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Abstract. We consider Poisson’s equation with a finite number of weighted

Dirac masses as a source term, together with its discretization by means of
conforming finite elements. For the error in fractional Sobolev spaces, we pro-

pose residual-type a posteriori estimators with a specifically tailored oscillation

and show that, on two-dimensional polygonal domains, they are reliable and
locally efficient. In numerical tests, their use in an adaptive algorithm leads

to optimal error decay rates.

1. Introduction

We consider the problem

(1.1) −∆u =

N∑
j=1

αjδxj in Ω, u = 0 on ∂Ω,

where Ω ⊂ R2 is a polygonal domain with Lipschitz boundary ∂Ω and, for any
j = 1, 2, . . . , N , each αjδxj is a point source given by αj ∈ R and the Dirac
measure δxj at xj ∈ Ω. Such point sources are a useful idealization in modeling and
appear in various applications: for instance, in modeling the effluent discharge in
aquatic media [4], in reaction-diffusion problems taking place in domains of different
dimension [11], and in modeling the electric field generated by point charges [2].

Since Ω ⊂ R2, point sources induce singularities of the type log | · −xj |. In
particular, they do not belong to H−1(Ω) and so the solution u of (1.1) is not in
H1(Ω). Hence, the variational formulation within H1(Ω) cannot be used for (1.1)
and the usual approach to a posteriori error estimation in the energy norm is not
directly applicable.

Although u 6∈ H1(Ω), it can be approximated by finite element methods arising
from the variational formulation within H1(Ω): e.g., consider the finite element
space VT of continuous functions that are piecewise polynomial up to degree ` over
a triangulation T of Ω. Then the Galerkin approximation U ∈ VT given by

(1.2)

∫
Ω

∇U · ∇V =

N∑
j=1

αjV (xj), ∀V ∈ VT ,

is well-defined thanks to the continuity of the functions in VT .
In view of u 6∈ H1(Ω), the error of the approximation U has to measured in a

norm weaker than the H1-norm. For quasi-uniform meshes, Babuška [5] and Scott
[19] derived a priori estimates for the error in the Hs-norm, s ∈ [0, 1). Exploiting
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that the singularity of point sources is known, Eriksson [12] proves a priori estimates
for the L1- and W 1,1-norms that show the advantage of suitably graded meshes.

Several a posteriori error estimates, which may be used to direct an adaptive
algorithm, are also available. Araya et. al. [3, 4] derived a posteriori estimates for
Lp-norm, p ∈ (1,∞), and the W 1,p-norm, p ∈ (p0, 2), where p0 ∈ [1, 2) depends on
Ω. More recently, Agnelli et. al. [1] obtained a posteriori estimates for the weighted
Sobolev norms introduced by D’Angelo [10].

In this article, we analyze a posteriori estimators for the error between u and
its Galerkin approximation U in the H1−θ-norm, 0 < θ < 1

2 . It is based upon the

variational formulation within H1−θ(Ω) of Nečas [16]. The main part of the error
indicators is given by

ηT,θ =
[
h2+2θ
T ‖∆U‖2L2(T ) + h1+2θ

T ‖J∇UK‖2L2(∂T )

] 1
2

, T ∈ T ,

where hT = |T |1/2 stands for the local meshsize and J∇UK denotes the jump of the
normal derivative across interelement edges. Our main result concerns reliability
as well as local and global efficiency. More precisely:

Main Result. For any 0 < θ < 1
2 , the error of U ∈ VT is bounded from above and

below in the following manner:

‖u− U‖H1−θ(Ω) ≤ CU
( ∑
T∈T

η2
T,θ

) 1
2

+ ξθ,

ηT,θ ≤ CL ‖u− U‖H1−θ(ωT ) (T ∈ T ),
( ∑
T∈T

η2
T,θ

) 1
2 ≤ CL ‖u− U‖H1−θ(Ω) .

The quantity ξθ is an oscillation-type term (see Section 3.2) and the constants
CU , CL depend on θ, Ω, the polynomial degree `, and the minimum angle of the
underlying triangulation. Moreover, ωT is the patch of all the elements sharing a
side with T .

The following comments are in order:

• The terms ηT,θ, T ∈ T , coincide with the standard residual indicators for
Laplace’s equation and so do not depend on the point sources in (1.1).

• The term ξθ, which depends on the point sources, vanishes under certain con-
ditions, e.g., if the point sources for every star of the triangulation have the
same sign; see Remark 3.2. Noteworthy, if this is not already given on the
initial grid, it can be always met after a finite number of refinements. The
term ξθ is thus a non-standard oscillation term.

• In the many cases in which ξθ vanishes, the error of U is encapsulated only
with the help of the approximate solution, without invoking data.

The rest of the article is organized as follows: Section 2 reviews fractional Sobolev
spaces, the variational formulation of (1.1) within H1−θ, its dual problem, and its
finite element discretization. In Section 3, we give a complete definition of the
oscillation term ξθ and prove the presented main result. Finally, in Section 4, we
test the indicators ηT,θ, T ∈ T , in an adaptive algorithm.

Throughout this article, a . b will denote a ≤ Cb with some constant whose
dependence will be stated whenever it is not clear from the context. We will use
a ' b to denote a . b and b . a.
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2. Continuous, dual, and discrete problems

In this section, we review fractional order Sobolev spaces, as well as the well-
posedness of (1.1) and its dual problem in such spaces. This will be instrumental
for building up the proofs of the a posteriori error bounds. Moreover, we recall the
finite element discretization of (1.1) and associated notation.

2.1. Fractional order Sobolev spaces. Let G be a bounded open set of Rd, d ∈
N, with a Lipschitz boundary. We use the following notation for the (semi)norms
of the usual (Hilbertian) Sobolev spaces Hn(Ω) of integer order n ∈ N0:

‖φ‖0,G := |φ|0,G :=

(∫
G

|φ|2 dx
) 1

2

, |φ|n,G :=

( ∑
|β|=n

∥∥Dβφ
∥∥2

0,G

) 1
2

,

‖φ‖n,G :=

( ∑
|β|≤n

∥∥Dβφ
∥∥2

0,G

) 1
2

=

( n∑
k=0

|φ|2k,G

)1/2

,

where, for any multi-index β = (β1, β2, . . . , βd) ∈ Nd0, its length is defined by
|β| := β1 + β2 + · · · + βd and Dβφ denotes the weak β-derivative of φ, with the
convention D(0,...,0)φ = φ. If s > 0 is not an integer, we write s = n+ t with n ∈ N0

and 0 < t < 1 and define the norm of Hs(Ω) by ‖φ‖2s,G := ‖φ‖2n,G + |φ|2s,G, with

|φ|s,G :=

[ ∑
|β|=n

∫
G

∫
G

|Dβφ(x)−Dβφ(y)|2

|x− y|d+2t
dx dy

] 1
2

.

The space Hs
0(G) is the completion of C∞0 (G) under the norm ‖ · ‖s,G.

The following lemma summarizes some basic properties of the fractional Sobolev
spaces Hs(Ω), which can be found, e.g., in [15].

