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Abstract

The moments (positive and negative) of order k of a Wishart distribution are functions
of its parameters (i.e., degrees of freedom n and variance-covariance matrix Σ). These
moments can be expressed symbolically as linear combinations of products of powers of
Σ, trΣk and n. The formulas require the computation of the partitions of the integer k
and the coefficients of a certain class of Jack polynomials in the monomial and power-sum
bases. These formulas are implemented in a SAGE package WishartMoments and the
invariant moments are obtained at the website https://antunescarles.github.io/wishart-
moments-calculator/ Antunes Percíncula (2022a). The formulas were developed by Letac
and Massam (2004).
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1. Introduction
TheWishart distribution plays an essential role in multivariate statistics and, more recently, in
random matrix theory. Almost 100 years after the original publication of Wishart (1928), it is
still a subject of research and further study. Although the density of the Wishart distribution
(when it exists) is very well known, the same is not true of the moments, which are usually
needed by researchers in the field. Their problems often concern functions of Wishart matrices,
such as the trace, moments of the trace, moments of the variable or combinations of them.
The efforts to compute these moments have a long history, beginning with Haff (1979, 1981),
who, using a very clever identity for Wisharts, find the second moments and second inverse
moments of a Wishart variable. Von Rosen (1988a) was among the first to work on formulas
for moments of any order. He generalized an idea of Guiard (1986) and, with the help of
differentiating the moment generating function, was able to explicitly compute moments of
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the form E(⊗ji=1W ) for j = 2, 3, 4, giving recursive expressions for the higher order moments.
It is important to clarify that computing these kind of moments, E(⊗ji=1W ), allows us to get,
in particular, E(W j) for j ∈ N and the expectation of other combinations of W itrk(W l) for
i+k∗ l = j. He extended this result to the moments of the inverse of the Wishart distribution
for the case of n > 2k+ r− 1 in Von Rosen (1988b), where r is the dimension of the random
matrix. Later, Von Rosen (1997) obtained formulas with the help of a factorization theorem,
again giving recursive expressions for them. The history is much longer—for example, Sultan
and Tracy (1996) gave explicit formulas for moments of order up to 4; while Lu and Richards
(2001), using MacMahon’s master theorem, obtained an explicit formula for the moments of
arbitrary polynomials in the entries of a Wishart W .
All of these formulas, although explicit, are almost impossible to use for orders greater than,
say, 4. Graczyk, Letac, and Massam (2003) and Letac and Massam (2004) compute invariant
moments of the form E(Q(W )), where Q(W ) is a polynomial with respect to the entries
of a Wishart W . Their moments are invariant in the sense that they depend only on the
eigenvalues of W . In particular, they are able to compute the expected value of any power
of W or its inverse W . Because they do not rely on traditional combinatorial methods but
instead rely on the interplay between two bases of the space of invariant polynomials in W ,
all of the moments can be obtained through the multiplication of three matrices whose entries
are obtained after computing the partitions of the integer k and the coefficients of a certain
class of Jack polynomials in the monomial and power-sum bases. Although the authors were
able to implement a Maple program to compute them, it is no longer available.
Later, Kuriki and Numata (2010) introduced another formula for the moments of the Wishart
distribution. In their formula, the moments are described as special values of the weighted
generating function of matchings of graphs. Matsumoto (2012) derived a formula for a general
moment of Wishart and inverse of Wishart as a function of orthogonal Weingarten functions,
giving again explicit formulas for moments up to order 3. Kim and Kang (2015) also gave
explicit formulas for moments up to order 3. Bishop, Moral, and Angèle (2018) derived
a polynomial formula for the invariant moments in a different way than that presented by
Letac and Massam (2004). Nevertheless, if higher order moments are needed, they are still
not available in the literature.
Moreover, there was a resurgence of the need for these moments due to the importance of
random matrix theory. For example, for the proof of the consistency of partial least square
regression in the context of r large and n small, Cook and Forzani (2018, 2019) rely on the
computation of higher order moments of the Wishart distribution. According to Holgersson
and Pielaszkiewicz (2020): . . . the Wishart distribution is generally not closed under the trans-
formation being conducted, and one may search the literature for available results on some
specific moment. However, there presently does not seem to be any single source to consult
in the matter, and it can be tedious to find the result sought for. Consequently, they list a
number of moments of functions of Wishart moments in a convenient format for easy access
and in particular they give the invariant moments of order 3 in the list.
The purpose of this work is the implementation of symbolic computation, using the open
source mathematical software SAGE (The Sage Developers 2022), of the formulas for the
invariant moments of the Wishart distribution and its inverse, as given by Letac and Massam
(2004). The formulas for the invariant models are implemented in the WishartMoments
Antunes Percíncula (2022b). Using this package, the desired k moment and the symbolic
moment are given in both LATEX and pdf formats for a general Σ. Numerical results can be
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obtained when the numerical values for the parameters (n and Σ) are given.
Moreover, we provide a graphical user interface to compute the formulas for the moments in
Antunes Percíncula (2022a). Given a desired value of k, a symbolic formula for the invariant
moments can be obtained, while an explicit formula can be obtained when numerical values
for the parameters are given.

