
Finite Element Methods for Surfae Di�usionEberhard B�ansh, Pedro Morin, and Riardo H. NohettoAbstrat. Surfae di�usion is a (4th order highly nonlinear) geometri drivenmotion of a surfae with normal veloity proportional to the surfae Laplaianof mean urvature. We present a novel variational formulation for the para-metri ase, develop a �nite element method, and propose a Shur omplementapproah to solve the resulting linear systems. We also introdue a new graphformulation and state an optimal a priori error estimate. We onlude withseveral signi�ant simulations, some with pinh-o� in �nite time.Keywords: Surfae di�usion, fourth-order paraboli problem, �nite elements,a priori error estimates, Shur omplement, smoothing e�et, pinh-o�.AMS subjet lassi�ation: 35K55, 65M12, 65M15, 65M60, 65Z05.
1. Surfae Di�usion and Mixed FormulationThe overall goal of this work is to devise eÆient numerial tools for simulatingmorphologial hanges in stressed epitaxial �lms and thereby study their ompli-ated nonlinear dynamis. To model the mis�t between the rystalline strutureof the substrate and epitaxial �lm, the �lm may be thought of as subjeted tomehanial stresses. This auses a plasti deformation of the free surfae of the�lm. This morphologial instability of the free surfae may eventually lead to rakformation and frature, an issue of paramount importane in Materials Siene;see for instane [1, 4, 14℄ and also the list of referenes in [2℄.The dynamis of the free surfae � in Rd is governed byV = ��S(�+ "); (1)whih is a 4th order highly nonlinear PDE. Hereafter, d 2 f2; 3g, V and � are the(salar) normal veloity and mean urvature of �, respetively, rS is the surfaegradient, �S = divSrS the Laplae-Beltrami operator and " is the elasti energydensity of the bulk 
(t) enlosed by �(t). In this paper, we take " = 0 throughout.A number of issues arise, from existene, well posedness and regularity toe�etive algorithms for (1). The hief mathematial and numerial diÆulties arisefrom the 4th order nonlinear operator �S� and the fat that one annot workdiretly with the urvature vetor ~� as in [8℄. In ontrast to [5, 10℄, we havebeen able to derive, from a suitable semi-impliit time disretization, a variational�nite element formulation for surfaes in Rd whih involves the 4 unknowns salar



2 E. B�ansh, P. Morin, and R. H. Nohettourvature �, urvature vetor ~�, normal veloity ~V , and (salar) normal veloityV as follows: ~� = �S ~X; � = ~� � ~�; V = ��S�; ~V = V ~�; (2)where ~� denotes the unit normal vetor to �, pointing outward of the bulk enlosedby �. In view of thismixed formulation, whih involves only seond order operators,our �nite element method solely requires ontinuity of the disrete funtions; inpartiular we do not need C1 elements to handle urvature but an aommodateany polynomial degree. A Shur omplement approah, with a symmetri andpositive de�nite operator, is used to redue the system (2) to the single unknownV . This allows for an eÆient solution tehnique via preonditioned CG.This paper is organized as follows. We introdue the time disretization andnatural variational formulation in x2, and present its �nite element disretizationin x3. We disuss the ensuing algebrai problem along with a Shur omplementapproah to its solution in x4. We present in x5 the graph formulation togetherwith an error estimate. We doument the performane of parametri and graphmethods in x6 via several simulations whih exhibit singularities in �nite time.2. Time Disretization and Variational FormulationWe now onsider a semi-impliit time disretization of �rst order with time-step� , representing the next surfae �n+1 in terms of the urrent surfae �n as follows:~Xn+1 = ~Xn + � ~V : (3)This time disretization implies that all geometri quantities suh as ~� are eval-uated on the urrent surfae �n. Consequently, if �S denotes now the Laplae-Beltrami operator on � = �n, then the only modi�ation to (2) is as follows:~�� ��S ~V = �S ~Xn: (4)To derive a weak formulation to (2) and (4), we simply multiply them by testfuntions and integrate. If V(�) := H1(�) and X (�) is the subspae of V(�) offuntions with mean value zero, we thus seek ~V 2 ~V(�); � 2 V(�); ~� 2 ~X (�) andV 2 X (�) suh thath~�; 'i+ � DrS ~V ;r'E = �DrS ~X;rS'E 8 ' 2 ~X (�); (5)h�; �i � h~� � ~�; �i = 0 8 � 2 V(�); (6)hV; �i � hrS�;rS�i = 0 8 � 2 X (�); (7)D~V ; 'E� hV; ' � ~�i = 0 8 ' 2 ~V(�): (8)Hereafter the symbol h�; �i stands for the L2 salar produt over the urrent surfae� = �n, whih is desribed by the vetor funtion ~X = ~Xn; we thus suppress thesupersripts n and n+1 sine no onfusion arises. Sine V 2 X (�) has mean valuezero, we realize that volume is preserved in the sense R� V = 0.