Lemma 2.1 (Fractional Sobolev spaces). Let G be a bounded open subset of Rd,
d ∈ N, with a Lipschitz boundary. We have:

(i) (Shift) If |β| ≤ s, then φ ∈ Hs(G) entails Dβφ ∈ Hs−|β|(G).
(ii) (Trace) If s > 1

2 , there exists a constant C such that

(2.1) ‖φ‖0,∂G := ‖φ‖L2(∂G) ≤ C‖φ‖s,G, for all φ ∈ C∞(G),

and thus the trace operator, defined in C∞(G) as trφ = φ|∂G can be extended

to be a continuous operator from Hs(G) into L2(∂G). In particular, we have
trφ = 0 for all φ ∈ Hs

0(G) and s > 1
2 .

(iii) (Sobolev embedding) If s > d
2 then Hs(G) is continuously embedded into

Ck,t(G), with k = ds− d
2e−1 and s− d

2 = k+t. More precisely, if s− d
2 = k+t

with k ∈ N0 and 0 < t < 1, then for any function φ ∈ Hs(G) there exists a

function φ̃ ∈ Ck(G) such that φ = φ̃ a.e. in G and

max
|β|≤k

‖Dβφ̃‖L∞(G) + max
|β|=k

sup
x,y∈G
x 6=y

|Dβφ̃(x)−Dβφ̃(y)|
|x− y|t

≤ C‖φ‖s,G.

The constants C appearing in (ii) and (iii) depend only on the set G, the dimension
d, the smoothness order s, but are otherwise independent of φ.
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We shall need several inequalities involving fractional Sobolev seminorms on
domains (bounded, connected and open sets). The first one is the counterpart of
the classical Poincaré inequality for functions in

◦
Hs(G) :=

{
φ ∈ Hs(G) :

∫
G

φ = 0

}
.

We shall use it to derive further inequalities, as well as for the proof of the lower
a posteriori error bounds.

Lemma 2.2 (Fractional Poincaré inequality). If 0 < s < 1 and G is a bounded
domain of Rd, there is a constant CP depending on s and G such that

‖φ‖20,G ≤ CP |φ|2s,G, for all φ ∈
◦
Hs(G).

Proof. The simple proof of Faermann [13, Lemma 3.4] (which readily generalizes
to d-dimensional domains) shows

(2.2) CP ≤
1

2

diam(G)d+2s

|G|
,

where diam(G) and |G| stand for the diameter and the Lebesgue measure of G, re-
spectively. The dependence on s can be identified more precisely, see, e.g., Bourgain
et. al. [9], but (2.2) suffices for our purposes. �

We need also the following generalization of the Friedrichs inequality. It is related
to the well-posedness of (1.1) and the definiteness of the error notion considered in
the a posteriori analysis below.

Lemma 2.3 (Fractional Friedrichs inequality). Let s > 1
2 and G ⊂ Rd be a bounded

domain with Lipschitz boundary ∂G. We have

(2.3) ‖φ‖0,G ≤ CF |φ|s,G, for all φ ∈ Hs
0(G),

where the constant CF depends on d, s and G.

Proof. We distinguish different cases for s.
1 If s ∈ N, the claimed inequality is the Friedrichs inequality for Sobolev spaces

of integer order; see, e.g., [7, Ch. II, 1.7].
2 Let 1

2 < s < 1 and fix φ ∈ Hs
0(G). For any constant c ∈ R, we write

φ = φ− 1

|∂G|

∫
∂G

φ = (φ− c)− 1

|∂G|

∫
∂G

(φ− c),

where |∂G| denotes the (d − 1)-dimensional Hausdorff measure in Rd. Thus, the
Cauchy-Schwarz inequality on ∂G and the trace theorem (2.1) imply

‖φ‖0,G ≤ ‖φ− c‖0,G +

(
|G|
|∂G|

)1/2

‖φ− c‖0,∂G ≤ ‖φ− c‖0,G + C‖φ− c‖s,G

with C depending on G. We choose c = |G|−1
∫
G
φ and obtain the claimed inequal-

ity in this case with the help of Lemma 2.2.
3 Let k < s < k + 1 with k ∈ N and assume, without loss of generality, that
φ ∈ C∞0 (G). Observe that, for any multi-index β with |β| = k, we have

∫
G
Dβφ = 0

and, therefore, Lemma 2.2 yields

‖Dβφ‖0,G ≤ C|Dβφ|s−k,G, whence |φ|k,G ≤ C|φ|s,G.

The claimed inequality then follows from Step 1 . �
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For any s > 0, we define H−s(G) as the topological dual space of Hs
0(G). In

other words: H−s(G) is the set of linear functionals ψ : Hs
0(G)→ R satisfying

|〈ψ, φ〉| ≤ C‖φ‖s,G, for all φ ∈ Hs
0(G),

for some constant C independent of φ. Hereafter, the symbol 〈· , ·〉 indicates the
result of the application of a functional to a function in its domain of definition.

The spaces H−s(G) with s > 1
2 are of particular interest for us. It is convenient

to equip them with norms that have simple scaling properties, like seminorms.
Lemma 2.3 ensures that, for such s, the seminorm | · |s,G is a norm in Hs

0(G),
equivalent to ‖ · ‖s,G. We thus can define a suitable norm for H−s(G) with s > 1

2
by duality:

‖ψ‖−s,G := sup
φ∈Hs0 (G)

〈ψ, φ〉
|φ|s,G

= sup
φ∈C∞0 (G)

〈ψ, φ〉
|φ|s,G

, for ψ ∈ H−s(G).

We then have also

(2.4) |φ|s,G = sup
ψ∈H−s(G)

〈ψ, φ〉
‖ψ‖−s,G

, for φ ∈ Hs
0(G).

For the sake of brevity, we will write Hs, Hs
0 , ‖·‖s, to denote Hs(Ω), Hs

0(Ω), ‖·‖s,Ω,
respectively.

Finally, we need a Bramble–Hilbert-type inequality; it will be useful in deriving
the a posteriori upper error bound. For this purpose, it is sufficient to consider
triangular domains. Moreover, in view of the following lemma, it is sufficient to
derive such, and other, inequalities for the reference triangle T̂ in R2 given by the
vertices (0, 0), (1, 0), and (0, 1).

Lemma 2.4 (Scaling properties of Sobolev norms). Let T ⊂ Ω be a triangle, set

hT := |T |1/2 and let F (x̂) = Ax̂+ b be an affine bijection such that F (T̂ ) = T .

(i) Assume that the functions φ : T → R and φ̂ : T̂ → R satisfy φ̂ = φ ◦F . Then,

for any s ≥ 0, we have φ ∈ Hs(T ) if and only if φ̂ ∈ Hs(T̂ ) and

|φ|s,T ' h1−s
T |φ̂|s,T̂ .

(ii) Assume that the distributions ψ : C∞0 (T ) → R and ψ̂ : C∞0 (T̂ ) → R satisfy

〈ψ̂, φ ◦ F 〉 = |det(A)|−1〈ψ, φ〉 for all φ ∈ C∞0 (T ). Then, for any s > 1
2 , we

have ψ ∈ H−s(T ) if and only if ψ̂ ∈ H−s(T̂ ) and

‖ψ‖−s,T ' h
1+s
T

∥∥∥ψ̂∥∥∥
−s,T̂

.

The hidden constants depend only on s and the minimum angle of T .

Proof. Up to constants depending on the minimum angle of T , we have

|det(A)| ' h2
T , ‖A‖ ' hT , and ‖A−1‖ ' h−1

T .

