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t: In this arti
le, an abstra
t nonlinear evolution equation with a parameter appearing in the nonlinear part is
onsidered. Using the theory of analyti
 semigroups and a generalization of Gronwall's lemma for singular kernels, suÆ
ient
onditions to ensure di�erentiability of the solution with respe
t to the parameter are derived in terms of the smoothness ofthe nonlinear part of the equation. The results are applied to a nonlinear system of PDE's modeling the dynami
s of shapememory alloys.1. Introdu
tionLet Z and ~Q be two Bana
h spa
es, A the in�nitesimal generator of an analyti
 semigroup T (t) on Z, Da subset of Z, Q an open subset of ~Q, T > 0 and F : Q� [0; T ℄�D ! Z. We shall 
onsider the followingnonlinear Cau
hy problem in Z:8><>: _z(t) = Az(t) + F (q; t; z(t)); t 2 (0; T )z(0) = z0: (1.1)The spa
es Z and ~Q will be referred to as the state-spa
e and the parameter spa
e, respe
tively, while Qwill be 
alled the admissible parameter set.For the appli
ation of quasilinearization algorithms in parameter identi�
ation for systems like (1.1) andother similar types of equations ([5℄, [7℄, [9℄) it is essential to obtain 
onditions under whi
h the solution isdi�erentiable with respe
t to the parameter q.In [6℄ this di�erentiability problem was analyzed in the 
ontext of linear abstra
t Cau
hy problems of thetype _z(t) = A(q)z(t) + u(t); z(0) = z0 (1.2)in whi
h A(q) generates a strongly 
ontinuous semigroup and 
an be written in the form A(q) = A + B(q)where B(q) is bounded. Later on ([4℄), the same problem was studied under weaker assumptions. Here, theparameter q was not restri
ted to appear in a bounded term of the operator A(q).In the present arti
le we shall prove the q-di�erentiability of the solution of system (1.1). Several problemsin diverse areas like in the study of 
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2Biology, et
. (see [3℄, [9℄) originate problems whose abstra
t formulation result in nonlinear systems in whi
hthe unknown ve
tor parameter appears in the nonlinear term. In these and many other pra
ti
al problems itis very important to have a mathemati
al framework in whi
h the identi�
ation of the parameter be possiblefrom experimental and laboratory data.The quasilinearization methods for identi�
ation ([5℄,[7℄) provide pra
ti
al mathemati
al tools for a
hievingthis goal. However, their appli
ation require not only that the solution depends 
ontinuously on the unknownparameter but also that an expli
it formula for the derivative of the solution with respe
t to that parameterbe derived.The organization of the arti
le is as follows. In Se
tion 2 the q-di�erentiability of the solution of (1.1)is studied and suÆ
ient 
onditions are given under whi
h that property holds. In Se
tion 3 a regularityresult for that derivatives is obtained. The latter result is required in order to prove 
onvergen
e of thequasilinearization algorithms previously mentioned while the former is required for the algorithm to be well-de�ned. In Se
tion 4 an appli
ation example is 
onsidered in the 
ontext of a mathemati
al model for shapememory alloys. The partial di�erential equations that model the dynami
s of these materials result in anabstra
t Cau
hy problem in whi
h the unknown parameters de�ning the free energy potential arise in thenonlinear terms. Theorems of Se
tions 2 and 3 are used in this parti
ular 
ase to show that the solutiondepends smoothly on the unknown ve
tor parameter.2. Parameter di�erentiability of the solution of (1.1)In this se
tion we will prove the Fr�e
het di�erentiability of the solution of (1.1) with respe