2. Formulas for the invariant Wishart moments
We present now the formulas (see Theorem 1 below) which will be used for the computation
of the invariant moments of order k of a Wishart distribution and its inverse in SAGE. We
consider here a symmetric random matrix W of dimension r, a matrix Σ ∈ Sr{+} (the set of
positive definite matrices of dimension r) and n ∈ N such thatW ∼Wr(n,Σ). These formulas
were derived by Letac and Massam (2004).
Let Sk be the symmetric group of permutations of {1, . . . , k} (Wikipedia contributors 2022).
If π ∈ Sk, let ij be the number of cycles of π of length j for j = 1, . . . , k. The k-tuple
(i) = (i1, . . . , ik) is called the portrait of π and satisfies the equality i1 + 2i2 + · · ·+ kik = k.
The set of all portraits associated to Sk is denoted by Ik, that is

Ik = {(i) = (i1, . . . , ik) : ij ∈ N0 such that i1 + 2i2 + · · ·+ kik = k} (1)

Let us note that the cardinal of Ik, that we denote by s, is smaller or equal than the number
of permutations.
A partition λ of an integer k is a sequence of non-negative integers λ1 ≥ λ2 ≥ · · · ≥ λk such
that ∑k

i=1 λi = k. We will write λ = (λ1, λ2, . . . , λk) and the number l = l(λ) of non-zero
components λi of λ is called the length of the partition λ. It is a common practice to write
down only the non zero components of a partition. Notice that for each portrait (i) ∈ Ik we
have a partition of k associated to (i), namely

λ(i) := (
ik︷ ︸︸ ︷

k, . . . , k,

ik−1︷ ︸︸ ︷
k − 1, . . . , k − 1, . . . ,

i1︷ ︸︸ ︷
1, . . . , 1) (2)

where
ij︷ ︸︸ ︷

j, . . . , j indicates that j appears ij times, and if ij = 0 then j is excluded.
In this work we will use two orderings for the set of partitions of an integer k: let λ =
(λ1, . . . , λk) and µ = (µ1, . . . , µk) be two partitions of k. On the one hand we say that µ ≤ λ
in the lexicographic order if either µ = λ (that is µi = λi for i = 1, . . . , k) or, if for the largest
integer j < k such that µi = λi for i = 1, . . . , j we have that µj+1 < λj+1. On the other hand,
we say that µ 4 λ in the dominance order if

µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi,

for i = 1, . . . , k. Notice that the lexicographic order is a total order but the dominance order
is not: for example λ = (5, 1, 1, 1) and µ = (4, 3, 1) are two partitions of 8 that can not be
compared with the dominance order, that is neither λ 4 µ nor µ 4 λ.
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For each (i) ∈ Ik and h ∈ Sr{+}, we define

r(i)(h) =
k∏
j=1

(trhj)ij (3)

Lr(i)(h) = r(i)(h)
k∑
j=1

jij
hj

tr(hj) (4)

where tr(A) indicates the trace of the matrixA. For instance, if we consider (i) = (0, . . . , 0, 1) ∈
Ik we have that λ(0...,0,1) = (k) and then

r(0...,0,1)(h) = (trh)k (5)
Lr(0...,0,1)(h) = khk. (6)

