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Abstract

We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM)
for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is
based on residual-type a posteriori error estimators and Dörfler’s strategy is assumed for marking.
We first prove a contraction property for a suitable definition of total error, analogous to the one
used by Diening and Kreuzer [6] and equivalent to the total error defined by Cascón et al. [2]. This
contraction implies linear convergence of the discrete solutions to the exact solution in the usual H1

Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The
results are based on ideas from [6] and extend the theory from [2] to a class of nonlinear problems
which stem from strongly monotone and Lipschitz operators.

Keywords: nonlinear elliptic equations; adaptive finite element methods; optimality.

1 Introduction

The main goal of this article is the study of convergence and optimality properties of an adaptive finite el-
ement method (AFEM) for quasi-linear elliptic partial differential equations over a polygonal/polyhedral
domain Ω ⊂ Rd (d = 2, 3) having the form{

Au := −∇ ·
[
α( · , |∇u|2)∇u

]
= f in Ω

u = 0 on ∂Ω,
(1)

where α : Ω × R+ → R+ is a bounded positive function whose precise properties will be stated in
Section 2 below, and f ∈ L2(Ω) is given. The assumptions on α guarantee that the nonlinear operator
A is Lipschitz and strongly monotone; see (11)–(12). This kind of problems arises in many practical
situations; see Section 2.2 below.

AFEMs are an effective tool for making an efficient use of the computational resources, and for
certain problems, it is even indispensable to their numerical resolvability. The ultimate goal of AFEMs
is to equidistribute the error and the computational effort obtaining a sequence of meshes with optimal
complexity. Adaptive methods are based on a posteriori error estimators, that are computable quantities
depending on the discrete solution and data, and indicate a distribution of the error. A quite popular,
natural adaptive version of classical finite element methods consists of the loop

Solve → Estimate → Mark → Refine, (2)

that is: solve for the finite element solution on the current grid, compute the a posteriori error estimator,
mark with its help elements to be subdivided, and refine the current grid into a new, finer one.

A general result of convergence for linear problems has been obtained by Morin, Siebert and Veeser [17],
where very general conditions on the linear problems and the adaptive methods that guarantee conver-
gence are stated. Following these ideas a (plain) convergence result for elliptic eigenvalue problems has
been proved in [8]. On the other hand, optimality of adaptive methods using Dörfler’s marking strat-
egy [7] for linear elliptic problems has been stated by Stevenson[23] and Cascón, Kreuzer, Nochetto and
Siebert[2]. Linear convergence of an AFEM for elliptic eigenvalue problems has been proved in [13], and
optimality results can be found in [9, 5]. For a summary of convergence and optimality results of AFEM
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we refer the reader to the survey [19] and the references therein. We restrict ourselves to those references
strictly related to our work.

Well-posedness and a priori finite element error estimates for problem (1) have been stated in [4].
A posteriori error estimators for nonconforming approximations have been developed in [20]. Linear
convergence of an AFEM for the ϕ-Laplacian problem in a context of Sobolev-Orlicz spaces has been
established in [6]. Recently, the (plain) convergence of an adaptive inexact FEM for problem (1) has
been proved in [10], where only a discrete linear system is solved before each adaptive refinement; albeit
with stronger assumptions on α.

In this article we consider a standard adaptive loop of the form (2) based on classical residual-type a
posteriori error estimators, where the Galerkin discretization for problem (1) is considered. We use the
Dörfler’s strategy for marking and assume a minimal bisection refinement. The goal of this paper is to
prove the optimal complexity of this AFEM by stating two main results. The first one establishes the
linear convergence of the adaptive loop through a contraction property. More precisely, we will prove
the following

Theorem 1.1 (Contraction property). Let u be the weak solution of problem (1) and let {Uk}k∈N0
be

the sequence of discrete solutions computed through the adaptive algorithm described in Section 4. Then,
there exist constants 0 < ρ < 1 and µ > 0 such that

[F(Uk+1)−F(u)] + µ η2
k+1 ≤ ρ2

(
[F(Uk)−F(u)] + µ η2

k

)
, ∀ k ∈ N0, (3)

where [F(Uk) − F(u)] is a notion equivalent to the energy error and ηk denotes the global a posteriori
error estimator in the mesh corresponding to the step k of the iterative process.

The second main result shows that, if the solution of the nonlinear problem (1) can be ideally approx-
imated with adaptive meshes at a rate (DOFs)−s, then the adaptive algorithm generates a sequence of
meshes and discrete solutions which converge with this rate. Specifically, we will prove the following

Theorem 1.2 (Quasi-optimal convergence rate). Assume that the solution u of problem (1) belongs to
As.1 Let {Tk}k∈N0

and {Uk}k∈N0
denote the sequence of meshes and discrete solutions computed through

the adaptive algorithm described in Section 4, respectively. If the marking parameter θ in Dörfler’s
criterion is small enough (cf. (35) and (44)), then[

‖∇(Uk − u)‖2Ω + osc2
Tk(Uk)

] 1
2 = O

(
(#Tk −#T0)−s

)
, ∀ k ∈ N. (4)

The left-hand side is called total error and consists of the energy error plus an oscillation term.

Basically, we follow the steps presented in [2] for linear elliptic problems. However, due to the
nonlinearity of problem (1) the generalization of the mentioned results is not obvious. In particular, for
linear elliptic problems the Galerkin orthogonality property (Pythagoras)

‖∇(U − u)‖2Ω + ‖∇(U − V )‖2Ω = ‖∇(V − u)‖2Ω, (5)

where U is a discrete solution and V is a discrete test function, is used to prove the contraction property
and a generalized Cea’s Lemma (the quasi-optimality of the total error). This orthogonality property
does not hold when we consider problem (1) though. To overcome this difficulty we resort to ideas
from [6], replacing (5) by the trivial equality

[F(U)−F(u)] + [F(V )−F(U)] = [F(V )−F(u)],

where each term in brackets is equivalent to the corresponding term in (5) (cf. Theorem 4.1 below), and
F is the energy functional of (1). We thus establish some kind of quasi-orthogonality relationship for
the energy error (cf. Lemma 5.1) which is sufficient to prove the quasi-optimality of the total error (cf.
Lemma 5.3).

Additionally, it is necessary to study the behavior of the error estimators and oscillation terms when
refining. In order to do that, we need to show that a certain quantity, which measures the difference
of error estimators and oscillation terms between two discrete functions (cf. (27)), is bounded by the

1Roughly speaking, u ∈ As if u can be approximated with adaptive meshes with a rate (DOFs)−s (cf. (48) in Section 6).
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energy of the difference between these functions (see Lemma 3.7 in Section 3.3). This result can be
proved with usual techniques for linear elliptic problems using inverse inequalities and trace theorems,
but the generalization of this result to nonlinear problems requires some new technical results. We
establish suitable hypotheses on the main coefficient α of problem (1) to be able to prove the mentioned
estimation for the nonlinear problems that we study in this article (see (13)).

It is worth mentioning that even though we exploit ideas from [6], our results neither contain, nor
are contained in those from [6]. They prove linear convergence of a ϕ-Laplacian problem in a context of
Sobolev-Orlicz spaces through a contraction property analogous to (3). On the one hand, we prove the
contraction property (3) for a class of nonlinear problems arising from Lipschitz and strongly monotone
operators, which excludes the p-Laplacian, but allows for a spatial dependence of the nonlinearity α, and
uses only the more familiar Sobolev norms, without resorting to Orlicz-Sobolev norms. Even though the
use of these norms has been a breakthrough in the numerical investigation of p-Laplacian-like problems,
being able to leave these norms aside allows for a simpler presentation, with more familiar and easily
computable norms. On the other hand, we also study the complexity of the AFEM in terms of degrees
of freedom, and establish the quasi-optimality bound (4). We thus conclude that the theory developed
for linear problems in [2] can be generalized to quasi-linear problems arising from differential operators
being Lipschitz continuous and strongly monotone, and believe that this is a step forward towards a
more general optimality analysis of AFEMs for nonlinear problems.