Finite Element Methods for Surfae Di�usion 33. Finite Element DisretizationLet T be a regular but possibly graded mesh of triangular �nite elements over thesurfae �, whih from now on is assumed to be polyhedral. Let h denote the loalmeshsize of T . Let T 2 T be a typial triangle and let ~�T = (�kT )dk=1 be the unitnormal to T pointing outwards. We denote by ~� the outward unit normal to �,whih satis�es ~�jT = ~�T for all T 2 T , and is thus disontinuous aross �T .Let f�igIi=1 be the set of anonial basis funtions of the �nite element spaeVh(�) of pieewise linear funtions over �; this is a onforming approximation ofV(�). If ~Id 2 Rd�d is the identity matrix, onsider the following matrix entriesMij := h�i; �ji ; Aij := hrS�i;rS�ji ; (9)~Mij :=Mij ~Id; ~Nij := 
�i; �j�k�dk=1 ; (10)and orresponding mass and sti�ness matriesM := (Mij)Ii:j=1; ~M := ( ~Mij)Ii:j=1; ~N := ( ~Nij)Ii:j=1; (11)A := (Aij)Ii:j=1; ~A := ( ~Aij)Ii:j=1: (12)We point out that ~M; ~A and ~N possess matrix-valued entries and therefore thematrix-vetor produt is understood in the following sense~M ~V = � IXj=1 ~Mij ~Vj�Ii=1;beause eah omponent of ~V = (~Vi)Ii=1, as well as of ~M ~V , is itself a vetor in Rd .The vetor of nodal values of a �nite element funtion is written in boldfae, namely V = (Vi)Ii=1 2 V := RI is equivalent to V = PIi=1 Vi�i 2 Vh(�).Let Xh(�) be the subspae of Vh(�) of funtions with mean value zero, and letX = fV 2 V : V �M1 = 0g be the orresponding subspae of V with 1 := (1)Ii=1:V = IXi=1 Vi�i 2 Xh(�) , V = (Vi)Ii=1 2 X: (13)Upon expanding the funtions V , �, ~V , ~� in terms of the basis funtionsf�igIi=1 and testing against the latter, a disretization of system (5){(8) an bewritten in matrix form as follows: �nd ~V 2 ~V; ~� 2 ~V; ~K 2 ~X;V 2 X suh that2664� ~A 0 ~M 00 �A 0 M~M 0 0 � ~N0 M � ~NT 0 37752664 ~VK~KV 3775 = 2664� ~A ~X0~00 3775 : (14)We disuss the solvability of (14) and propose an algorithm for its solution in x4.



4 E. B�ansh, P. Morin, and R. H. Nohetto4. Shur Complement ApproahConsider the following vetor equation with a (possibly singular) square blok A:�A BC D� �UQ� = �FG� :Let A be symmetri with (nontrivial) kernel ker(A). Then the range Y of A isthe orthogonal omplement of ker(A). Let S : Y ! Y be the right inverse of A:AS = Id on Y. If P denotes the orthogonal projetion onto ker(A), we haveSAV = V � PV = (Id� P )V 8 V 2 RI : (15)The Shur omplement equation for Q then reads(�CSB +D)Q+ CPU = G� CSF : (16)Solvability of this system depends on the struture of the two terms on the lefthand-side of (16). We intend to apply this splitting to (14), whih involves dealingwith the blok ontaining ~A and A on the diagonal.Sine the kernel of A in (12) is Z = spanf1g, with 1 = (1)Ii=1, the range ofA is Y = Z?. Then the spaes X, de�ned in (13), and Y are related as follows:V 2 X , MV 2 Y: (17)Let S : Y ! Y be the right inverse of A and P : V ! Z be the orthogonalprojetion into Z, thereby satisfying (15) with P = 1
11�1 .Applying (16) to (14) with vetors U = [~V ;K℄T and Q = [ ~K;V ℄T , weobtain the symmetri system� 1� ~M ~S ~M ~N~NT �MSM� � ~KV � = �� 1� ~M ~S ~A ~X + ~M ~P ~VMPK � : (18)We observe that ~S ~A ~X makes sense beause ~A ~X 2 ~Y; this ould be viewed as aompatibility ondition. To investigate the solvability of (18), we note that bothomponents of Q satisfy ~K 2 ~X and V 2 X or, in view of (17), ~M ~K 2 ~Y, andMV 2 Y. Sine the upper left blok of (18), ~M ~S ~M : ~X ! ~M~Y, is nonsingularwith inverse ~M�1 ~A ~M�1, we an apply (16) again to arrive at�� ~NT ~M�1 ~A ~M�1 ~N +MSM�V +MPK = � ~NT ~M�1 ~A ~X: (19)Let � := Id � M1
M1M1�M1 be the orthogonal projetion onto X. Sine MPK 2span fM1g = X?, applying � to (19) yields the �nal form of the Shur omple-ment : ��� ~NT ~M�1 ~A ~M�1 ~N +MSM��V = �� ~NT ~M�1 ~A ~X; (20)beause �V = V . The ensuing matrix of this redued system is nonsingular be-ause �MSM� : X! X is symmetri and positive de�nite, and the �rst term in(20) is symmetri and positive semi-de�nite.The method atually implemented onsists of �rst solving for V using (20),next solving ~M ~V = ~NV for ~V and �nally updating ~X via ~X + � ~V .