t to theparameter q. We �rst re
all some properties of analyti
 semigroups and make some general assumptions onthe nonlinear part of the equation.Let �(A) denote the spe
trum of the operator A. Sin
e A generates an analyti
 semigroup, the type ofA, de�ned as ! := sup fRe(�) : � 2 �(A)g is �nite and for any � 2 C with Re(�) > !, the fra
tional powers(�I � A)Æ of �I � A are 
losed, linear and invertible operators in Z for any Æ 2 [0; 1℄ (see [10℄). In whatfollows, � will be �xed, Re(�) > ! and ZÆ shall denote the spa
e D �(�I �A)Æ� imbedded with the norm ofthe graph of (�I �A)Æ . Due to the fa
t that Re(�) > !, one has that � 2 �(A), the resolvent set of A, andthe graph norm is equivalent to the norm kzkÆ := 

(�I �A)Æz

Z .Consider the following standing hypothesis.(H1). There exists Æ 2 (0; 1) su
h that ZÆ � D and F : Q� [0; T ℄� ZÆ ! Z is lo
ally Lips
hitz 
ontinuousin t and z, i.e., for any q 2 Q and any bounded subset U of [0; T ℄� ZÆ there exists a 
onstant L = L(q; U)su
h that kF (q; t1; z1)� F (q; t2; z2)kZ � L (jt1 � t2j+ kz1 � z2kÆ) ; 8 (ti; zi) 2 U:where the 
onstant L 
an be 
hosen independent of q on any 
ompa
t subset QC of Q.The following result follows immediately from Theorem 6.3.1 in [10℄.Theorem 2.1. Let q 2 Q and z0 2 ZÆ and assume F satis�es hypothesis (H1). Then there exists t1 =t1(q; z0) > 0 su
h that (P )q has a unique 
lassi
al solution on [0; t1), i.e., there exists a fun
tion z(�) 2C0([0; t1) : ZÆ) \ C1((0; t1) : Z) su
h that� _z(t) = Az(t) + F (q; t; z(t)); t 2 (0; t1)z(0) = z0:The fun
tion z(t) satis�es the integral equationz(t) = T (t)z0 + Z t0 T (t� s)F (q; s; z(s)) ds; 8t 2 [0; t1):Also, t1 
an be 
hosen positive independent of q on any 
ompa
t subset QC of Q.Let us denote by z(t; q) the solution z(t) of (1.1).The following generalization of Gronwall's Lemma for singular kernels, whose proof 
an be found in [8℄(Lemma 7.1.1), will be essential for the main result of this se
tion.



3Lemma 2.2. Suppose L � 0, 0 < Æ < 1 and a(t) is a nonnegative, lo
ally integrable fun
tion on 0 � t � T .Let u(t) be a real valued fun
tion de�ned on [0; T ℄ satisfyingu(t) � a(t) + L Z t0 1(t� s)Æ u(s) dson this interval. Then, there exists a 
onstant K = K(Æ) su
h thatu(t) � a(t) +KL Z t0 a(s)(t� s)Æ ds for 0 � t < T:The following theorem states a result relating the regularity of F and the Lips
hitz 
ontinuity of z(t; q)with respe
t to q.Theorem 2.3. Suppose F (q; t; z) satis�es hypothesis (H1) for some Æ 2 (0; 1). If the mapping q ! F (q; �; z)from Q into L1(0; T : Z) is lo
ally Lips
hitz 
ontinuous for all z 2 ZÆ with Lips
hitz 
onstant independent ofz on ZÆ-bounded sets, then the mapping q ! z(�; q) is lo
ally Lips
hitz 
ontinuous from Q into L1(0; T : ZÆ).Proof. Let t 2 [0; T ℄ and q1; q2 2 Q. Thenz(t; q1) = T (t)z0 + Z t0 T (t� s)F (q1; s; z(s; q1)) ds;z(t; q2) = T (t)z0 + Z t0 T (t� s)F (q2; s; z(s; q2)) dsand therefore z(t; q1)� z(t; q2) = Z t0 T (t� s) [F (q1; s; z(s; q1))� F (q2; s; z(s; q2))℄ ds= Z t0 T (t� s) [F (q1; s; z(s; q1))� F (q2; s; z(s; q1))℄ ds+ Z t0 T (t� s) [F (q2; s; z(s; q1))� F (q2; s; z(s; q2))℄ ds:Hen
e, if Æ 2 (0; 1) is su
h that (H1) holds, then it follows thatkz(t; q1)� z(t; q2)kÆ � Z t0 C(t� s)Æ kF (q1; s; z(s; q1))� F (q2; s; z(s; q1)) k+ Z t0 C(t� s)Æ kF (q2; s; z(s; q1))� F (q2; s; z(s; q2)) k� C1 kq1 � q2k t1�Æ1� Æ + Z t0 C L(t� s)Æ kz(s; q1)� z(s; q2)kÆ ds� C2 kq1 � q2k+ Z t0 C L(t� s)Æ kz(s; q1)� z(s; q2)kÆ ds:Applying Lemma 2.2 we obtain kz(t; q1)� z(t; q2)kÆ � K1 kq1 � q2k eK2Tfor some 
onstants K1, K2. The theorem then follows. �Next, suÆ
ient 
onditions on F are given that ensure di�erentiability of the mapping q ! z(t; q).