This paper is organized as follows. In Section 2 we present specifically the class of problems that we
study and some of its properties, together with some applications that fall into our theory. In Section 3,
we present a posteriori error estimations. In Section 4 we state the adaptive loop that we use for the
approximation of problem (1) and we prove its linear convergence through a contraction property. Finally,
the last two sections of the article are devoted to prove that the AFEM converges with quasi-optimal
rate.

2 Setting and applications

2.1 Setting

Let Ω ⊂ Rd be a bounded polygonal (d = 2) or polyhedral (d = 3) domain with Lipschitz boundary. A
weak formulation of (1) consists in finding u ∈ H1

0 (Ω) such that

a(u;u, v) = L(v), ∀ v ∈ H1
0 (Ω), (6)

where

a(w;u, v) =

∫
Ω

α( · , |∇w|2)∇u · ∇v, ∀w, u, v ∈ H1
0 (Ω),

and

L(v) =

∫
Ω

fv, ∀ v ∈ H1
0 (Ω).

In order to make this presentation clearer, we define β : Ω× R+ → R+ by

β(x, t) :=
1

2

∫ t2

0

α(x, r) dr,

and note that from Leibniz’s rule the derivative of β as a function of its second variable satisfies

D2β(x, t) :=
∂β

∂t
(x, t) = tα(x, t2).

We require that α is C1 as a function of its second variable and there exist positive constants ca and Ca
such that

ca ≤
∂2β

∂t2
(x, t) = α(x, t2) + 2t2D2α(x, t2) ≤ Ca, ∀x ∈ Ω, t > 0. (7)

Since α(x, t2) = D2β(x,t)−D2β(x,0)
t = ∂2β

∂t2 (x, r), for some 0 < r < t the last assumption yields

ca ≤ α(x, t) ≤ Ca, ∀x ∈ Ω, t > 0. (8)
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It is easy to check that the form a is linear and symmetric in its second and third variable. Additionally,
from (8) it follows that a is bounded,

|a(w;u, v)| ≤ Ca‖∇u‖Ω‖∇v‖Ω, ∀w, u, v ∈ H1
0 (Ω), (9)

and coercive,
ca‖∇u‖2Ω ≤ a(w;u, u), ∀w, u ∈ H1

0 (Ω).

Now, we sketch the proof that (7) is sufficient to guarantee the well-posedness of problem (6). Let
γ : Ω× Rd → R+ be given by

γ(x, ξ) := β(x, |ξ|) =
1

2

∫ |ξ|2
0

α(x, r) dr,

and note that if ∇2γ denotes the gradient of γ as a function of its second variable, then

∇2γ(x, ξ) = α(x, |ξ|2)ξ, ∀x ∈ Ω, ξ ∈ Rd. (10)

Condition (7) means that D2β is Lipschitz and strongly monotone as a function of its second variable
and it can be seen that ∇2γ so is [26].

If A : H1
0 (Ω)→ H−1(Ω) is the operator given by

〈Au, v〉 := a(u;u, v), ∀u, v ∈ H1
0 (Ω),

problem (6) is equivalent to the equation
Au = L,

where L ∈ H−1(Ω) is given. It is easy to check that the properties of ∇2γ are inherited by A, i.e., A is
Lipschitz and strongly monotone. More precisely, there exist positive constants CA and cA such that

‖Au−Av‖H−1(Ω) ≤ CA‖∇(u− v)‖Ω, ∀u, v ∈ H1
0 (Ω), (11)

and
〈Au−Av, u− v〉 ≥ cA‖∇(u− v)‖2Ω, ∀u, v ∈ H1

0 (Ω). (12)

As a consequence of (11) and (12), problem (6) has a unique stable solution [25, 26], which will be
denoted throughout this article by u.

In order to have the behavior of the error estimator and oscillation terms under control when refining,
we need some additional assumptions on α(x, t) and D2α(x, t)t with respect to the space variable x ∈ Ω.
From now on we assume that α(·, t) and D2α(·, t)t are piecewise Lipschitz over an initial triangulation
T0 of Ω uniformly in t > 0. More precisely, there exists a constant Cα > 0 such that

|α(x, t)−α(y, t)|+ |D2α(x, t)t−D2α(y, t)t| ≤ Cα|x−y|, for all x, y ∈ T , all T ∈ T0 and all t > 0, (13)

where T0 is the initial triangulation of the domain Ω.

2.2 Applications

As we saw in the last section, condition (7) guarantees the existence and uniqueness of the solutions of
problem (6), and it is a standard assumption allowing a unified theory [26] in a framework of the familiar
Sobolev norms. In this section we show that there exist several applications in which (7) is reasonable.

Example 2.1. Problems like (6) arise in electromagnetism; see the presentation from nonlinear Maxwell
equations in [15] and for nonlinear magnetostatic field in [3]. Concrete formulas such as

α(t) =
1

µ0

(
a+ (1− a)

t8

t8 + b

)
, (14)

appear in [15], and characterize the reluctance of stator sheets in the cross-sections of an electrical
motor [15] (µ0 is the vacuum permeability and a, b > 0 are characteristic constants). Also, x-dependent
nonlinearities arise where typically the function α is independent of x in some subdomain Ω1 ⊂ Ω and
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constant on the complement, where these subdomains correspond to ferromagnetic and other media,
respectively. In the case of the nonlinearity (14) on Ω1, we have

α(x, t) =


1

µ0

(
a+ (1− a)

t8

t8 + b

)
if x ∈ Ω1, t > 0

a if x ∈ Ω \ Ω1,

where a > 0 is a constant magnetic reluctance.
The formula

α(t) =

(
1− (c− d)

1

t2 + c

)
,

is stated in [3] and describes the magnetostatic field (c > d > 0 are constants).
It is easy to check that the functions α just described satisfy assumption (7) for all t > 0.

In the examples that follow, α does not fulfill (7) for all t > 0 but it does for t in any interval of
the form (0, T ) with T > 0. Therefore, under the assumption that an upper bound for the gradient of
the solution |∇u| is known, the function α could be replaced by one satisfying (7) without changing the
solution. This replacement of α is not needed in practice, but is rather a theoretical tool for proving
that this assumption holds. We note that in several applications, an upper bound for the gradient of the
solution |∇u| is known or can be computed.

Example 2.2. For the equation of prescribed mean curvature, the unknown u defines the graph of the
surface whose curvature is prescribed by f and

α(t) =
1

(1 + t)
1
2

.

This function α satisfies (as can be easily checked) assumption (7) on any interval of the form (0, T )
with T > 0. Therefore, this example falls into our theory when we are computing a solution with
|∇u|2 uniformly bounded. This assumption is made in [16] and can be proved for several domains and
right-hand side functions f .

Example 2.3. In [21], a problem like (6) arises from Forchheimer flow in porous media and Ergun’s law
for incompressible fluid flow. In the case of Forchheimer’s law the unknown u denotes the pressure and

α(t) =
2

c+
√
c2 + dt

1
2

,

in the absence of gravity, where c = µ
k (µ is the viscosity of the fluid, k = k(x) is the permeability of

the medium) and d = 4bρ (b is a dynamic viscosity and ρ is the fluid density), all taken to be uniformly
positive. Again, it is easy to check that this function α satisfies (7) on any interval of the form (0, T )
with T > 0. Under the constraint that |∇u|2 is uniformly bounded from above, as is done in [21], this
example falls within our theory.