The case s ∈ N0 is well known, see, for instance, [7, Ch. II, 6.6]. Next, consider
0 < s < 1. Given φ ∈ Hs(T ), we derive

|φ|2s,T =

∫
T

∫
T

|φ(x)− φ(y)|2

|x− y|2+2s
dx dy =

∫
T̂

∫
T̂

|φ̂(x̂)− φ̂(ŷ)|2

|A(x̂− ŷ)|2+2s
|det(A)|2 dx̂ dŷ

≤ |det(A)|2

‖A−1‖−(2+2s)

∫
T̂

∫
T̂

|φ̂(x̂)− φ̂(ŷ)|2

|x̂− ŷ|2+2s
dx̂ dŷ . h2−2s

T |φ̂|2
s,T̂
,



6 FERNANDO D. GASPOZ, PEDRO MORIN, AND ANDREAS VEESER

where we have used that |A(x̂ − ŷ)| ≥ ‖A−1‖−1|x̂ − ŷ|. The opposite inequality
follows in a similar manner using |A(x̂ − ŷ)| ≤ ‖A‖|x̂ − ŷ| and (i) is thus verified
also for 0 < s < 1.

For the case k < s < k + 1 with k ∈ N, we observe∑
|β|=k

|Dβφ(x)−Dβφ(y)| ' ‖A−1‖k
∑
|β|=k

|Dβφ̂(x̂)−Dβφ̂(ŷ)|

and then proceed for each term on the right as in the case 0 < s < 1.
It remains to verify (ii). Given ψ ∈ H−s(T ) with s > 1

2 , we obtain

|ψ|−s,T = sup
φ∈C∞0 (T )

〈ψ, φ〉
|φ|s,T

' sup
φ̂∈C∞0 (T̂ )

|det(A)|〈ψ̂, φ̂〉
h1−s
T |φ̂|s,T̂

' h1+s
T |ψ̂|−s,T̂

with the help of (i). �

Lemma 2.5 (A fractional Bramble–Hilbert inequality). Let 1 < s ≤ 2. There is

constant CBH depending only on s such that, if φ ∈ Hs(T̂ ) vanishes at the vertices

of T̂ , then

‖φ‖s,T̂ ≤ CBH |φ|s,T̂ .

Proof. We let Î1 denote the Lagrange interpolation operator onto the polynomials
P1 of degree at most 1. Given any polynomial p ∈ P1 of degree at most 1, we may
write

φ = φ− Î1φ = (φ− p)− Î1(φ− p).
Since ‖Î1ψ‖1,T̂ ≤ C maxT̂ |ψ| for some constant C, Lemma 2.1 (iii) yields

‖φ‖1,T̂ ≤ C‖φ− p‖s,T̂ ,

where C additionally depends on s > 1. We choose p ∈ P1 such that
∫
T̂
p =

∫
T̂
φ

and
∫
T̂
∂ip =

∫
T̂
∂iφ for i = 1, 2. Thus, we can conclude with the help of the

classical Poincaré inequality and, if s < 2, its counterpart Lemma 2.2. �

2.2. Continuous and dual problem. We assume that Ω ⊂ R2 is a two-dimen-
sional polygonal, but not necessarily convex domain with Lipschitz boundary ∂Ω.
For any θ > 0, Lemma 2.1 (iii) then implies that H1+θ is continuously embedded
in C0(Ω) and, therefore, the right-hand side of Poisson’s equation in (1.1) belongs
to the space H−1−θ.

Writing s = 1− θ, we are thus led to consider the Dirichlet problem

(2.5) −∆u = f in Ω, u = 0 on ∂Ω,

where f ∈ Hs−2 and s < 1. Expecting that the solution is in Hs, we additionally
require s > 1

2 to provide a meaning to the boundary condition in (2.5) by means
of Lemma 2.1 (ii). Furthermore, since we shall invoke duality arguments, it will be
useful to consider also the range 1 < s < 3

2 . In any case, the differential operator
−∆ should be understood in the distributional sense:

〈−∆u , ϕ〉 := 〈u , −∆ϕ〉 , ∀ϕ ∈ C∞0 (Ω).

Integration by parts shows that, if v ∈ C∞0 (Ω), then

(2.6) 〈v , −∆ϕ〉 = B[v, ϕ] :=

∫
Ω

∇v · ∇ϕ dx.
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Nečas [16] extended B to a continuous bilinear form on Hs
0 ×H2−s

0 by means of the
following lemma.

Lemma 2.6 (Weak derivative and fractional spaces). Let 0 ≤ θ < 1
2 and G be a

bounded Lipschitz domain of Rd. Then there exists a constant C such that∫
G

∂f

∂xi
g dx ≤ C‖f‖1−θ,G‖g‖θ,G, for all f, g ∈ C∞(G).

Notice that the function g in Lemma 2.6 does not need to have a compact support
in G. This entails the limitation θ < 1

2 , which is sharp in view of Grisvard [14,

Proposition 1.4.4.8]. Nečas [16] verified also that the extension of B on Hs
0 ×H2−s

0

satisfies an inf-sup condition and thus obtained the following theorem.

Theorem 2.7 (Weak formulation in Hs
0). Let 1

2 < s < 3
2 . For any f ∈ Hs−2,

there exists a unique weak solution u ∈ Hs
0 of the Dirichlet problem (2.5):

B[u, ϕ] = 〈f , ϕ〉 , ∀ϕ ∈ C∞0 (Ω).

It satisfies the a priori estimate

‖u‖s ≤ C ‖f‖s−2 ,

where the constant C depends only on s and Ω.

Theorem 2.7 may be used to establish the well-posedness of Problem (1.1) in
suitable fractional Sobolev spaces.

Corollary 2.8 (Well-posedness for point sources). Problem (1.1) has a unique

solution u which, for every θ > 0, satisfies u ∈ H1−θ
0 and

B[u, φ] =

N∑
j=1

αjφ(xj), ∀φ ∈ H1+θ
0 .

Let us fix 0 < θ < 1
2 . In view of the extension of the bilinear form B to

H1−θ ×H1+θ and Corollary 2.8, we refer to

(2.7)
given f ∈ H−1−θ, find u ∈ H1−θ

0 such that

B[u, φ] = 〈f , φ〉−1−θ,1+θ , ∀φ ∈ H1+θ
0 (Ω)

as the direct (primal) problem and to

(2.8)
given g ∈ H−1+θ, find w ∈ H1+θ

0 such that

B[ϕ,w] = 〈ϕ , g〉1−θ,−1+θ , ∀ϕ ∈ H1−θ
0 (Ω),

as the adjoint (dual) problem.

2.3. Finite element discretization. Let T be a conforming (edge-to-edge) tri-
angulation of Ω. We refer to the minimum angle appearing in T as shape coefficient
σT . Moreover, we denote by E the set of all its edges and by V the set of all its
vertices. The star around a vertex z ∈ V is given by

ωz :=
⋃

T∈T :z∈T
T.



8 FERNANDO D. GASPOZ, PEDRO MORIN, AND ANDREAS VEESER

Given ` ∈ N, we let P` denote the space of polynomials of total degree ≤ `.
Moreover, let VT be the finite element space of continuous piecewise polynomials
that vanish at the boundary, i.e.

VT = V`T = {V ∈ C(Ω) : V = 0 on ∂Ω; V |T ∈ P`,∀T ∈ T }.
The set of the standard nodes (the locations of the degrees of freedom) of VT is
indicated by N`. We thus have V ∩ Ω ⊂ N`, with equality for ` = 1.

The approximate solution U of (1.1) is defined as the Galerkin solution in VT :

(2.9) U ∈ VT : B[U, V ] =

N∑
j=1

αjV (xj) ∀V ∈ VT .