4Theorem 2.4. Assume (H1) holds for some Æ 2 (0; 1) and the mapping (q; z(�)) ! F (q; �; z(�)) fromQ � L1(0; T : ZÆ) into L1(0; T : Z) is Fr�e
het di�erentiable in both variables. Assume also that themapping (q; z(�)) ! Fq (q; �; z(�)) from Q � L1(0; T : ZÆ) into L1 �0; T : L� ~Q; Z�� is lo
ally Lips
hitz
ontinuous with respe
t to q and z.Then the mapping q ! z(�; q) is Fr�e
het di�erentiable from Q ! L1(0; T : ZÆ) and for any h 2 ~Q,zq(t; q)h is the solution vh(t) of the linear IVP8><>: _vh(t) = Avh(t) + Fz(q; t; z(t; q))vh(t) + Fq(q; t; z(t; q))h; t 2 (0; T )vh(0) = 0:Proof. Let t 2 [0; T ℄ be �xed and Æ 2 (0; 1) as in (H1). Then for any h 2 ~Q su
h that q + h 2 Q we havez(t; q + h) = T (t)z0 + Z t0 T (t� s)F (q + h; s; z(s; q + h)) ds;z(t; q) = T (t)z0 + Z t0 T (t� s)F (q; s; z(s; q)) dsand vh(t) = Z t0 T (t� s) [Fz(q; s; z(s; q))vh(s) + Fq(q; s; z(s; q))h℄ ds:Let � > 0. We will show that there exists 
 > 0 su
h that if h 2 ~Q and khk < 
 then kz(t; q+h)�z(t; q)�vh(t)kÆ < � khk. For this purpose, observe thatz(t;q + h)� z(t; q)� vh(t)= Z t0 T (t� s) [F (q + h; s; z(s; q + h))� F (q; s; z(s; q))℄ ds� Z t0 T (t� s) [Fz(q; s; z(s; q))vh(s) + Fq(q; s; z(s; q))h℄ ds= Z t0 T (t� s) [F (q + h; s; z(s; q + h))� F (q + h; s; z(s; q))℄ ds+ Z t0 T (t� s) [F (q + h; s; z(s; q))� F (q; s; z(s; q))� Fq(q; s; z(s; q))h℄ ds+ Z t0 T (t� s) [F (q; s; z(s; q + h))� F (q; s; z(s; q))� Fz(q; s; z(s; q))vh(s)℄ ds+ Z t0 T (t� s) [F (q; s; z(s; q))� F (q; s; z(s; q + h)℄ ds:= I1 + I2 + I3 + I4;where Ii, i = 1; 2; 3; 4 denotes the ith term in the order given above.Sin
e F is Fr�e
het di�erentiable with respe
t to z, there exists 
1 > 0 su
h that if kz(q + h; �) �z(q; �)kL1(0;T :ZÆ) < 
1, thenkI3kÆ� Z t0 C(t� s)Æ kF (q; s; z(s; q + h))� F (q; s; z(s; q))�Fz(q; s; z(s; q)) (z(s; q + h)� z(s; q))kZ ds+ Z t0 C(t� s)Æ kFz(q; s; z(s; q)) (z(s; q + h)� z(s; q)� vh(s))kZ ds� Z t0 C �(t� s)Æ kz(s; q + h)� z(s; q)kÆ ds+ Z t0 C1(t� s)Æ kz(s; q + h)� z(s; q)� vh(s)kÆ ds



5Now, by virtue of Theorem 2.3, there exist 
onstants 
2; K > 0 su
h that kz(�; q + h)� z(�; q)kL1(0;T :ZÆ) �Kkhk < 
1 whenever khk < 
2. Hen
e, if khk < 
2, we obtainkI3kÆ � Z t0 C K �(t� s)Æ khk ds+ Z t0 C1(t� s)Æ kz(s; q + h)� z(s; q)� vh(s)kÆ ds:Also, sin
e F is Fr�e
het di�erentiable with respe
t to q, there exists 
3 > 0 su
h that if khk < 
3, thenkI2kÆ � Z t0 C �(t� s)Æ khk ds:On the other hand, observe that I1 + I4 
an be written asI1 + I4 = Z T0 T (t� s) [F (q + h; s; z(s; q + h))� F (q; s; z(s; q + h))℄ ds� Z T0 T (t� s) [F (q + h; s; z(s; q))� F (q; s; z(s; q))℄ ds= Z t0 T (t� s)Fq (q + �1(h)h; s; z(s; q + h))h ds� Z t0 T (t� s)Fq (q + �2(h)h; s; z(s; q))h dswhere 0 < �1(h); �2(h) < 1. Consequently, by the Lips
hitz 
ontinuity of Fq we have thatkI1 + I4kÆ � Z t0 C(t� s)Æ kFq(q + �1(h)h; s; z(s; q + h))� Fq(q + �1(h)h; s; z(s; q))kZ khk ds+ Z t0 C(t� s)Æ kFq(q + �1(h)h; s; z(s; q))� Fq(q + �2(h)h; s; z(s; q))kZ khk ds� khk Z t0 C(t� s)Æ (L1kz(s; q + h)� z(s; q)kÆ + L2j�1(h)� �2(h)j khk) ds� C3 khk2 ;where the last inequality follows by virtue of Theorem 2.3.Summarizing, there exist 