Finite Element Methods for Surfae Di�usion 55. Graph Formulation and Error AnalysisWe now disuss the ase of � being a graph. To this end let 
 � IRd�1 witht 2 [0; T ℄ for some T > 0, d 2 f2; 3g and �(t) := f(x; u(t; x)) j x 2 
g � IRd.If Q(u) := p1 + jruj2 denotes the elementary surfae area, then we have thefollowing formulas for the geometri quantities �; � and V :� = 1Q(u) (�ru; 1)T ; � = r � � ruQ(u)�; V = �tuQ(u) ; (21)with r = (�x1 ; : : : ; �xd�1)T . Aording to (21), (1) an be written as the system�tuQ(u) = ��S�; � = r � �ruQ �: (22)This system has to be supplied with suitable initial and boundary onditions. Werestrit ourselves to periodi boundary onditions for ease of presentation, butNeumann and Dirihlet boundary onditions an be handled as well [2℄. In thisvein, let 
 be a parallelogram and X be the subspae of H1(
) with periodiboundary values. Then, (22) admits the following variational formulation: �nd uand � with u(t); �(t) 2 X for a.e. t and u(0) = u0 in a suitable sense, ful�llingh�tu;  i � Z�rS� � rS = 0 8  2 X ; (23)h�; 'i+ Z
 ru � r'Q(u) = 0 8 � 2 X ; (24)where h�; �i denotes the L2(
) inner produt; ompare with x2. Note that, in on-trast to the mean urvature ow of graphs [6, 7℄, (23) does not have the weightQ(u)�1 beause the equation is written on �.If Xh is a �nite element subspae of X , then a semi spae disrete shemeis obvious from (23) and (24). In partiular, upon taking  = 1 2 Xh we dedueexat volume onservation ddt R
 uh = 0. We an also prove stability as well asoerivity properties, whih are ruial in deriving the following error estimate [2℄.Theorem 5.1 (A Priori Error Estimate for the Semidisrete Sheme). Let u; � besuÆiently smooth in [0; T ℄, and let k � 1 be the polynomial degree of Xh. Then,there exists a onstant C > 0, solely depending on the regularity of u; � and T ,suh that supt2[0;T ℄�jj(u� uh)(t)jj2L2(
) + Z�h(t) jrSu�rSuh)j2� � C h2k;Z T0 �jj(�� �h)(t)jj2L2(
) + Z�h(t) jrS��rS�hj2� dt � C h2k: (25)Sine (25) involve the tangential gradients rSu and rS�, the order of onvergeneO(hk) is optimal. This is orroborated by the numerial experiments of [2℄, whihare obtained via a semi-impliit time disretization similar to [7℄. It onsists ofwriting the equations for step n+1 on the urrent surfae �n, whih linearizes thesystem and allows for a Shur omplement solver similar to that in x4.



6 E. B�ansh, P. Morin, and R. H. Nohetto6. Implementation and SimulationsIn this setion we explain briey the implementation of both the parametri andgraph formulations within ALBERT [12, 13℄, and doument their performane.6.1. Mesh Regularization
Figure 1. Pathologial ear formation in the evolution of a 4� 1� 1prism by surfae di�usion. Surfae at time t = 0 and t = 0:07.