Notice that, although Problem (1.1) is associated with a non-symmetric weak for-
mulation, U is computed by solving the usual symmetric, positive definite linear
system.

3. A posteriori error analysis

In this section, we derive a posteriori bounds for the error |u − U |1−θ, where
0 < θ < 1

2 and | · |1−θ is a norm thanks to Lemma 2.3. Before embarking on their
derivation, we define the estimator, which has the following structure: asymptotic
form plus data oscillation.

3.1. Asymptotic estimator and data oscillation. We start by defining the
error estimator. To this end, we denote by hT = |T | 12 the local meshsize and let
E ∈ E be an edge. If E is an interelement edge, we write E = T1 ∩ T2 with T1,
T2 ∈ T and define the jump J∇UK|E of the flux by

J∇UK|E := ∇U1 · n1 +∇U2 · n2,

where U1, U2 denote the restrictions of U to T1, T2, respectively, and n1, n2 are
the outer normals of T1, T2. If E is a boundary edge, we have E ⊂ ∂Ω and set
J∇UK|E := 0. With these notations, we define

(3.1) η2
θ =

∑
T∈T

η2
T,θ and η2

T,θ = h2+2θ
T ‖∆U‖2L2(T ) + h1+2θ

T ‖J∇UK‖2L2(∂T ) .

Notice that ηT,θ depends only on the approximate solution U and the local meshsize
hT and, thus, is independent of the point sources in Problem (1.1). In view of
Remark 3.5 below, we refer to ηθ as the asymptotic estimator.

The oscillation is tailored to the specific class of source term in Problem (1.1).
It is defined starwise and depends on the interplay of the boundary, the nodes and
the supports of the point sources. We write

N̂` = N` ∪ ∂Ω

for short. For each vertex z ∈ V, we consider only point sources whose supports
are not nodes and collect them according to their sign:

A+
z := {j : xj ∈ ωz \ N` and αj > 0}, A−z := {j : xj ∈ ωz \ N` and αj < 0}.

Given j ∈ A+
z , we set

σ+
z,j := min

{
dist(xj , N̂`)θ + max

i∈A−z
dist(xi, N̂`)θ , max

i∈A−z
|xj − xi|θ

}
,
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if A−z 6= ∅, and σ+
z,j = 0 otherwise. Similarly, given j ∈ A−z

σ−z,j := min

{
dist(xj , N̂`)θ + max

i∈A+
z

dist(xi, N̂`)θ , max
i∈A+

z

|xj − xi|θ
}
,

if A+
z 6= ∅, and σ−z,j = 0 otherwise. Moreover, let λz denote the piecewise affine

function that is 1 at z and 0 in all other vertices of the star ωz. The oscillation
indicator associated to z is

ξθ(z) :=

{∑N
j=1 dist(xj , N̂`)θ|αj |λz(xj) if z ∈ ∂Ω,

min
{∑

j∈A+
z
σ+
z,j |αj |λz(xj),

∑
j∈A−z σ

−
z,j |αj |λz(xj)

}
if z ∈ Ω,

with the convention
∑
∅ = 0. The global oscillation term is then

(3.2) ξθ :=

(∑
z∈V

ξ2
θ(z)

) 1
2

.

Let us conclude this section with two remarks, which highlight useful properties of
this oscillation.

Remark 3.1 (Scaled upper bound for oscillation). The asymptotic estimator ηθ
involves, as scaling factors, suitable powers of the local meshsizes hT , T ∈ T . For
example, the L2-norm of element residual ∆U is scaled by h1+θ

T . In order to derive
a bound for ξθ with similar scaling factors, we observe that, for any vertex z of a
triangle T ∈ T , we have

σ±z,j . h
θ
T ,

where the hidden constant depends on the shape coefficient σT . Since the triangles
of the patch ωT =

⋃
{T ′ ∈ T : T ′ ∩ T 6= ∅} have similar areas, this readily leads to

(3.3) ξθ .
∑
T∈T

hθT

 ∑
xj∈ωT

|αj |Υ(T )


with

Υ(T ) =

{
0 if T ∩ ∂Ω = ∅ and αiαj > 0, ∀xi, xj ∈ ωT ,
1 otherwise.

The scaling factor of the oscillation is thus given by hθT . In the case of quasi-
uniform refinement, the global counterpart of this scaling factor corresponds to the
decay rate of the error |u − U |1−θ under consideration; see [19]. The bound in
(3.3) may be also used as a triangle-indexed alternative for (3.2), which however
overestimates whenever the distances between point sources are much smaller than
the local meshsize.

Remark 3.2 (Vanishing of oscillation and refinement). The local oscillation ξθ(z),
z ∈ V, vanishes in many cases and, in any event, asymptotically. To see this, we
observe that ξθ(z) 6= 0 implies, according to the location of z, one of the following
conditions:

• If z ∈ ∂Ω is a boundary vertex, there is a point source located in ωz \ N̂`.
• If z ∈ Ω is a interior vertex, there are point sources with different sign located

in ωz \ N̂`.
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Remarkably, if one of these conditions is verified, a finite number of refinements
step ensures that its negation is met and this remains so for further refinements.
Hence, ξθ = 0 can always be reached after a finite number of suitable refinement
steps.

Remark 3.3 (Oscillation before vanishing). In order to get an idea about the
behavior of the oscillation ξθ before it vanishes, notice first that, in contrast to
many other error estimator contributions, the definition of ξθ does not involve
some local meshsize. In fact, the dependence on the mesh arises from the functions
λz, z ∈ V, the sets A±z , and the coefficients σ±z,j ; ignore the boundary contributions
for simplicity. More precisely, observe:

• Since the partition of unity λz, z ∈ V, gathers contributions for a fixed
point source xj , the dependence on it is only effective through changes in
the sets A±z and the coefficients σ±z,j .

• The coefficients σ±z,j involve the mesh only through the sets A±z and the
distances of the point sources to V, which however is active only if it is
smaller than the local meshsize.
• A change in the distance of a point source to the vertices can occur only if

there is a corresponding change in the sets A±z .

In view of these facts, ξθ essentially depends on the mesh through the combined
effect of the sets A±z and the partition of unity λz, z ∈ V. In order to exemplify
this dependence, consider two point sources with different signs. Then ξθ will be
constant before vanishing; see also Example 4.3 in §4.

3.2. Upper Bound. The asymptotic estimator (3.1) and the oscillation (3.2) pro-
vide an upper bound for the error in H1−θ.

Theorem 3.4 (Upper bound). Let u be the solution of Problem (1.1) and U its
approximation associated with the triangulation T . There exists a constant CU ,
depending on Ω, θ ∈ (0, 1

2 ) and the shape coefficient σT of T , such that

|u− U |1−θ ≤ CU (ηθ + ξθ).

It is worth observing that this upper bound will simplify under adaptive refine-
ment.

Remark 3.5 (Asymptotic form of upper bound). Point sources generate singu-
larities which are centered at their supports. Since an adaptive algorithm will refine
around these places, Remark 3.2 suggests that, after a finite number of adaptive
refinements, the upper bound of Theorem 3.4 becomes

|u− U |1−θ ≤ CUηθ.

This expectation is in line with our numerical experiments in §4. Interestingly, the
asymptotic form is independent of the point sources in Problem (1.1).

We now prove Theorem 3.4, postponing some technical estimates about the
interpolation error to Lemma 3.6 below.