onstants 
�;K1;K2 > 0 su
h that whenever khk < 
� one haskz(t; q + h)� z(t; q)� vh(t)kÆ � K1 khk �+K2 Z t0 kz(t; q + h)� z(t; q)� vh(t)kÆ(t� s)Æ ds:The above inequality together with Lemma 2.2 imply the existen
e of a 
onstant ~K su
h thatkz(t; q + h)� z(t; q)� vh(t)kÆ � ~K khk �; provided khk � 
�;and the theorem follows. �3. Lips
hitz 
ontinuity of the Fr�e
het derivativeIn order to prove 
onvergen
e of the quasilinearization algorithms it is ne
essary not only that solutionsbe di�erentiable with respe
t to the unknown parameter q but also that the 
orresponding derivative besmooth. The next result provides suÆ
ient 
onditions for the Lips
hitz regularity of zq.



6Theorem 3.1. Let the hypotheses of Theorem 2.4 hold. Assume also that the mapping (q; z(�))! Fz(q; �; z(�))from Q�L1(0; T : ZÆ) into L1(0; T : L(ZÆ ; Z)) is lo
ally Lips
hitz 
ontinuous with respe
t to both variablesq and z(�). Then, the mapping q ! zq(�; q) from Q! L1(0; T : L( ~Q; Z)) is lo
ally Lips
hitz 
ontinuous.Proof. By Theorem 2.4, zq(t; q)h 
oin
ides with the solution of the initial value problem� _vq;h(t) = Avq;h(t) +G(q; t; vq;h; h) + Fq(q; t; z(t; q))hvq;h(0) = 0:where G(q; t; v; h) := Fz(q; t; z(t; q))v + Fq(q; t; z(t; q))h. Now, let QC be a 
ompa
t subset of q and q1; q2 2QC . Then, for v 2 ZÆ and t 2 [0; T ℄, there follows thatkG(q1; t; v; h)�G(q2; t; v; h)kZ � kFz(q1; t; z(t; q1))� Fz(q2; t; z(t; q2))kL(ZÆ ;Z) kvkZÆ+ kFq(q1; t; z(t; q1))� Fq(q2; t; z(t; q2))kL( ~Q;Z) khk ~Q� L1 kz(t; q1)� z(t; q2)kZÆ kvkZÆ + L2 kq1 � q2k ~Q khk ~Q� �~L1 kvkZÆ + L2 khk ~Q� kq1 � q2k ~Q ;where, in the third inequality the fa
t that z(t; q) is lo
ally Lips
hitz 
ontinuous with respe
t to q was used(Theorem 2.3). Therefore, the mapping q ! G(q; �; v; h) is lo
ally Lips
hitz 
ontinuous and the Lips
hitz
onstant 
an be 
hosen independent of v and of h on 
ompa
t subsets of ZÆ and ~Q, respe
tively. Hen
eG(q; t; v; h) satis�es the hypothesis of Theorem 2.3 and the mapping q ! zq(�; q)h is lo
ally Lips
hitz 
on-tinuous. Moreover, sin
e the Lips
hitz 
onstant of G is independent of h on ~Q-bounded sets, it followsimmediately from the proof of Theorem 2.3 that the Lips
hitz 
onstant of the mapping q ! zq(�; q)h 
analso be 
hosen independent of h on ~Q-bounded sets. The theorem is then proved. �4. An appli
ationIn this se
tion we 
onsider an example in whi
h parameter di�erentiability is proved in the followingsystem of nonlinear partial di�erential equations:�utt � ��uxxt + 
uxxxx = f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ; x 2 (0; 1); 0 � t � T (4.1a)Cv�t � k�xx = g(x; t) + 2�2�uxuxt + ��u2xt; x 2 (0; 1); 0 � t � T (4.1b)u(x; 0) = u0(x); ut(x; 0) = v0(x); �(x; 0) = �0(x); x 2 (0; 1) (4.1
)u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0; 0 � t � T (4.1d)�x(0; t) = �x(1; t) = 0; 0 � t � T: (4.1e)These equations arise from the 