Example 2.4. The concept of fictitious gas has been introduced to regularize the transonic flow problem
for shock free airfoil design (see [4] and the references therein). The velocity potential u for the fictitious
gas is governed by an equation of the form (6) with

α(t) =

(
1− γ − 1

2
t

) 1
γ−1

.

The flow remains subsonic when γ ≤ −1, and in this case α satisfies assumption (7) on any interval of
the form (0, T ) with T > 0; notice that the case γ = −1 coincides with Example 2.2.

3 Discrete solutions and a posteriori error analysis

3.1 Discretization

In order to define discrete approximations to problem (6) we will consider triangulations of the domain
Ω. Let T0 be an initial conforming triangulation of Ω, that is, a partition of Ω into d-simplices such that
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if two elements intersect, they do so at a full vertex/edge/face of both elements. Let us also assume that
the initial mesh T0 is labeled satisfying condition (b) of Section 4 in Ref. [24]. Let T denote the set of all
conforming triangulations of Ω obtained from T0 by refinement using the bisection procedure described
by Stevenson [24], which coincides, (after some re-labeling) with the newest vertex bisection procedure
in two dimensions and the Kossaczký’s procedure in three dimensions [22].

Due to the processes of refinement used, the family T is shape regular, i.e.,

sup
T ∈T

sup
T∈T

diam(T )

ρT
=: κT <∞,

where diam(T ) is the diameter of T , and ρT is the radius of the largest ball contained in it. Throughout
this article, we only consider meshes T that belong to the family T, so the shape regularity of all of
them is bounded by the uniform constant κT which only depends on the initial triangulation T0 [22].
Also, the diameter of any element T ∈ T is equivalent to the local mesh-size HT := |T |1/d, which in turn
defines the global mesh-size HT := max

T∈T
HT . Also, the complexity of the refinement can be controlled,

as described in Lemma 6.3 below.
Hereafter, we denote the subset of T consisting of neighbors of T by NT (T ) and the union of T and

its neighbors in T by ωT (T ). More precisely,

NT (T ) := {T ′ ∈ T | T ′ ∩ T 6= ∅}, ωT (T ) :=
⋃

T ′∈NT (T )

T ′.

For the discretization we consider the Lagrange finite element spaces consisting of continuous functions
vanishing on ∂Ω which are piecewise linear over a mesh T ∈ T, i.e.,

VT := {V ∈ H1
0 (Ω) | V|T ∈ P1(T ), ∀ T ∈ T }. (15)

The discrete problem associated to (6) consists in finding U ∈ VT such that

a(U ;U, V ) = L(V ), ∀V ∈ VT . (16)

Note that the discrete problem (16) has a unique solution because A|VT is Lipschitz and strongly mono-

tone (cf. (11)–(12)).
At this point, it is important to remark that the discrete problem (16) is also nonlinear, and for our

analysis we will assume that it can be solved exactly in every mesh T ∈ T. However, this assumption is
usual even though in practice, even for discrete linear problems, we compute only approximations to the
solution of discrete problems. The optimality of inexact methods has been studied for linear problems
in [23, 18], and a generalization to nonlinear problems is subject of future work.

3.2 A posteriori error estimators

In this section we present the a posteriori error estimators for the discrete approximation (16) of prob-
lem (6) and state results showing their reliability and efficiency. These estimations will be useful in order
to prove the optimality of the AFEM in Section 6.

The residual of V ∈ VT is given by

〈R(V ), v〉 := a(V ;V, v)− L(v), ∀ v ∈ H1
0 (Ω).

Integrating by parts on each T ∈ T we have that

〈R(V ), v〉 =
∑
T∈T

(∫
T

RT (V )v +

∫
∂T

JT (V )v

)
, ∀ v ∈ H1

0 (Ω), (17)

where RT (V ) denotes the element residual given by

RT (V )|T := −∇ · [α( · , |∇V |2)∇V ]− f, ∀T ∈ T , (18)

and JT (V ) the jump residual given by

JT (V )|S :=
1

2

[
(α( · , |∇V |2)∇V )|T1 · ~n1 + (α( · , |∇V |2)∇V )|T2 · ~n2

]
, (19)
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for each interior side S, and JT (V )|S := 0, if S is a side lying on the boundary of Ω. Here, T1 and T2

denote the elements of T sharing S, and ~n1 and ~n1 are the outward unit normals of T1 and T2 on S,
respectively.

We define the local a posteriori error estimator ηT (V ;T ) of V ∈ VT by

η2
T (V ;T ) := H2

T ‖RT (V )‖2T +HT ‖JT (V )‖2∂T , ∀T ∈ T , (20)

and the global error estimator ηT (V ) by

η2
T (V ) :=

∑
T∈T

η2
T (V ;T ).

In general, if Ξ ⊂ T we denote
(∑

T∈Ξ η
2
T (V ;T )

) 1
2 by ηT (V ; Ξ).

Recall that if V ∈ VT is the Scott-Zhang interpolant of v ∈ H1
0 (Ω) then

‖v − V ‖T +H
1/2
T ‖v − V ‖∂T . HT ‖∇v‖ωT (T ), ∀T ∈ T .

Also 〈R(U), V 〉 = 0 and thus 〈R(U), v〉 = 〈R(U), v−V 〉 because V ∈ VT (cf. (16)). Using (17), Hölder’s
and Cauchy-Schwartz’s inequalities and the definition (20) we obtain:

|〈R(U), v〉| .
∑
T∈T

ηT (U ;T ) ‖∇v‖ωT (T ), ∀ v ∈ H1
0 (Ω). (21)

The next lemma establishes a local lower bound for the error. Its proof follows the usual techniques
taking into account that if u denotes the solution of problem (6),

|〈R(V ), v〉| = |a(V ;V, v)− L(v)| = |a(V ;V, v)− a(u;u, v)| ≤ CA‖∇(V − u)‖ω‖∇v‖ω,

for V ∈ VT , whenever v ∈ H1
0 (Ω) vanishes outside of ω, for any ω ⊂ Ω.

Lemma 3.1 (Local lower bound). Let u ∈ H1
0 (Ω) be the solution of problem (6). Let T ∈ T and T ∈ T

be fixed. If V ∈ VT ,2

ηT (V ;T ) . ‖∇(V − u)‖ωT (T ) +HT

∥∥∥RT (V )−RT (V )
∥∥∥
ωT (T )

+H
1
2

T

∥∥∥JT (V )− JT (V )
∥∥∥
∂T
, (22)

where RT (V )|T ′ denotes the mean value of RT (V ) on T ′, for all T ′ ∈ NT (T ), and for each side S ⊂ ∂T ,

JT (V )|S denotes the mean value of JT (V ) on S.

The last result is known as local efficiency of the error estimator. According to the lemma, if a local
estimator is large, then so is the corresponding local error, provided the last two terms in the right-hand
side of (22) are relatively small.

We define the local oscillation corresponding to V ∈ VT by

osc2
T (V ;T ) := H2

T

∥∥∥RT (V )−RT (V )
∥∥∥2

T
+HT

∥∥∥JT (V )− JT (V )
∥∥∥2

∂T
, ∀T ∈ T ,

and the global oscillation by

osc2
T (V ) :=

∑
T∈T

osc2
T (V ;T ).

In general, if Ξ ⊂ T we denote
(∑

T∈Ξ osc2
T (V ;T )

) 1
2 by oscT (V ; Ξ).

