 2a shows a comparison between
u(x, T ; q∗) and u(x, T ; qk) while in Figure 2b, θ(x, T ; q∗) and θ(x, T ; qk) are drawn for
different values of k.

Table 1: Values of the parameters and of the error criterion at different
iteration steps in Example 1.

k α2 α4 α6 θ1 J(qk)
0 50.0000 300000 1.50000e+07 420.000 1994.6900
1 16.1807 228111 1.40769e+07 459.904 611.1950
2 26.1790 222964 8.71784e+06 33.096 280.8220
3 25.3531 246241 8.83171e+06 126.468 15.3156
4 24.2770 178223 7.87660e+06 181.091 7.1313
5 24.0166 151184 7.51451e+06 206.550 0.6210
6 24.0012 150073 7.50096e+06 207.927 0.0122
7 24.0001 150006 7.50008e+06 207.994 0.0030
8 24.0001 150002 7.50003e+06 207.998 0.0029
9 24.0000 150002 7.50002e+06 207.998 0.0029

10 24.0000 150002 7.50002e+06 207.998 0.0029
11 24.0000 150002 7.50002e+06 207.998 0.0029
12 24.0000 150002 7.50002e+06 207.998 0.0029

Example 2: Noisy data.
This example is analogous to Example 1, except that random noise is added to the

observation data in order to simulate measuring errors. More precisely, the observa-

tions are taken to be ẑi =

{(

u(xj , ti; q
∗) + ri,j

θ(xj , ti; q
∗) + r̃i,j

)}9

j=1

, where ri,j and r̃i,j are random

numbers uniformly distributed in (−0.05u, 0.05u) and
(

−0.05 θ, 0.05 θ
)

, respectively, with

u =
1

90

10
∑

i=1

9
∑

j=1

|u(xi, ti; q
∗)| and θ =

1

90

10
∑

i=1

9
∑

j=1

|θ(xi, ti; q
∗)|. The initial estimate is again

q0 = (50, 3 × 105, 15 × 106, 420). The results of the iterations are shown in Table 2. Fig-
ure 3a shows a comparison between u(x, T ; q∗) and u(x, T ; qk) while in Figure 3b, θ(x, T ; q∗)
and θ(x, T ; qk) are drawn for different values of k.
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Figure 2: Displacement (a) and Temperature (b) at T = 0.01 for q = qk, k =
0, 3, 7.

Table 2: Values of the parameters and of the error criterion at different
iteration steps.

k α2 α4 α6 θ1 J(qk)
0 50.0000 300000 1.50000e+07 420.000 1987.240
1 16.5263 251533 1.43413e+07 450.975 604.570
2 26.7351 173032 7.92651e+06 77.3584 261.591
3 25.1282 223785 8.54573e+06 148.386 111.619
4 24.2875 176007 7.84280e+06 189.479 111.030
5 24.4436 183683 7.95702e+06 183.663 110.985
6 24.4070 180771 7.91592e+06 186.193 110.977
7 24.4184 181677 7.92857e+06 185.411 110.979
8 24.4151 181408 7.92483e+06 185.645 110.978
9 24.4161 181487 7.92593e+06 185.576 110.979

10 24.4158 181464 7.92560e+06 185.596 110.978
11 24.4159 181471 7.92570e+06 185.590 110.978
12 24.4159 181469 7.92567e+06 185.592 110.978
13 24.4159 181469 7.92568e+06 185.592 110.978
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Figure 3: Displacement (a) and Temperature (b) at T = 0.01 for q = qk, k =
0, 3, 7.

6 Conclusions

In this article, an algorithm for the identification of the parameters α2, α4, α6 and θ1 in
the initial-boundary value problem (1)–(5) has been proposed. Its convergence has been
proved for both exact and noisy data. Numerical results have been presented. Although
the numerical experiments have been conducted using artificial data, efforts are currently
underway to obtain measurements which will also allow to test the algorithm against
experimental data.
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