onservation laws of linear momentum and energy in a one-dimensionalshape memory body. The fun
tions u and � represent transverse displa
ement and absolute temperature,respe
tively. Subs
ripts \x" and \t" denote partial derivatives and �, Cv , k, �, 
, �2, �4, �6, �1 are positive
onstants depending on the material being 
onsidered. The fun
tions f(x; t) and g(x; t) denote distributedfor
es and distributed heat sour
es, respe
tively. For a detailed explanation of the model and the meaningof the parameters involved we refer the reader to [11℄ and the referen
es therein.We are interested in determining the di�erentiability of the solution of these equations with respe
t to theparameters �2, �4, �6 and �1.The IBVP (4.1) 
an be written as an abstra
t nonlinear Cau
hy Problem like (1.1) in an appropriate Ba-na
h Spa
e. For this purpose let the admissible parameter set be de�ned asQ := �q = (�2; �4; �6; �1) jq 2 R4+	,the state spa
e Z as the Hilbert spa
e H10 (0; 1) \H2(0; 1)� L2(0; 1)� L2(0; 1) with the inner produ
t*0�uv�1A ;0� ~u~v~�1A+ := 
 Z 10 u00(x)~u00(x) dx+ � Z 10 v(x)~v(x) dx+ Cvk Z 10 �(x)~�(x) dx:



7The operator A on Z is de�ned byD(A) =8<:0�uv�1A 2 Z ������ u 2 H4(0; 1); u(0) = u(1) = u00(0) = u00(1) = 0v 2 H10 (0; 1) \H2(0; 1)� 2 H2(0; 1); �0(0) = �0(1) = 0 9=;and for z = 0�uv�1A 2 D(A), A0�uv�1A := 0� 0 I 0�
�D4 �D2 00 0 kCvD21A0�uv�1A ;where Dn := �n�xn .De�ne also z0(x) = 0�u0(x)v0(x)�0(x)1A and F (q; t; z) : Q� [0; T ℄�D ! Z byF (q; t; z) = 0� 0f2(q; t; z)f3(q; t; z)1A ;where �f2(q; t; z)(x) = f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;Cvf3(q; t; z)(x) = g(x; t) + 2�2�uxvx + ��v2xand D = H10 (0; 1) \H2(0; 1)�H1(0; 1)�H1(0; 1).With the above notation, the IBVP (4.1) takes the form� _z(t) = Az(t) + F (q; t; z); z(t) 2 Z; 0 � t � T;z(0) = z0: (4.2)Assume the following standing hypothesis.(H2). For ea
h �xed t � 0, the fun
tions f(x; t), g(x; t) are in L2(0; 1) and there exist nonnegative fun
tionsKf (x), Kg(x) 2 L2(0; 1) su
h thatjf(x; t1)� f(x; t2)j � Kf (x)jt1 � t2j; jg(x; t1)� g(x; t2)j � Kg(x)jt1 � t2jfor all x 2 (0; 1), t1; t2 2 [0; T ℄.The following result 
an be easily derived from theorems 3.7 and 3.11 in [12℄ with only slight modi�
a-tions in order to take into a

ount for the di�erent boundary 
onditions being 
onsidered here. Sin
e themodi�
ations needed are trivial and not relevant for the goals pursued by this arti
le, we do not give detailshere.Theorem 4.1. ([12℄) Let the operator A and the mapping F be as de�ned above. Then A generates ananalyti
 semigroup T (t) in Z and, if (H2) holds, then F satis�es (H1) for any Æ 2 ( 34 ; 1) and by Theorem2.1 has a unique 
lassi
al solution z(t; q).The following theorem and its 
orollary show that the operator A and the fun
tion F satisfy 
ertainregularity 
onditions, whi
h, in view of Theorems 2.4 and 3.1, ensure di�erentiability of the mapping q !z(�; q) and the Lips
hitz 
ontinuity of its Fr�e
het derivative.