As an immediate consequence of the last lemma, adding over all elements in the mesh we obtain the
following

Theorem 3.2 (Global lower bound). Let u ∈ H1
0 (Ω) denote the solution of problem (6). Then, there

exists a constant CL = CL(d, κT, CA) > 0 such that

CLη
2
T (V ) ≤ ‖∇(V − u)‖2Ω + osc2

T (V ), ∀V ∈ VT , ∀ T ∈ T.
2From now on, we will write a . b to indicate that a ≤ Cb with C > 0 a constant depending on the data of the problem

and possibly on shape regularity κT of the meshes. Also a ' b will indicate that a . b and b . a.
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We conclude this section with two upper estimations for the error.

Theorem 3.3 (Global upper bound). Let u ∈ H1
0 (Ω) be the solution of problem (6). Let T ∈ T and let

U ∈ VT be the solution of the discrete problem (16). Then, there exists CU = CU (d, κT, cA) > 0 such
that

‖∇(U − u)‖2Ω ≤ CUη2
T (U). (23)

Proof. Let u ∈ H1
0 (Ω) be the solution of problem (6). Let T ∈ T and let U ∈ VT be the solution of the

discrete problem (16). Since A is strongly monotone (cf. (12)), and u is the solution of problem (6) we
have

cA‖∇(U − u)‖2Ω ≤ 〈AU −Au,U − u〉 = a(U ;U,U − u)− L(U − u) = 〈R(U), U − u〉.

Now, using (21) with v = U − u the assertion (23) follows with CU = CU (d, κT, cA) > 0.

Theorem 3.4 (Localized upper bound). Let T ∈ T and let T∗ ∈ T be a refinement of T . Let R denote
the subset of T consisting of the elements which are refined to obtain T∗, that is, R := {T ∈ T | T 6∈ T∗}.
Let U ∈ VT and U∗ ∈ VT∗ be the solutions of the discrete problem (16) in VT and VT∗ , respectively.
Then, there exists a constant CLU = CLU (d, κT, cA) > 0 such that

‖∇(U − U∗)‖2Ω ≤ CLUη2
T (U ;R). (24)

Proof. Let T , T∗, R, U and U∗ be as in the assumptions of the theorem. Analogously to the last proof,
using that A is strongly monotone and that U∗ is the solution of problem (16) in VT∗ we have that

cA‖∇(U − U∗)‖2Ω ≤ 〈AU −AU∗, U − U∗〉 = a(U ;U,U − U∗)− L(U − U∗) = 〈R(U), U − U∗〉. (25)

Now, we build, using the Scott-Zhang operator, an approximation V ∈ VT of U −U∗ that coincides with
U − U∗ over all unrefined elements T ∈ T \ R, and satisfies (see [2] for details)

‖(U − U∗)− V ‖T +H
1/2
T ‖(U − U∗)− V ‖∂T .

{
HT ‖∇(U − U∗)‖ωT (T ) if T ∈ R,
0 if T ∈ T \ R.

Since V ∈ VT , 〈R(U), U − U∗〉 = 〈R(U), (U − U∗) − V 〉 (cf. (16)). Using (17), Hölder’s and Cauchy-
Schwartz’s inequalities and the definition (20) we obtain:

|〈R(U), U − U∗〉| .
∑
T∈R

ηT (U ;T )‖∇(U − U∗)‖ωT (T ). (26)

Finally, from (25) and (26) the assertion (24) follows with CLU = CLU (d, κT, cA) > 0.

3.3 Estimator reduction and perturbation of oscillation

In order to prove the contraction property it is necessary to study the effects that refinement has upon
the error estimators and oscillation terms. We thus present two main results in this section. The first
one is related to the error estimator and it will be used in Theorem 4.2.

Proposition 3.5 (Estimator reduction). Let T ∈ T and let M be any subset of T . Let T∗ ∈ T be
obtained from T by bisecting at least n ≥ 1 times each element in M. If V ∈ VT and V∗ ∈ VT∗ , then

η2
T∗(V∗) ≤ (1 + δ)

{
η2
T (V )− (1− 2−

n
d )η2
T (V ;M)

}
+ (1 + δ−1)CE‖∇(V∗ − V )‖2Ω,

for all δ > 0, where CE > 1 is a constant (cf. Lemma 3.7 below).

The second result is related to the oscillation terms. It will be used to establish the quasi-optimality
for the error (see Lemma 5.3) and to prove Lemma 5.4 in the next section.

Proposition 3.6 (Oscillation perturbation). Let T ∈ T and let T∗ ∈ T be a refinement of T . If V ∈ VT
and V∗ ∈ VT∗ , then

osc2
T (V ; T ∩ T∗) ≤ 2 osc2

T∗(V∗; T ∩ T∗) + 2CE‖∇(V∗ − V )‖2Ω,

where CE > 1 is a constant (cf. Lemma 3.7 below).
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In order to prove Propositions 3.5 and 3.6 we observe that if we define for T ∈ T and V,W ∈ VT

gT (V,W ;T ) := HT ‖RT (V )−RT (W )‖T +H
1
2

T ‖JT (V )− JT (W )‖∂T , (27)

then from the definition of the local error estimators (20) and the triangle inequality it follows that

ηT (W ;T ) ≤ ηT (V ;T ) + gT (V,W ;T ), ∀T ∈ T , (28)

and analogously
oscT (W ;T ) ≤ oscT (V ;T ) + gT (V,W ;T ), ∀T ∈ T . (29)

After proving that gT (V,W ;T ) is bounded by ‖∇(V −W )‖ωT (T ), the first terms on the right-hand sides
of (28) and (29) may be treated as in [2, Corollary 3.4 and Corollary 3.5] for linear elliptic problems,
respectively, and the assertions of Propositions 3.5 and 3.6 follow. On the other hand, while proving
that gT (V,W ;T ) . ‖∇(V −W )‖ωT (T ) is easy for linear problems by using inverse inequalities and trace
theorems, it is not so obvious for nonlinear problems. Therefore, we omit the details of the proofs of
the last two propositions, but we prove the following lemma, which is the main difference with linear
problems [2].

Lemma 3.7. Let T ∈ T and let gT be given by (27). Then, there holds that

gT (V,W ;T ) . ‖∇(V −W )‖ωT (T ), ∀V,W ∈ VT , ∀T ∈ T . (30)

Consequently, there exists a constant CE > 1 which depends on d, κT and the problem data, such that∑
T∈T

g2
T (V,W ;T ) ≤ CE‖∇(V −W )‖2Ω, ∀V,W ∈ VT . (31)

In order to prove Lemma 3.7, we define

ΓV (x) := ∇2γ(x,∇V (x)) = α(x, |∇V (x)|2)∇V (x), ∀x ∈ Ω, (32)

and prove first the following auxiliary result.

Lemma 3.8. Let T ∈ T . Let D2
2γ be the Hessian matrix of γ as a function of its second variable. If

‖D2
2γ(x, ξ)−D2

2γ(y, ξ)‖2 ≤ Cγ |x− y|, ∀x, y ∈ T, ξ ∈ Rd,

for some constant Cγ > 0, then for all V,W ∈ P1(T ), there holds that

|ΓV (x)− ΓW (x)− ΓV (y) + ΓW (y)| ≤ Cγ‖∇(V −W )‖L∞(T )|x− y|, ∀x, y ∈ T.

Proof. Let T ∈ T . Let V,W ∈ P1(T ) and x, y ∈ T . Taking into account that V and W are linear over
T , we denote v := ∇V (x) = ∇V (y) and w := ∇W (x) = ∇W (y). Thus, we have that

|ΓV (x)− ΓW (x)− ΓV (y) + ΓW (y)| = |∇2γ(x,v)−∇2γ(x,w)−∇2γ(y,v) +∇2γ(y,w)|

=

∣∣∣∣∫ 1

0

[
D2

2γ(x,w + r(v −w))−D2
2γ(y,w + r(v −w))

]
(v −w) dr

∣∣∣∣
≤ Cγ |x− y||v −w|,

which completes the proof of the lemma.