Proof of Theorem 3.4. We split the proof in several steps.
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1 We start by relating the error with a suitable norm of the residual. To this end,
we use a duality argument relying on

|u− U |1−θ = sup
g∈H−1+θ

〈u− U , g〉
‖g‖−1+θ

,

which is a special case of (2.4). Let g ∈ H−1+θ and denote by w the solution to
the dual problem (2.8). Theorem 2.7 and the original symmetry of B in (2.6) yield

that w ∈ H1+θ
0 with |w|1+θ ≤ C∗θ,Ω ‖g‖−1+θ. Since

〈u− U , g〉 = B[u− U,w] = 〈R , w〉 :=

N∑
j=1

αjw(xj)− B[U,w],

we obtain

(3.4) |u− U |1−θ ≤ C∗θ,Ω‖R‖−1−θ.

It thus remains to bound the residual norm ‖R‖−1−θ.
2 We rewrite 〈R , w〉 for a fixed w ∈ H1+θ by means of the partition of unity∑
z∈V λz = 1 and by exploiting 〈R , λz〉 = 0 for all interior vertices z ∈ V ∩ Ω.

To this end, we let IT w denote the Lagrange interpolant of w onto V`T and set
w̃ := w − IT w. Moreover, if z ∈ V ∩ Ω is an interior vertex, we let cz ∈ R to be
chosen later, while, if z ∈ V ∩ Ω is boundary vertex, we set cz := 0. Then

(3.5) 〈R , w〉 = 〈R , w − IT w〉 =
∑
z∈V
〈R , (w̃ − cz)λz〉

with the local contributions

(3.6) 〈R , (w̃ − cz)λz〉 =
∑
j∈Az

αj
[
w̃(xj)− cz

]
λz(xj) − B[U, (w̃ − cz)λz]

and Az = A+
z ∪A−z .

3 Fix any z ∈ V. Assuming that cz = w̃(xz) for some xz ∈ ωz, we bound the
second term in (3.6) as follows:

|B[U, (w̃ − cz)λz]| .
( ∑
T∈Tz

h1+θ
T ‖∆U‖0,T +

∑
E∈Ez

h
1
2 +θ

E ‖J∇UK‖0,E

)
|w|1+θ,ωz

,

where hE indicates the length of an edge E and Tz := {T ∈ T : z ∈ T} and
Ez := {E ∈ E : z ∈ E} stand for the triangles and interior edges of the star ωz,
respectively. To this end, we integrate by parts on each T ∈ Tz, use λz ≤ 1 and
obtain

|B[U, (w̃ − cz)λz]| ≤
∑
T∈Tz

‖∆U‖0,T ‖w̃ − cz‖0,T +
∑
E∈Ez

‖J∇UK‖0,E ‖w̃ − cz‖0,E .

Adopting standard arguments to the setting at hand, see Lemma 3.6 below, yields

‖w̃ − cz‖0,T . h
1+θ
T |w|1+θ,ωz and ‖w̃ − cz‖0,E . h

1
2 +θ

E |w|1+θ,ωz ,

where the hidden constants depend on θ and the shape coefficient σT . Inserting this
in the preceding inequality, we arrive at the claimed bound for |B[U, (w̃ − cz)λz]|.
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4 Let z ∈ V. For given or appropriately chosen cz, we derive the following bound
for the sum over Az in (3.6):

(3.7)

∣∣∣∣ ∑
j∈Az

αj
[
w̃(xj)− cz

]
λz(xj)

∣∣∣∣ . ξθ(z) |w|1+θ,ωz
.

The possible choices of cz depend on the location of z as well as the point sources
located in ωz.

Case 1: z ∈ Ω and Az = ∅. Then
∑
j∈Az αj

[
w̃(xj)− cz

]
λz(xj) = 0, irrespective of

the choice of cz. In particular, (3.7) is verified and we may take cz = 0.

Case 2: z ∈ Ω and Az 6= ∅. Then we have A−z 6= ∅ or A+
z 6= ∅. If the latter occurs,

then
∑
k∈A+

z
αkλz(xk) > 0 and we can consider

(3.8) c+z =
∑
j∈A+

z

β+
j w̃(xj) with β+

j :=
αjλz(xj)∑

k∈A+
z
αkλz(xk)

∈ (0, 1],

which implies

(3.9)
∑
j∈Az

αj
[
w̃(xj)− c+z

]
λz(xj) =

∑
j∈A−z

αj
[
w̃(xj)− c+z

]
λz(xj).

Fix j ∈ A−z for a moment. On the one hand, the definition of c+z and Lemma 3.6
below yield

(3.10) |w̃(xj)− c+z | ≤
∑
i∈A+

z

β+
i |w̃(xj)− w̃(xi)| . max

i∈A+
z

|xj − xi|θ|w|1+θ,ωz .

On the other hand, since w̃(ν) = 0 for all ν ∈ N̂`, we have that, for any choice of

νi ∈ N̂`, i ∈ {0} ∪A+
z ,

|w̃(xj)− c+z | ≤ |w̃(xj)− w̃(ν0)|+
∑
i∈A+

z

β+
i |w̃(xi)− w̃(νi)|,

which again by Lemma 3.6 implies that

(3.11) |w̃(xj)− c+z | .
(

dist(xj , N̂`)θ + max
i∈A+

z

dist(xi, N̂`)θ
)
|w|1+θ,ωz .

Combining the bounds (3.10) and (3.11) with the definition of σ−j gives

|w̃(xj)− c+z | . σ−j |w|1+θ,ωz , for all j ∈ A−z ,
and thus, upon recalling (3.9),

(3.12)

∣∣∣∣ ∑
j∈Az

αj
[
w̃(xj)− c+z

]
λz(xj)

∣∣∣∣ . ∑
j∈A−z

|αj |σ−j λz(xj)|w|1+θ,ωz .

Moreover, if we have A−z 6= ∅, we can consider

c−z =
∑
j∈A−z

β−j w̃(xj) with β−j :=
−αjλz(xj)∑

k∈A−z (−αk)λz(xk)
> 0

Notice that the definition of c−z is the one of c+z , if we replace A−z by A+
z . Conse-

quently, we can argue as before and obtain here

(3.13)

∣∣∣∣ ∑
j∈Az

αj
[
w̃(xj)− c−z

]
λz(xj)

∣∣∣∣ . ∑
j∈A+

z

|αj |σ+
j λz(xj) |w|1+θ,ωz

.
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Taking the minimum of the two bounds (3.12) and (3.13) verifies (3.7) in this case.

Case 3: z ∈ ∂Ω. Here we have cz = 0. Using Lemma 3.6 and w̃(x) = 0 for all

x ∈ N̂`, we derive∑
j∈Az

αj
[
w̃(xj)− cz

]
λz(xj) =

∑
j∈Az

αjw̃(xj)λz(xj)

.

∑
j∈Az

|αj |dist(xj , N̂`)θ
 |w|1+θ,ωz ,

which verifies (3.7) also in this case.

Notice that all choices of cz in Cases 1–3 satisfy minωz w̃ ≤ cz ≤ maxωz w̃. Since w̃
is continuous and ωz compact, we can always choose xz ∈ ωz such that w̃(xz) = cz
and therefore apply Step 3.
5 Combining Steps 3 and 4 and using hE . hT whenever E ⊂ T , we derive

〈R , (w̃ − cz)λz〉 .

[∑
T∈Tz

ηT,θ + ξθ(z)

]
|w|1+θ,ωz .

