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I ntroduction

Commercial processes for liquid-phase dehydratioalaphols use strong

mineral acid catalysts, such ag3@, or p-toluensulfonic acid, which pose
serious environmental concerns. There is, therefooeeasing interest for

developing suitable and recyclable solid catalyfsts this process. In

particular, 15 % of the worldwide production of relye is obtained via the
dehydration of 1-phenylethanol (PhE), a byproduacthie propylene oxide

Figure 1: Reaction network for PhE synthe3|§ _Process. 1-PhE
. dehydration is also a useful test
conversion ) .
e, reaction because 1-PhE is
©/\ structurally similar to much
HQ, H Styrene \ more expensive alcohols widely
CH, I Heavy Products used in Fine Chemicals_. One
example is the dehydration of
1-Phenyletanol HG, A H CHs / indanols to produce indenes [1].
@)&}i@ However, very few papers deal
with the liquid-phase
Alpha-methylbenzylether dehydration of 1-PhE [2]. Figure

1 shows the reaction pathways
involved in 1-PhE conversion reactions. 1-PhE may donverted by
intramolecular dehydration to styrene (S) but alsy simultaneously form
alpha-methylbenzene ether (AME) via an intermolacul
dehydration/condensation reaction. Both producte a@onsecutively
converted to heavy products (HP). In this work,stiadied the liquid-phase
conversion of 1-PhE on samples containing onlyeeitstrong Brgnsted
(HPAJ/SIO,) or Lewis (ZnO/SiQ) acid sites, and catalysts containing both
Lewis and Brgnsted acid sites of either stronglitess HZSM5 and
HBEA) or moderate (Si@Al,0s, AI-MCM-41) strength.



Results and Discussion
Initial PhE dehydration rates . ) and selectivities at 90% PhE conversion

(Xpnp) are shown in Table 1. HPA/SiOwhich contains essentially strong
Brgnsted (B) acid sites, converted PhE at highsrdteming initially
mainly AME that was then converted to S and HP. [Bi0,, that contains
only Lewis (L) acid sites, showed a high seledfividr the intermolecular
dehydration reaction, yielding 99% AME. Samples taomng mainly
Lewis acid sites (Si©@AI,0;, Al-MCM-41) formed also only AME as
primary product that was then converted to S andiiiParticular on Si®
Al,O; because of its higher acid strength. Zeolite HBEAilgited similar
density of Brgnsted and Lewis acid sites and wasiibst active catalyst.
The initial formation rates of S and AME were simibn HBEA, but then
AME was converted to S. These results on HBEA slaothat the selective
formation of S is promoted by the presence of siméimounts of strong

Table 1. Sample properties and catalytic results of PhEdiettion

Sample Sg TPD NH; IR pyridine r3_x 10° Selectivities

(Xphe= 90%)

(m7g) (umolig) L/(L+B) (mol/ming) S AME HP

HPA/SIO, 205 163 0.20 8.1 1862 20
SiIOJ/AIL,O; 460 280 0.75 1.8 8 90 2
Al-MCM41 925 340 0.81 0.7 6 94 0
ZnO/SiG 125 2240 1.00 0.4 1 99 0D

HBEA 560 500 0.50 10.8 6727 6

HZSM5 350 770 0.50 2.8 945 1

surface Lewis and Brgnsted acid sites. Howeveryittld to S was never
higher than 70% on HBEA because S was further atedéo HP for high
PhE conversions. The density and strength of ait&s svere higher on

zeolite HZSM5 than on HBEA, but;. was lower on HZSM5 revealing

diffusional constraints. Zeolite HZSM5 was almosinpletely selective to
the formation of S reaching 95% S yield after Z heaction. This is due to
shape selectivity because the narrow channels dBME hinder the
formation of bulky intermediates leading from SAMIE and HP.
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