We conclude this section with the proof of Lemma 3.7, where we use that

RT (V )|T = −∇ · ΓV − f, and JT (V )|S =
1

2

(
ΓV |T1 · ~n1 + ΓV |T2 · ~n2

)
, S ⊂ Ω,

which is an immediate consequence of (32) and the definitions of the element residual (18) and the jump
residual (19).
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Proof of Lemma 3.7. 1 Taking into account (10), we have that, if x ∈ Ω and ξ ∈ Rd,

(D2
2γ(x, ξ))ij = 2D2α(x, |ξ|2)ξiξj + α(x, |ξ|2)δij ,

for 1 ≤ i, j ≤ d, where δij denotes the Kronecker’s delta. Assumption (13) then implies that D2
2γ(x, ξ)

is piecewise Lipschitz as a function of its first variable, i.e., there exists a constant Cγ > 0 such that

‖D2
2γ(x, ξ)−D2

2γ(y, ξ)‖2 ≤ Cγ |x− y|, ∀x, y ∈ T , ξ ∈ Rd,

for all T ∈ T0. In particular this holds for any T ∈ T , T ∈ T, and the assumptions of Lemma 3.8 hold.
2 Let T ∈ T, let V,W ∈ VT and let T ∈ T be fixed. By Lemma 3.8, for the element residual we have

that

‖RT (V )−RT (W )‖T = ‖∇ · (ΓV − ΓW )‖T ≤ H
d
2

T ‖∇ · (ΓV − ΓW )‖L∞(T )

. H
d
2

T sup
x,y∈T
x 6=y

|ΓV (x)− ΓW (x)− ΓV (y) + ΓW (y)|
|x− y|

. H
d
2

T ‖∇(V −W )‖L∞(T ) = ‖∇(V −W )‖T ,

and thus,
HT ‖RT (V )−RT (W )‖T . ‖∇(V −W )‖T . (33)

3 Consider now the term corresponding to the jump residual. If S is a side of T which is interior to Ω
and if T1 and T2 are the elements sharing S, we have that

‖JT (V )− JT (W )‖S =

∥∥∥∥∥∥1

2

∑
i=1,2

(ΓV − ΓW )|Ti
· ~ni

∥∥∥∥∥∥
S

≤
∑
i=1,2

∥∥∥(ΓV − ΓW )|Ti

∥∥∥
S

.
∑
i=1,2

(
H
− 1

2

T ‖ΓV − ΓW ‖Ti +H
1
2

T ‖∇(ΓV − ΓW )‖Ti
)
,

where we have used a scaled trace theorem. Since ∇2γ is Lipschitz as a function of its second variable,
we have that

|ΓV (x)− ΓW (x)| = |∇2γ(x,∇V (x))−∇2γ(x,∇W (x))| . |∇V (x)−∇W (x)|,

for x ∈ Ti (i = 1, 2), and therefore,

‖ΓV − ΓW ‖Ti . ‖∇(V −W )‖Ti , i = 1, 2.

Using the same argument as in 2 , we have that ‖∇(ΓV − ΓW )‖Ti . ‖∇(V −W )‖Ti , for i = 1, 2, and in
consequence,

H
1
2

T ‖JT (V )− JT (W )‖∂T . ‖∇(V −W )‖ωT (T ). (34)

Finally, (30) follows from (33) and (34), taking into account (27).

4 Linear convergence of an adaptive FEM

In this section we present the adaptive FEM and establish one of the main results of this article (Theo-
rem 4.2 below) which guarantees the convergence of the adaptive sequence.

4.1 The adaptive loop

We consider the following adaptive loop to approximate the solution u of problem (6).
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Adaptive Algorithm. Let T0 be an initial conforming mesh of Ω and let θ be a

parameter satisfying 0 < θ < 1. Let k = 0.

1. Uk := SOLVE(Tk).

2. {ηk(T )}T∈Tk := ESTIMATE(Uk, Tk).

3. Mk := MARK({ηk(T )}T∈Tk , Tk, θ).

4. Tk+1 := REFINE(Tk,Mk, n).

5. Increment k and go back to step 1.

Now we explain each module in the last algorithm.

• The module SOLVE. This module takes a conforming triangulation Tk of Ω as input argument
and outputs the solution Uk of the discrete problem (16) in Tk; i.e., Uk ∈ Vk := VTk satisfies

a(Uk;Uk, V ) = L(V ), ∀ V ∈ Vk.

• The module ESTIMATE. This module computes the a posteriori local error estimators ηk(T ) of
Uk over Tk given by ηk(T ) := ηTk(Uk;T ), for all T ∈ Tk, (see (20)).

• The module MARK. Based on the local error estimators, the module MARK selects a subsetMk

of Tk, using an efficient Dörfler’s strategy. More precisely, given the marking parameter θ ∈ (0, 1),
the module MARK selects a minimal subset Mk of Tk such that

ηk(Mk) ≥ θ ηk(Tk), (35)

where ηk(Mk) =
(∑

T∈Mk
η2
k(T )

) 1
2 and ηk(Tk) =

(∑
T∈Tk η

2
k(T )

) 1
2 .

• The module REFINE. Finally, the module REFINE takes the mesh Tk and the subsetMk ⊂ Tk as
inputs. By using the bisection rule described by Stevenson in [24], this module refines (bisects) n
times (where n ≥ 1 is fixed) each element inMk. After that, with the goal of keeping conformity of
the mesh, possibly some further bisections are performed leading to a new conforming triangulation
Tk+1 ∈ T of Ω, which is a refinement of Tk and the output of this module.

From now on, Uk, {ηk(T )}T∈Tk ,Mk, Tk will denote the outputs of the corresponding modules SOLVE,
ESTIMATE, MARK and REFINE, when iterated after starting with a given initial mesh T0.

4.2 An equivalent notion for the error

In order to prove a contraction property for the error of a similar AFEM for linear elliptic problems the
well-known Galerkin orthogonality relationship is used(see [2]). In this case, due to the nonlinearity of
our problem, this property does not hold. We present an equivalent notion of error so that it is possible
to establish a property analogous to the orthogonality (cf. (43) below).

It is easy to check that J : H1
0 (Ω)→ R given by

J (v) :=

∫ 1

0

〈A(rv), v〉 dr =

∫
Ω

γ(·,∇v) dx, ∀ v ∈ H1
0 (Ω),

is a potential for the operator A. More precisely, if W is a closed subspace of H1
0 (Ω), the following claims

are equivalent

• w ∈W is solution of
a(w;w, v) = L(v), ∀ v ∈W, (36)

where L(v) =
∫

Ω
fv, for v ∈ H1

0 (Ω).
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• w ∈W minimizes the functional F : H1
0 (Ω)→ R over W, where F is given by

F(v) := J (v)− L(v) =

∫
Ω

γ(·,∇v)− fv dx, v ∈ H1
0 (Ω). (37)

The following theorem states a notion equivalent to the H1
0 (Ω)-error. The proof follows the ideas

used in [6] and uses that the Hessian matrix of γ, denoted by D2
2γ, is uniformly elliptic, i.e.,

cA|ζ|2 ≤ D2
2γ(x, ξ)ζ · ζ ≤ CA|ζ|2, ∀x ∈ Ω, ξ, ζ ∈ Rd. (38)

This fact holds because ∇2γ is Lipschitz and strongly monotone as a function of its second variable.

Theorem 4.1. Let W be a closed subspace of H1
0 (Ω) and let F be given by (37). If w ∈W satisfies (36),

then
cA
2
‖∇(v − w)‖2Ω ≤ F(v)−F(w) ≤ CA

2
‖∇(v − w)‖2Ω, ∀ v ∈W.