We insert this inequality into (3.5), use the Cauchy–Schwarz inequality for sums
twice, observe that the cardinality of Tz is bounded in terms of σT and arrive at

〈R , w〉 .
(
η2
θ + ξ2

θ

)1/2(∑
z∈V
|w|21+θ,ωz

)1/2

.

Subsequently,
∑
z∈V |w|

2
1+θ,ωz

≤ 3|w|21+θ,Ω and (3.4) finish the proof. �

We turn to the postponed estimates about the interpolation error.

Lemma 3.6 (Interpolation error). Let w ∈ H1+θ with 0 < θ < 1 and consider
w̃ := w−IT w, where IT w denotes the Lagrange interpolant of w into V`T . Moreover,
let ωz, z ∈ V, be any star of T . Given any x, y ∈ ωz, we have

|w̃(x)− w̃(y)| . |x− y|θ|w|1+θ,ωz ,

and, if cz = w̃(xz) for some xz ∈ ωz, then

‖w̃ − cz‖0,T . h
1+θ
T |w|1+θ,ωz , ‖w̃ − cz‖0,E . h

1
2 +θ

E |w|1+θ,ωz

for any triangle T ∈ T and any edge E ∈ E containing z. The hidden constants
depend only on Ω, θ, ` and σT , while hE stands for the length of E.

Proof. We start by deriving the first inequality, where the domain is the refer-
ence triangle T̂ instead of some star ωz. Thanks to Lemma 2.1 (iii), the bound

‖I`w‖1+θ,T̂ . maxT̂ |w|, and Lemma 2.5, we have, for x, y ∈ T̂ ,

|w̃(x)− w̃(y)|
|x− y|θ

. ‖w̃‖1+θ,T̂ . |w̃|1+θ,T̂ = |w|1+θ,T̂ ,

where the hidden constant depends only on θ and `. In view of Lemma 2.4 (i)
and its proof, both sides scale in the same way under affine transformations of the
domain. Hence, for any triangle T ∈ T , we obtain

(3.14) |w̃(x)− w̃(y)| . |x− y|θ|w|1+θ,T .
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If x and y are two arbitrary points in ωz, we connect them with a polygonal path,
made of straight segments in each element of ωz and having total length . |x− y|.
The existence and construction of such a path is presented in Lemma 3.4 of [18],
where the involved constant depends on σT and the Lipschitz constant associated
with ∂Ω. Applying (3.14) segmentwise, we obtain the first claimed inequality.
Integrating it, we readily deduce the other ones. �

3.3. Lower Bounds. In this section, we assess the sharpness of the upper bound
in Theorem 3.4, dealing with the two parts ηθ and ξθ separately.

Let us start with the oscillation ξθ defined in (3.2). We first recall that, typically,
oscillation terms are not shown to be bounded by the error, but are, formally, of
higher order. Here, we encounter similar properties for ξθ. Indeed, Remark 3.1
suggests that, under global uniform refinement, ξθ decreases at least with the order
of the error |u−U |1+θ. Moreover, Remark 3.2 suggests that ξθ even vanishes after
a finite number of appropriate refinements in a reasonable adaptive algorithm. In
such cases, ξθ is then of arbitrarily higher order.

Our main result about the sharpness of ηθ from (3.1), or of the asymptotic form
of the upper bound in Remark 3.5, is as follows.

Theorem 3.7 (Lower bounds). Let u be the solution of Problem (1.1), U its ap-
proximation associated with the triangulation T and 0 < θ < 1

2 . For any triangle
T ∈ T , we have the local bound

ηT,θ ≤ CL |u− U |1−θ,ωT ,
where ωT is the patch of all triangles of T sharing a side with T . Furthermore, we
have also the global bound

ηθ ≤ C̃L|u− U |1−θ
Both constants CL, C̃L depend only on θ, the polynomial degree `, the shape coef-
ficient σT and the number N of point sources.

Remark 3.8 (Asymptotic independence on point sources). The dependence on
N is actually through the maximum number NT of point sources supported in one
element of T . After a finite number of suitable refinement steps, every triangle will
contain at most the support of one point source. For the same reason as in Remark
3.5, one expects that these refinement steps are actually quickly accomplished by
a (reasonable) adaptive algorithm. We therefore may say that the constants CL
and C̃L are asymptotically independent of N . Combining this with the asymptotic
upper bound in Remark 3.5, we see that, asymptotically, the error |u − U |1−θ is
encapsulated with a posteriori quantities that are independent on the point sources
in Problem (1.1).

The proof of Theorem 3.7 uses the constructive approach of Verfürth [20]. In
order to adapt it to our setting with fractional Sobolev space at hand, we need
the following preparations concerning the local continuity of B and suitable test
functions with local support. These test functions will be products of polynomials
and cut-off functions. For the latter, we shall use the following type: given a ball
of radius r with midpoint z ∈ R2, set

ηB(x) = η

(
x− z
r

)
where η(x) =

{
exp

(
1

|x|2−1

)
if |x| < 1,

0 otherwise.
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Lemma 3.9 (Cut-off within triangles). Let k ∈ N0 and T be a triangle. Moreover,

let B̂ be the ball with maximal radius in the reference triangle T̂ and F : R2 → R2

be an affine bijection with F (T̂ ) = T . Then the cut-off function ηT := ηB̂ ◦ F−1

satisfies, for all V ∈ Pk(T ),∫
T

V 2 .
∫
T

V 2ηT and |∇(V ηT )|θ,T . h−1−θ
T ‖V ‖0,T .

The hidden constants depend only on θ, k, and the minimal angle of T .

Proof. In view of the transformation rule and Lemma 2.4, the claim is equivalent
to ∫

T̂

V̂ 2 .
∫
T̂

V̂ 2ηB̂ and |∇(V̂ ηB̂)|θ,T̂ .
∥∥∥V̂ ∥∥∥

0,T̂

for all V̂ ∈ Pk(T̂ ). This statement in turn follows from the equivalence of norms

on the finite-dimensional spaces Pk(T̂ ) and Pk(T̂ )/R. �

Lemma 3.10 (Cut-off across edges). Let k ∈ N0 and E = T1 ∩ T2 be the common

edge of two triangles T1 and T2. For i = 1, 2, denote by T̂i the reference triangles
with vertices (0, 0), (1, 0), (0, (−1)i) and indicate by B̂12 the ball with maximal radius

in the reference patch T̂1 ∪ T̂2. Moreover, let F : R2 → R2 be a piecewise affine
bijection with F (T̂i) = Ti, i = 1, 2. Then the cut-off function ηE := ηB̂ ◦ F−1

satisfies, for all V ∈ Pk(E) and i = 1, 2,∫
E

V 2 .
∫
E

V 2 ηE and |∇(V ηE)|θ,Ti . h−1−θ
E

∥∥V ηE∥∥0,Ti
. h

− 1
2−θ

E ‖V ‖0,E ,

where hE denotes the length of E and V is a suitable extension of V . The hidden
constants depend only on θ, k, and the minimal angle of T .