8Theorem 4.2. Let Z, A and F (q; t; z) be as de�ned above and assume (H2) holds. Then the mapping(q; z(�)) ! F (q; �; z(�)) from Q� L1(0; T : ZÆ) into L1(0; T : Z) is Fr�e
het di�erentiable in both variables.Also, the mappings (q; z(�))! Fq(q; �; z(�)) and (q; z(�))! Fz(q; �; z(�)) are lo
ally Lips
hitz 
ontinuous fromQ�L1(0; T : ZÆ) into L1(0; T : L( ~Q; Z)) and from Q�L1(0; T : ZÆ) into L1(0; T : L(ZÆ ; Z)), respe
tively.Proof. It follows immediately that f2(q; t; z) and f3(q; t; z), as previously de�ned, are di�erentiable withrespe
t to both q and z, and their Fr�e
het derivatives are given by:Dzf2(q; t;0�uv�1A)0� ~u~v~�1A = f2;u~u+ f2;v~v + f2;�~�;Dzf3(q; t;0�uv�1A)0� ~u~v~�1A = f3;u~u+ f3;v~v + f3;�~�;Dqf2(q; t;0�uv�1A) = 1� h2�0u0 + 2(� � �1)u00 ; �12 (u0)2 u00 ; 30 (u0)4 u00 ; �2�2u00i ;Dqf3(q; t;0�uv�1A) = 1Cv [2�u0v0 ; 0 ; 0 ; 0℄ ;where the linear operators fi;u, fi;v and fi;�, i = 2; 3 aref2;u = 1� n2�2�0D + 2�2(� � �1)D2 � 24�4u0u00D � 12�4 (u0)2D2+120�6 (u0)3 u00D + 30�6 (u0)4D2o ;f2;v = 0f2;� = 1� f2�2u0D + 2�2u00g ;f3;u = 1Cv f2�2�v0Dgf3;v = 1Cv f2�2�u0D + 2��v0Dg ;f3;� = 1Cv f2�2u0v0g : �Corollary 4.3. Under the same hypotheses of Theorem 4.2, the mapping q ! z(�; q) is Fr�e
het di�erentiableand the mapping q ! zq(�; q) is lo
ally Lips
hitz 
ontinuous from Q into L1 �0; T : L( ~Q; Z)�.Proof. The proof is an immediate 
onsequen
e of Thoeorems 4.2, 2.4 and 3.1. �5. Con
lusionsIn this arti
le we have 
onsidered an abstra
t nonlinear evolution equation with an unknown parameterappearing in the nonlinear term. By employing the theory of analyti
 semigroups and a generalization ofGronwall's lemma for singular kernels we have derived suÆ
ient 
onditions under whi
h the solutions aredi�erentiable with respe
t to the unknown parameter q with Lips
hitz 
ontinuous Fr�e
het derivative. This
ondition is required for the 
onvergen
e of the quasilinearization algorithms for identi�
ation of q fromexperimental data.
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