Proof. Let W be a closed subspace of H1
0 (Ω) and let w ∈W be the solution of (36). Let v ∈W be fixed

and arbitrary. For z ∈ R, we define φ(z) := (1− z)w + zv, and note that

φ′(z) = v − w and ∇φ(z) = (1− z)∇w + z∇v.

If we define ψ(z) := F(φ(z)), integration by parts yields

F(v)−F(w) = ψ(1)− ψ(0) = ψ′(0) +

∫ 1

0

ψ′′(z)(1− z) dz. (39)

From (37) it follows that

ψ(z) = F(φ(z)) =

∫
Ω

γ(x,∇φ(z)) dx−
∫

Ω

fφ(z) dx, (40)

and therefore, in order to obtain the derivatives of ψ we first compute ∂
∂z (γ(x,∇φ(z))), for each x ∈ Ω

fixed. On the one hand, we have that

∂

∂z
γ(·,∇φ(z)) = ∇2γ(·,∇φ(z)) · ∂

∂z
∇φ(z) = ∇2γ(·,∇φ(z)) · ∇(v − w),

and then

∂2

∂z2
γ(·,∇φ(z)) = D2

2γ(·,∇φ(z))∇(v − w) · ∇(v − w),

where D2
2γ is the Hessian matrix of γ as a function of its second variable. Thus, taking into account that

φ′′(z) = 0 for all z ∈ R, from (40) it follows that

ψ′′(z) =

∫
Ω

D2
2γ(x,∇φ(z))∇(v − w) · ∇(v − w) dx. (41)

Since w minimizes F over W, we have that ψ′(0) = 0; and using (41), from (39) we obtain that

F(v)−F(w) =

∫ 1

0

∫
Ω

D2
2γ(x,∇φ(z))∇(v − w) · ∇(v − w)(1− z) dx dz.

Finally, since D2
2γ is uniformly elliptic (cf. (38)) we have that

cA
2
‖∇(v − w)‖2Ω ≤

∫ 1

0

∫
Ω

D2
2γ(x,∇φ(z))∇(v − w) · ∇(v − w)(1− z) dx dz ≤ CA

2
‖∇(v − w)‖2Ω,

which concludes the proof.

As an immediate consequence of the last theorem,

cA
2
‖∇(Uk − Up)‖2Ω ≤ F(Uk)−F(Up) ≤

CA
2
‖∇(Uk − Up)‖2Ω, ∀ k, p ∈ N0, k < p, (42)

and the same estimation holds replacing Up by u, the exact weak solution of problem (6).
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4.3 Convergence of the adaptive FEM

Recall that u denotes the exact weak solution of problem (6), and Uk, {ηk(T )}T∈Tk ,Mk, Tk will denote
the outputs of the corresponding modules SOLVE, ESTIMATE, MARK and REFINE of the Adaptive
Algorithm when iterated after starting with a given initial mesh T0.

Taking into account the estimator reduction (Proposition 3.5), the global upper bound (Theorem 3.3)
and (42), we now prove the following result which establish the convergence of the Adaptive Algorithm.

Theorem 4.2 (Contraction property). There exist constants 0 < ρ < 1 and µ > 0 which depend on
d, κT, of problem data, of number of refinements n performed on each marked element and the marking
parameter θ such that

[F(Uk+1)−F(u)] + µη2
k+1 ≤ ρ2([F(Uk)−F(u)] + µη2

k), ∀ k ∈ N0,

where ηk :=
(∑

T∈Tk η
2
k(T )

) 1
2 denotes the global error estimator in Tk.

Proof. Let k ∈ N0, using that

F(Uk)−F(u) = F(Uk)−F(Uk+1) + F(Uk+1)−F(u), (43)

and the estimator reduction given by Proposition 3.5 with T = Tk and T∗ = Tk+1 we have that

[F(Uk+1)−F(u)] + µη2
k+1 ≤ [F(Uk)−F(u)]− [F(Uk)−F(Uk+1)]

+ (1 + δ)µ
{
η2
k − ξη2

k(Mk)
}

+ (1 + δ−1)CEµ‖∇(Uk − Uk+1)‖2Ω,

for all δ, µ > 0, where ξ := 1 − 2−
n
d and η2

k(Mk) :=
∑
T∈Mk

η2
k(T ). By choosing µ := cA

2(1+δ−1)CE
, and

using (42) it follows that

[F(Uk+1)−F(u)] + µη2
k+1 ≤ [F(Uk)−F(u)] + (1 + δ)µ

{
η2
k − ξη2

k(Mk)
}
.

Dörfler’s strategy yields ηk(Mk) ≥ θηk and thus

[F(Uk+1)−F(u)] + µη2
k+1 ≤ [F(Uk)−F(u)] + (1 + δ)µη2

k − (1 + δ)µξθ2η2
k

= [F(Uk)−F(u)] + (1 + δ)µ

(
1− ξθ2

2

)
η2
k − (1 + δ)µ

ξθ2

2
η2
k.

Using (42), the global upper bound (Theorem 3.3) and that (1 + δ)µ = cAδ
2CE

it follows that

[F(Uk+1)−F(u)] + µη2
k+1 ≤ [F(Uk)−F(u)] + (1 + δ)µ

(
1− ξθ2

2

)
η2
k −

cAδξθ
2

2CUCECA
[F(Uk)−F(u)].

If we define

ρ2
1(δ) :=

(
1− cAδξθ

2

2CUCECA

)
, ρ2

2(δ) :=

(
1− ξθ2

2

)
(1 + δ),

we thus have that

[F(Uk+1)−F(u)] + µη2
k+1 ≤ ρ2

1(δ)[F(Uk)−F(u)] + µρ2
2(δ)η2

k.

The proof concludes choosing δ > 0 small enough to satisfy

0 < ρ := max{ρ1(δ), ρ2(δ)} < 1.

The last result, coupled with (42) allows us to conclude that the sequence {Uk}k∈N0 of discrete
solutions obtained through the Adaptive Algorithm converges to the weak solution u of the nonlinear
problem (6), and moreover, there exists ρ ∈ (0, 1) such that

‖∇(Uk − u)‖Ω ≤ Cρk, ∀ k ∈ N0,

for some constant C > 0. Also, the global error estimators {ηk}k∈N0
tend to zero, and in particular,

ηk ≤ Cρk, ∀ k ∈ N0,

for some constant C > 0.
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5 Optimality of the total error and optimal marking

In this section we introduce the notion of total error, we show an analogous of Cea’s lemma for this
new notion (see Lemma 5.3) and a result about optimal marking (see Lemma 5.4). Both of them will
be very important to establish a control of marked elements in each step of the adaptive procedure (cf.
Lemma 6.2 in Section 6).

We first present an auxiliary result that will allow us to show the analogous of Cea’s lemma for the
total error. Its proof is an immediate consequence of Theorem 4.1 and will thus be omitted.

Lemma 5.1 (Quasi-orthogonality property in a mesh). If U ∈ VT denotes the solution of the discrete
problem (16) for some T ∈ T, then

‖∇(U − u)‖2Ω + ‖∇(U − V )‖2Ω ≤
CA
cA
‖∇(V − u)‖2Ω, ∀V ∈ VT ,

where CA and cA are the constants appearing in (11) and (12).

Since the global oscillation term is smaller than the global error estimator, that is, oscT (U) ≤ ηT (U),
using the global upper bound (Theorem 3.3), we have that

‖∇(U − u)‖2Ω + osc2
T (U) ≤ (CU + 1)η2

T (U),

whenever u is the solution of problem (6) and U ∈ VT is the solution of the discrete problem (16).
Taking into account the global lower bound (Theorem 3.2) we obtain that

ηT (U) ≈
(
‖∇(U − u)‖2Ω + osc2

T (U)
) 1

2 .