Proof. In view of the transformation rule and Lemma 2.4, the claim is equivalent
to the following statement associated with the reference edge given by the vertices
(0, 0), (1, 0): for all V̂ ∈ Pk(Ê), we have∫

Ê

V̂ 2 .
∫
Ê

V̂ 2ηB̂ and |∇(V̂ ηB̂)|θ,T̂i .
∥∥∥V̂ ηB̂∥∥∥

0,T̂i
.
∥∥∥V̂ ∥∥∥

0,Ê
,

where the extension V̂ of V̂ is given by V̂ (x1, x2) = V̂ (x1). Again, these inequalities

follow from the equivalence of norms on the finite-dimensional spaces Pk(T̂i) and

Pk(T̂i)/R. �

Lemma 3.11 (Local continuity of B). Given 0 < θ < 1
2 and any triangle T , we

have ∫
T

∇v · ∇ϕdx . |v|1−θ,T |∇ϕ|θ,T

for all v ∈ H1−θ(T ) and ϕ ∈ H1+θ(T ) such that suppϕ = supp ηT or supp ηE with
ηT , ηE from Lemmas 3.9 and 3.10. The meaning of the left-hand side is given by
continuous extension and the hidden constant depends on the minimal angle of T .

Proof. In view of Lemma 2.4, both sides of the claimed inequality scale in the same
manner under affine transformations. We therefore can assume that T = T̃ , where
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T
T ∗

T ∗1 T ∗2E∗

ωE

Figure 1. Sub-edges, sub-triangles and support of test functions.

T̃ is one of the reference triangles T̂ , T̂1, T̂2. Correspondingly, we write B̃ for B̂ or
B̂12. We set c = |T̃ |−1

∫
T̃
v and apply Lemma 2.6 to obtain∫

T̃

∇v · ∇ϕdx =

∫
T̃

∇(v − c) · ∇ϕdx . ‖v − c‖1−θ,T̃ ‖∇ϕ‖θ,T̃ .

Using Lemma 2.2 and replacing ∂G by the 2-dimensional set T̃ \ B̃ in step 2 of the
proof of Lemma 2.3, we conclude with

‖v − c‖1−θ,T . |v|1−θ,T and ‖∇ϕ‖θ,T . |∇ϕ|θ,T . �

After these preparations, we are ready to prove the claimed lower bounds.

Proof of Theorem 3.7. 1 We shall use test functions, whose support does not con-
tain point sources. To construct them, we shall exploit Lemmas 3.9 and 3.10 for
the following sub-triangles. Let NT be the maximum number of Dirac masses
supported in a triangle T ∈ T and set

(3.15) M := 2(NT + 1).

We divide each edge E of T into M equal sub-edges and denote by SME the set of
these sub-edges. Moreover, for any triangle T ∈ T , we join the endpoints of the
sub-edges by lines parallel to the edges of T and so divide T into M2 equivalent
sub-triangles. We indicate with SMT this set of sub-triangles; see also Figure 1. The
choice (3.15) of M ensures that

(a) for each T ∈ T , we can choose a sub-triangle T ∗ ∈ SMT that does not contain
any point source appearing in (1.1),

(b) for each edge E of the triangulation T , we can choose a sub-segment E∗ ∈
SME such that no point source appearing in (1.1) is supported in the union
of the two sub-triangles adjacent to E∗.

Scaling arguments, similar to those in the proofs of Lemmas 3.9 and 3.10, yield:
if k ∈ N0, we have

(3.16) ‖V ‖0,T . ‖V ‖0,T∗ and ‖V ‖0,E . ‖V ‖0,E∗

for all V ∈ Pk(T ) or V ∈ Pk(E), where the hidden constants depend on M , k, and
the minimal angle in T but not on the choices of T ∗ and E∗.
2 Let us now prove a lower bound of the local error in terms of any given element

residual h2+2θ
T ‖∆U‖20,T , T ∈ T . To this end, we only need to consider ` ≥ 2 and
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observe that then ∆U ∈ P(T )`−2. Using ϕT = ∆U ηT∗ , we derive

‖∆U‖20,T . ‖∆U‖
2
0,T∗ .

∫
T∗

∆UϕT = −
∫
T∗
∇U · ∇ϕT =

∫
T∗
∇(u− U) · ∇ϕT

. |u− U |1−θ,T∗ |∇ϕT |θ,T∗ . h
−1−θ
T |u− U |1−θ,T ‖∆U‖0,T

with the help of the first inequality in (3.16), Lemma 3.9, integration by parts, the

choice of T ∗, Lemma 3.11 and hT∗ ≤ hT ≤ MhT∗ . Multiplying by h1+θ
T ‖∆U‖−1

0,T

and squaring we arrive at

(3.17) h2+2θ
T ‖∆U‖20,T . |u− U |

2
1−θ,T .

3 Next, we provide a lower bound for the local error in terms of any given jump
residual ‖J∇UK‖20,E , E edge of T . Let T1, T2 be the two triangles of T sharing the

edge E, and let U1, U2, n1, n2 denote the restrictions of U and the outer normals
of T1, T2, respectively. Then J∇UK = ∇U1 · n1 +∇U2 · n2 ∈ P`−1(E) and denote

by J∇UK its extension from Lemma 3.10. Using ϕE = J∇UK ηE∗ , we derive

‖J∇UK‖20,E . ‖J∇UK‖20,E∗ .
∫
E∗

J∇UKϕE =
∑
i=1,2

∫
E∗
∇U i · ni ϕE

=
∑
i=1,2

∫
T∗i

∇U · ∇ϕE + ∆U ϕE =
∑
i=1,2

∫
T∗i

∇(U − u) · ∇ϕE + ∆U ϕE

.
∑
i=1,2

|u− U |1−θ,T∗i |∇ϕE |θ,T∗i + ‖∆U‖0,T∗i ‖ϕE‖0,T∗i

.
∑
i=1,2

h
− 1

2−θ
E |u− U |1−θ,Ti ‖J∇UK‖0,E + h

1
2

E ‖∆U‖0,Ti ‖J∇UK‖0,E

with the help of the second inequality in (3.16), Lemma 3.10, integration by parts,
the choice of E∗, Lemma 3.11 and hE∗ ≤ hE ≤ MhE∗ . After multiplying by

h
1
2 +θ

E ‖J∇UK‖−1
0,E , we obtain

(3.18) h
1
2 +θ

E ‖J∇UK‖0,E .
∑
i=1,2

|u− U |1−θ,Ti + h1+θ
E ‖∆U‖0,Ti .

4 The claimed lower bound in terms of ηT , T ∈ T , follows by combining the squares
of (3.17) and (3.18) for the involved triangles and interelement edges; recall that
hE . hT whenever E is an edge of T and that for boundary edges E ⊂ ∂Ω, we
have set J∇UK|E = 0.

The global lower bound is a direct consequence of local one: sum the square of
all local ones and take into account that the cardinality of {T ′ ∈ T | ωT ′ ⊃ T} is
bounded in terms of the shape coefficient of T . �

4. Numerical Results

In this section, we numerically test the a posteriori error estimators of §3. To
this end, we use it in the adaptive solution of two examples of Problem (1.1) and
analyze resulting properties of the adaptive algorithm.

The adaptive algorithm, which was implemented within the finite element tool-
box ALBERTA [17], has the following structure. Given θ and a conforming initial
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triangulation T0 of Ω, it iterates the main steps

(4.1) Solve −→ Estimate −→ Mark −→ Refine.

The step Solve consists in solving the discrete system (2.9) for the current trian-
gulation T and linear elements. The step Estimate then computes the a posteriori
error estimator ηθ + ξθ and the local indicators η̃T,θ := ηT,θ +

∑
z∈T ξθ(z). Step

Mark selects triangles for refinement by means of the maximum strategy: T ∈ T
is marked whenever η̃T,θ > 0.5 maxT ′∈T η̃T ′,θ. In the step Refine, these marked
triangles are bisected twice so that each of their edges is halved. In doing so, further
triangles are bisected in order to maintain the conformity of the next triangulation.