Figure 2. Steps towards the pathologial formation of ears. Zoominto a vertex of the initial prism with surfaes at t = k � 10�3 for0 � k � 9. After 6 time steps some triangles ollapse into segments,thereby making the mesh degenerate and produing numerial artifats.The geometri ow by parametri surfae di�usion is not as gentle as the orre-sponding mean urvature ow [8℄, and leads to severe mesh distortions. Even if theparametri formulation of x3 allows orners and edges, whih are rather singularfor surfae di�usion, they give rise to fast node motion and mesh distortion. Thisis illustrated by the reation of ears during the evolution of a 4 � 1 � 1 prismin Figs. 1 and 2 towards a ball. This is learly a numerial artifat and annotbe ured by mesh re�nement and/or oarsening. We use mesh regularization in-stead, whih onsists of replaing eah node by the projetion onto the surfae of



Finite Element Methods for Surfae Di�usion 7a weighted average of the nodes belonging to its �nite element star, see also [11℄.This regularization is equivalent to one time step of the disretized (tangential)heat equation. Its bene�ial e�et is reeted in the subsequent simulations ofFigs. 3-6, all omputed with foring term � = 0.6.2. Example 1: Smoothing E�etWe illustrate the evolution of a 4�1�1 prism towards a ball with the same volumein Fig. 3, thereby showing the smoothing e�et of surfae di�usion.
t = 0 t = 0:02 t = 0:04

t = 0:08 t = 0:16 t = 0:32Figure 3. Smoothing e�et of surfae di�usion. Evolution of a 4 �1� 1 prism towards a ball with equal volume at various time instants.6.3. Example 2: Pinh-O� in Finite Time
t = 0 t = 0:32t = 0:08 t = 0:36t = 0:16 t = 0:38Figure 4. Pinh-o� in �nite time. Evolution of an 8� 1� 1 prism atvarious time instants leading to a dumbbell and usp formation.



8 E. B�ansh, P. Morin, and R. H. NohettoSurfae di�usion is not always a regularizing ow and may in fat reate sin-gularities in �nite time depending on the initial on�guration. This is depitedin Figs. 4-6 whih orrespond to prisms with larger aspet ratios than before.Figs. 4-5 display the evolution of an 8� 1� 1 prism towards a dumbbell and uspformation in �nite time. Inreasing the aspet ratio of the prism seems to be ane�etive mehanism to produe several simultaneous usps as reported in Fig. 6.
t = 0:390 t = 0:394 t = 0:398 t = 0:402 t = 0:404Figure 5. Detailed view of the pinh-o� for the 8 � 1 � 1 prism.Mesh regularization appears to ure mesh distortion until the momentof pinh-o� when the elements are rather elongated but not degenerate.

t = 0 t = 0:48t = 0:16 t = 0:64t = 0:32 t = 0:72Figure 6. Evolution of a 12� 1� 1 prism towards two simultaneoususps revealing that the number of singularities depends on the aspetratio of the initial prism.6.4. Example 3: Mushroom FormationWe onsider the graph formulation of x5 of a urve in 2d starting from the initialondition u0(x) = 1 + Æ(x), where Æ is a steep perturbation with zero meanvalue(see Figure 7). Sine the slope seems to beome vertial around t = 4:8� 10�5 inFig. 7, the lassial solution might ease to exist in �nite time.To investigate the formation of singularities in �nite time, we use the para-metri formulation with the same initial data upon embedding the graph of u0into a losed urve (see Figure 8 top left). For the time sale of Fig. 7, the e�et of



Finite Element Methods for Surfae Di�usion 9this extension is negligible. Fig. 8 displays a sequene of solutions obtained for thesame eight time instants of Fig. 7. It is worth notiing the striking similarity ofthe solutions obtained with both methods. Even though the parametri solutiondevelops a mushroom shape at t = 9:6� 10�5, and thus the solution to the graphformulation is questionable thereon, they still exhibit an exellent quantitativeagreement for t > 9:6� 10�5 (ompare the last two plots of Figs. 8 and 7).
t = 0 t = 8� 10�6 t = 16 � 10�6 t = 24 � 10�6

t = 4:8� 10�5 t = 9:6� 10�5 t = 19:2 � 10�5 t = 38:4 � 10�5Figure 7. Evolution of a graph in 2d starting from u0(x) = 1+ Æ(x)with a steep perturbation Æ(x). In all plots for various times t, thex-axis ranges from �1 to 1, and the y-axis ranges from 0 to 1:5.
t = 0 t = 8� 10�6 t = 16 � 10�6 t = 24 � 10�6

t = 4:8� 10�5 t = 9:6� 10�5 t = 19:2 � 10�5 t = 38:4 � 10�5Figure 8. Mushroom formation. Parametri evolution of a urve in2d with the same initial ondition and the same times of Fig. 7. Theretangles in thin lines are [�1; 1℄ � [0; 1:5℄. The e�et of embeddingthe graph of Fig. 7 into a lose urve (see top-left piture) is negligiblefor the time sale of this evolution.
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