The quantity on the right-hand side is called total error, and since adaptive methods are based on the a
posteriori error estimators, the convergence rate is characterized through properties of the total error.

Remark 5.2. (Cea’s Lemma) Taking into account that A is Lipschitz and strongly monotone, it is easy
to check that

‖∇(U − u)‖Ω ≤
CA
cA

inf
V ∈VT

‖∇(V − u)‖Ω.

This estimation is known as Cea’s Lemma and shows that the approximation U is optimal (up to a
constant) of the solution u from VT .

A generalization of Cea’s Lemma for the total error is given in the following

Lemma 5.3 (Cea’s Lemma for the total error). If U ∈ VT denotes the solution of the discrete prob-
lem (16) for some T ∈ T, then

‖∇(U − u)‖2Ω + osc2
T (U) ≤ 2CECA

cA
inf

V ∈VT
(‖∇(V − u)‖2Ω + osc2

T (V )),

where CE > 1 is the constant given in (31).

Proof. Let T ∈ T and let U ∈ VT be the solution of the discrete problem (16). If V ∈ VT , using
Proposition 3.6 with T∗ = T and Lemma 5.1 we have that

‖∇(U − u)‖2Ω + osc2
T (U) ≤ ‖∇(U − u)‖2Ω + 2 osc2

T (V ) + 2CE‖∇(V − U)‖2Ω

≤ 2CE
CA
cA
‖∇(V − u)‖2Ω + 2 osc2

T (V )

≤ 2CECA
cA

(
‖∇(V − u)‖2Ω + osc2

T (V )
)
.

Since V ∈ VT is arbitrary, the claim of this lemma follows.

14



The following result establishes a link between nonlinear approximation theory and AFEM through
Dörfler’s marking strategy. Roughly speaking, it is a reciprocal to the contraction property (Theo-
rem 4.2). More precisely, we prove that if there exists a suitable total error reduction from T to a
refinement T∗, then the error indicators of the refined elements from T must satisfy a Dörfler’s prop-
erty. In other words, Dörfler’s marking and total error reduction are intimately connected. This result is
known as optimal marking and was first proved for linear elliptic problems by Stevenson [23]. The notion
of total error presented above was first introduced by Cascón et al. [2] for linear problems, together with
the appropriate optimal marking result, which we mimic here.

In order to prove the optimal marking result we assume that the marking parameter θ satisfies

0 < θ < θ0 :=

[
CL

1 + 2CLU (1 + CE)

]1/2

, (44)

where CL, CLU are the constants appearing in the global lower bound (Theorem 3.2) and in the localized
upper bound (Theorem 3.4), respectively, and CE is the constant appearing in (31).

Lemma 5.4 (Optimal marking). Let T ∈ T and let T∗ ∈ T be a refinement of T . Let R denote the
subset of T consisting of the elements which were refined to obtain T∗, i.e., R = T \T∗. Assume that the

marking parameter θ satisfies 0 < θ < θ0 and define ν := 1
2

(
1− θ2

θ20

)
> 0. Let U and U∗ be the solutions

of the discrete problem (16) in VT and VT∗ , respectively. If

‖∇(U∗ − u)‖2Ω + osc2
T∗(U∗) ≤ ν

(
‖∇(U − u)‖2Ω + osc2

T (U)
)
, (45)

then
ηT (U ;R) ≥ θηT (U).

Proof. Let T , T∗, R, U , U∗, θ and ν be as in the assumptions. Using (45) and the global lower bound
(Theorem 3.2) we obtain that

(1− 2ν)CLη
2
T (U) ≤ (1− 2ν)

(
‖∇(U − u)‖2Ω + osc2

T (U)
)

≤ ‖∇(U − u)‖2Ω − 2‖∇(U∗ − u)‖2Ω + osc2
T (U)− 2 osc2

T∗(U∗). (46)

Since ‖∇(U − u)‖Ω ≤ ‖∇(U∗ − u)‖Ω + ‖∇(U∗ − U)‖Ω, we have that

‖∇(U − u)‖2Ω − 2‖∇(U∗ − u)‖2Ω ≤ 2‖∇(U∗ − U)‖2Ω. (47)

Using Proposition 3.6 and that osc2
T (U ;T ) ≤ η2

T (U ;T ) if T ∈ R = T \ T∗, for the oscillation terms we
obtain that

osc2
T (U)− 2 osc2

T∗(U∗) ≤ 2CE‖∇(U∗ − U)‖2Ω + η2
T (U ;R).

Taking into account (47) and the last inequality, from (46) it follows that

(1− 2ν)CLη
2
T (U) ≤ 2‖∇(U − U∗)‖2Ω + 2CE‖∇(U − U∗)‖2Ω + η2

T (U ;R),

and using the localized upper bound (Theorem 3.4) we have that

(1− 2ν)CLη
2
T (U) ≤ 2(1 + CE)CLUη

2
T (U ;R) + η2

T (U ;R) = (1 + 2CLU (1 + CE))η2
T (U ;R).

Finally,
(1− 2ν)CL

1 + 2CLU (1 + CE)
η2
T (U) ≤ η2

T (U ;R),

which completes the proof since (1−2ν)CL
1+2CLU (1+CE) = (1− 2ν)θ2

0 = θ2 by the definition of ν.
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6 Quasi-optimality of the adaptive FEM

In this section we state the second main result of this article, that is, the adaptive sequence computed
through the Adaptive Algorithm converges with optimal rate to the weak solution of the nonlinear
problem (6). For N ∈ N0, let TN be the set of all possible conforming triangulations generated by
refinement from T0 with at most N elements more than T0, i.e.,

TN := {T ∈ T | #T −#T0 ≤ N}.

The quality of the best approximation in TN is given by

σN (u) := inf
T ∈TN

inf
V ∈VT

[
‖∇(V − u)‖2Ω + osc2

T (V )
] 1

2 .

For s > 0, we say that u ∈ As if

|u|s := sup
N∈N0

{(N + 1)sσN (u)} <∞. (48)

In other words, u belongs to the class As if it can be ideally approximated with adaptive meshes at a
rate (DOFs)−s. From another perspective, if u ∈ As, then for each ε > 0 there exist a mesh Tε ∈ T and
a function Vε ∈ VTε such that

#Tε −#T0 ≤ |u|
1
s
s ε
− 1
s and ‖∇(Vε − u)‖2Ω + osc2

Tε(Vε) ≤ ε
2.

The study of classes of functions that will yield such rates is beyond the scope of this article. Some
results along this direction can be found in [1, 11, 12].

The following result proved in [23, 2], provides a bound for the complexity of the overlay of two
triangulations T 1 and T 2 obtained as refinements of T0.

Lemma 6.1 (Overlay of triangulations). For T 1, T 2 ∈ T the overlay T := T 1 ⊕ T 2 ∈ T, defined as the
smallest admissible triangulation which is a refinement of T 1 and T 2, satisfies

#T ≤ #T 1 + #T 2 −#T0.

The next lemma is essential for proving the main result below (see Theorem 6.4).

Lemma 6.2 (Cardinality ofMk). Let us assume that the weak solution u of problem (6) belongs to As.
If the marking parameter θ satisfies 0 < θ < θ0 (cf. (44)), then

#Mk ≤
(

2CECA
νcA

) 1
2s

|u|
1
s
s

[
‖∇(Uk − u)‖2Ω + osc2

Tk(Uk)
]− 1

2s , ∀ k ∈ N0,

where ν = 1
2

(
1− θ2

θ20

)
as in Lemma 5.4.