Example 4.1 (Fundamental solution). Consider Problem (1.1) with data such
that

u(x) = − 1

2π
log |x|, x ∈ Ω := (−1, 1)2

is the exact solution, together with the parameter values θ = 0, 0.125, 0.250, 0.375,
and 0.5 for the adaptive algorithm.

Figure 2. Mesh grading and error norm for the fundamental solu-
tion. The triangulations after 20 iterations of (4.1) for θ = 0.000, 0.250,
0.500 (from left to right) illustrate that the mesh grading decreases with
increasing θ, which corresponds to weakening the error norm.

In view of Remark 3.2, we have ξθ = 0 during each run of the adaptive algorithm.
The analysis in §3 thus ensures the equivalence of ηθ and |u − U |1−θ,Ω for any
θ ∈ (0, 0.5). For the parameter value θ = 0, the term ηθ formally corresponds
to the infinite error |u − U |1,Ω. The value θ = 0.5 is not covered by the analysis
given in §3; Lemma 2.6 being the bottleneck. However, thanks to the convexity
of (−1, 1)2, one can prove that Theorems 3.4 and 3.7 hold for θ = 1; see also [3],
where oscillation is bounded in the spirit of Remark 3.1. Since ξ1 = 0, η0 is then
equivalent to the L2-error |u − U |0. This suggests that the equivalence still holds
for intermediate values like θ = 0.5.

For given θ > 0, the exact solution u formally has almost θ derivatives (in
L2) more than required in the error |u − U |1−θ,Ω. Thus, with increasing θ, quasi-
uniform meshes ensure increasing error decay, suggesting that the grading of meshes
generated with ηθ decreases with increasing θ. Figure 2 confirms this expectation,
as well as the corresponding meshes for the intermediate values θ = 0.125, 0.375,
which are not shown.

If θ is small, the mesh grading is very strong: for θ = 0, the triangles at the
origin of meshes with about 1000 degrees of freedom (DOFs) have areas smaller
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Figure 3. Convergence histories of the H1-error off the singularity
(top) and the L2(Ω)-error (bottom) for the fundamental solution. In
both cases, we plot error versus #DOFs in logarithmic scales. The
plots for θ = 0, 0.125 and 0.25 prematurely end because we encounter
triangles whose areas are below 10−16.

than 10−16. In the case of θ = 0.125, this happens for meshes with about 5000
DOFs.

A next step in our numerical testing of the estimator ηθ could be to study
the decay rate of the estimated error |U − u|1−θ,Ω. This will be done for the
second, more involved example. Here we shall instead study decay rates of two
error notions, for which the estimator is not originally designed. The first error
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notion is |u − U |1,Ω0 with Ω0 = Ω \ B(0; 1
4 ) = {(x, y) ∈ Ω : |x| + |y| > 1

4}.
Since u ∈ H2(Ω0), the maximum decay rate for it with linear finite elements is

#DOFs−1/2, reached for example by uniform refinement. The second error notion
is the L2-error |u − U |0,Ω. Here we have D2u ∈ Lp(Ω) for any p ∈ (0, 1) and thus
u is an element of the Besov space B2

p(Lp(Ω)). Consequently, the maximum decay

rate with linear finite elements is #DOFs−1, reached for example by thresholding
[6, Theorem 5.1]. Figure 3 suggests that, except for θ = 0, the meshes generated
with ηθ provide the maximum decay rate for both errors.

We however notice an advantage for greater values of θ, where the initial stagna-
tion of the error decay is shorter. This stagnation expresses the difference between
the observed error notion and the estimator, which puts more importance to the
singularity at the origin. For θ = 0, the fact that u 6∈ H1(Ω) appears to be reflected
in an infinite stagnation.

Example 4.2 (Point sources and reentrant corner). Consider the non-convex L-
shaped domain Ω = (−1, 1)2 \

(
[0, 1)× (−1, 0]

)
and the boundary value problem

−∆u = δ(0.33,0.66) + δ(−0.251,−0.85) + δ(−0.25,−0.87) in Ω,

u = 0 on ∂Ω,

with three point sources, two of them being very close. We take the parameter
values θ = 0.125, 0.25, 0.375, and 0.5 for the adaptive algorithm.

The exact solution is not known to us; see Figure 4 for an approximate solution
and corresponding triangulation. Also here we have ξθ = 0 during each run of the
adaptive algorithm.

The reentrant corner triggers some grading of the mesh, which is however less
emphasized than the grading arising from the point sources. This goes with the fact
that the log r-type singularities due to the point sources are stronger than the r2/3-
type singularity associated with the reentrant corner: in fact, we have D2u ∈ Lp(Ω)
for all p ∈ (0, 1), as for Example 4.1. For θ ∈ (0, 1], the maximum decay rate for the

approximation with linear finite elements in | · |1−θ,Ω is therefore #DOFs−(1+θ)/2,
again reached for example by thresholding [6, Theorem 5.1]. Figure 5 indicates that
these maximum decay rates are also obtained with the triangulation generated with
the help of the estimator ηθ, where machine precision prevents a possibly better
confirmation in the cases θ = 0.125 and 0.25.

Example 4.3 (Point sources with opposite signs). Consider the boundary value
problem

−∆u = δ(π,1)/1000 − δ(−π,1)/1000 in Ω = (−1, 1)2,

u = 0 on ∂Ω,

where the two point sources have opposite signs and are close to each other. Here
we investigate the adaptive algorithm only with θ = 0.25.

Again, the exact solution is not known to us. Observe that the difference of the
two point sources is almost orthogonal to finite element spaces over coarse meshes
and becomes more discernible with refinement. Thus, in contrast to the previous
examples, oscillation plays a role, as can be seen also in Figure 6. As predicted by
Remark 3.3, the oscillation ξθ is essentially constant until it drops to 0 at about
200 DOFs. Figure 6 exemplifies also the overestimation of the upper bound (3.3)
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Figure 4. Approximate solution (top) and triangulation (bottom,left)
for Example 4.2 after 25 iterations with θ = 0.375, and zoomed view
(bottom, right) of the mesh on [−0.28,−0.22] × [−0.89,−0.83], where
the neighboring point sources are located.

in Remark 3.1. Moreover, it shows that the decreasing orthogonality of the two
point sources and the current finite element space is accompanied by a growth of
the asymptotic part ηθ of the estimator, which turns into the asymptotic decrease
where oscillation drops. Finally, the kind of jump of the estimator ηθ + ξθ where
oscillations drops suggests that the two contributions ηθ and ξθ come with different
constants in the upper bound of Theorem 3.4. If we use ηθ + 0.2ξθ as upper bound,
the aforementioned jump disappears.
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θ slope − 1+θ
2

0.125 -0.484 -0.562
0.250 -0.612 -0.625
0.375 -0.684 -0.688
0.500 -0.748 -0.750

Figure 5. Convergence histories of H1−θ-error for Example 4.2. We
plot ηθ, which is equivalent to the H1−θ-error by §3, versus #DOFs in
logarithmic scales. The plots for θ = 0.125, and 0.25 prematurely end,
because we encounter triangles whose areas are below 10−16. The table
shows the slope of the final part of each curve obtained by a least squares

fit.
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