Proof. Let k ∈ N0 be fixed. Let ε = ε(k) > 0 be a tolerance to be fixed later. Since u ∈ As, there exist
a mesh Tε ∈ T and a function Vε ∈ VTε such that

#Tε −#T0 ≤ |u|
1
s
s ε
− 1
s and ‖∇(Vε − u)‖2Ω + osc2

Tε(Vε) ≤ ε
2.

Let T∗ := Tε ⊕ Tk the overlay of Tε and Tk (cf. Lemma 6.1). Since Vε ∈ VT∗ , we have that
oscTε(Vε) ≥ oscT∗(Vε), and from Lemma 5.3, if U∗ ∈ VT∗ denotes the solution of the discrete problem (16)
in VT∗ , we obtain that

‖∇(U∗ − u)‖2Ω + osc2
T∗(U∗) ≤ 2CE

CA
cA

(
‖∇(Vε − u)‖2Ω + osc2

Tε(Vε)
)
≤ 2CE

CA
cA

ε2.

Let ε be such that

‖∇(U∗ − u)‖2Ω + osc2
T∗(U∗) ≤ ν

(
‖∇(Uk − u)‖2Ω + osc2

Tk(Uk)
)

= 2CE
CA
cA

ε2,
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where ν is the constant given by Lemma 5.4. Thus, this lemma yields

ηTk(Uk;Rk) ≥ θηTk(Uk),

if Rk denotes the subset of Tk consisting of elements which were refined to get T∗. Taking into account
that Mk is a minimal subset of Tk satisfying the Dörfler’s criterion, using Lemma 6.1 and recalling the
choice of ε we conclude that

#Mk ≤ #Rk ≤ #T∗ −#Tk ≤ #Tε −#T0 ≤ |u|
1
s
s ε
− 1
s

=

(
2CECA
νcA

) 1
2s

|u|
1
s
s

(
‖∇(Uk − u)‖2Ω + osc2

Tk(Uk)
)− 1

2s .

The next result bounds the complexity of a mesh Tk in terms of the number of elements that were
marked from the beginning of the iterative process, assuming that all the meshes were obtained by the
bisection algorithm of [24], and that the initial mesh was properly labeled (satisfying condition (b) of
Section 4 in [24]).

Lemma 6.3 (Complexity of REFINE). Let us assume that T0 satisfies the labeling condition (b) of Section
4 in Ref. [24], and consider the sequence {Tk}k∈N0

of refinements of T0 where Tk+1 := REFINE(Tk,Mk, n)
with Mk ⊂ Tk. Then, there exists a constant CS > 0 solely depending on T0 and the number of
refinements n performed by REFINE to marked elements, such that

#Tk −#T0 ≤ CS
k−1∑
i=0

#Mi, for all k ∈ N.

The next result will use Lemma 6.3 and is a consequence of the global lower bound (Theorem 3.2),
the bound for the cardinality of Mk given by Lemma 6.2 and the contraction property of Theorem 4.2.
This is the second main result of the paper.

Theorem 6.4 (Quasi-optimal convergence rate). Let us assume that T0 satisfies the labeling condition
(b) of Section 4 in Ref. [24]. Let us assume that the weak solution u of problem (6) belongs to As. If
{Uk}k∈N0

denotes the sequence computed through the Adaptive Algorithm, and the marking parameter θ
satisfies 0 < θ < θ0 (cf. (44)), then[

‖∇(Uk − u)‖2Ω + osc2
Tk(Uk)

] 1
2 ≤ C|u|s(#Tk −#T0)−s, ∀ k ∈ N, (49)

where C > 0 depends on d, κT, problem data, the number of refinements n performed over each marked
element, the marking parameter θ, and the regularity index s.

Proof. Let k ∈ N be fixed. The global lower bound (Theorem 3.2) yields

‖∇(Ui − u)‖2Ω + µη2
Ti(Ui) ≤

(
1 + µC−1

L

)[
‖∇(Ui − u)‖2Ω + osc2

Ti(Ui)
]
, 0 ≤ i ≤ k − 1,

where µ is the constant appearing in Theorem 4.2. Using Lemmas 6.3 and 6.2 it follows that

#Tk −#T0 ≤ CS
k−1∑
i=0

#Mi ≤ CS
(

2CECA
νcA

) 1
2s

|u|
1
s
s

k−1∑
i=0

[
‖∇(Ui − u)‖2Ω + osc2

Ti(Ui)
]− 1

2s

≤ CS
(

2CECA
νcA

) 1
2s

|u|
1
s
s

(
1 + µC−1

L

) 1
2s

k−1∑
i=0

[
‖∇(Ui − u)‖2Ω + µη2

Ti(Ui)
]− 1

2s . (50)

Since we do not have a contraction for the quantity
[
‖∇(Ui − u)‖2Ω + µη2

Ti(Ui)
]

as happens in the linear
problem case, we now proceed as follows. We define z2

i := [F(Ui) − F(u)] + µη2
Ti(Ui), the contraction

property (Theorem 4.2) yields zi+1 ≤ ρzi and thus, z
− 1
s

i ≤ ρ 1
s z
− 1
s

i+1. Since ρ < 1, taking into account (42),
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we obtain that3

k−1∑
i=0

(
‖∇(Ui − u)‖2Ω + µη2

Ti(Ui)
)− 1

2s ≤ (CA/2)
1
2s

k−1∑
i=0

z
− 1
s

i ≤ (CA/2)
1
2s

∞∑
i=1

(ρ
1
s )iz

− 1
s

k

= (CA/2)
1
2s

ρ
1
s

1− ρ 1
s

z
− 1
s

k

≤ (CAc
−1
A )

1
2s

ρ
1
s

1− ρ 1
s

(
‖∇(Uk − u)‖2Ω + µη2

Tk(Uk)
)− 1

2s .

Using the last estimation in (50), it follows that

#Tk −#T0 ≤ CS
(

2CECA
νcA

) 1
2s

|u|
1
s
s

(
1 + µC−1

L

) 1
2s (CAc

−1
A )

1
2s

ρ
1
s

1− ρ 1
s

(
‖∇(Uk − u)‖2Ω + µη2

Tk(Uk)
)− 1

2s ,

and using that oscTk(Uk) ≤ ηTk(Uk) and raising to the s-power we have that

(#Tk −#T0)s ≤ CsSCA
cA

(
2CE
ν

) 1
2 (

1 + µC−1
L

) 1
2

ρ

(1− ρ 1
s )s
|u|s
(
‖∇(Uk − u)‖2Ω + µ osc2

Tk(Uk)
)− 1

2 .

Finally, from this last estimation the assertion (49) follows, and the proof is concluded.

We conclude this article with a few remarks.

Remark 6.5. The problem given by (1) is a particular case of the more general problem{
−∇ ·

[
α( · , |∇u|2A)A∇u

]
= f in Ω

u = 0 on ∂Ω,

where α : Ω × R+ → R+ and f ∈ L2(Ω) satisfy the properties assumed in the previous sections, and
A : Ω → Rd×d is such that A(x) is a symmetric matrix, for all x ∈ Ω, and uniformly elliptic, i.e., there
exist constants a, a > 0 such that

a|ξ|2 ≤ A(x)ξ · ξ ≤ a|ξ|2, ∀ x ∈ Ω, ξ ∈ Rd.

If A is piecewise constant over an initial conforming mesh T0 of Ω, then the convergence and optimality
results previously presented also hold for this problem.

Remark 6.6. We have assumed the use of linear finite elements for the discretization (see (15)), which
is customary in nonlinear problems. It is important to notice that the only place where we used this is
for proving (31), which is one of the key issues of our argument. The rest of the steps of the proof hold
regardless of the degree of the finite element space.
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