Now, for a partition λ of k ∈ N and integers d, q ∈ N, we define

(d)λ =
l(λ)∏
j=1

λj∏
t=1

(d+ t− 1− j − 1
2 ) (7)

(q)∗λ = [
k∏

j=k−l(λ)+1

λk−j+1∏
t=1

(q + k − j + 1
2 − t)]−1. (8)

We define now three matrices which are the key ingredients of the formulas appearing in
Theorem 1 below. These formulas are the ones we will use to compute the invariant moments
(of a given order) of a Wishart distribution. First we have the matrix Dk(d) which is the
diagonal matrix with diagonal (d)λ, where the λ´s are all the partitions of k, ordered in
ascending lexicographic order. Then we have the diagonal matrix D∗k(q) which is analogous
to Dk(d) but now (q)∗λ is used. Finally we have an invertible matrix denoted by Bk, whose
definition depends on the coefficients of a certain class of symmetric polynomials called Jack
polynomials. The precise definition of Bk is given in the next section. We are now in a
position to present the theoretical result, given in Letac and Massam (2004)[Theorem 4], that
we use to compute the invariant moments of order k of a Wishart distribution and its inverse.

Theorem 1 Let W ∼ Wr(n,Σ). For a given k ∈ N, let {Lr(i)(h)}Ik be the column vector of
components Lr(i)(h) with (i) ∈ Ik, ordered according to the ascending lexicographic order of
the associated partitions. Then for n ∈ N,

{E(Lr(i))(W )}Ik = B−1
k Dk(n/2)Bk{Lr(i)(2Σ)}Ik (9)

{E(Lr(i))(W−1)}Ik = B−1
k D∗k((n− r)/2)Bk{Lr(i)((2Σ)−1)}Ik for n > 2k + r − 1 (10)

where E(A) represents the expectation of the random variable A.

In particular by (5) and (6), the last row of (9) gives kE(W k) and the last row of (10) gives
kE(W−k).
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3. The matrix Bk

A polynomial f in the variables x1, . . . , xk (with real coefficients) is called symmetric if it is
invariant under any permutation of its variables, that is f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k))
for any π ∈ Sk. It is called homogeneous of degree k if f(αx1, . . . , αxk) = αkf(x1, . . . , xk) for
any 0 6= α ∈ R. We denote by Vk the set of all homogeneous symmetric polynomials of degree
k with real coefficients together with the zero polynomial. In what follows we mention some
well known facts about Vk and we refer the reader to Macdonald (2015) not only for these
facts but also for a comprehensive treatment of symmetric polynomials and functions. First
of all we have that Vk is an R-vector space. Second there are several standard bases for this
vector space which are frequently used by the specialists in this field, but here we will just
need two of them: the monomial and the powe-sum basis. The so called power-sum basis is
the set {pλ : λ partition of k} where

pλ =
k∑
j=1

xkj ,

if the length l(λ) = 1 (so that λ = (k)) and

pλ =
l(λ)∏
i=1

k∑
j=1

xλij ,

if the length l(λ) > 1. On the other hand we have the so called monomial basis of Vk formed
by the monomials

mλ =
∑
σ∈Sλ

xλ1
σ(1)x

λ2
σ(2) · · ·x

λk
σ(k),

where λ runs over all partitions of k and Sλ ⊂ Sk is the set of permutations giving distinct
terms in the sum.
Given a real parameter α > 0 there is an inner product 〈, 〉α in Vk such that

〈pλ, pµ〉α = δλµzλα
l(λ),

where δλµ = 0 if λ 6= µ and δλµ = 1 if λ = µ and

zλ = (1m12m2 · · · kmk)m1!m2! · · ·mk!,

where mi = |{j : λj = i}|.
We introduce next the so called Jack polynomials J (α)

λ . It is proved in Chapter VI of Mac-
donald (2015) that there are unique polynomials Jαλ ∈ Vk such that

〈J (α)
λ , J (α)

µ 〉α = 0,

if λ 6= µ and
J

(α)
λ =

∑
µ4λ

cλµmµ, (11)

with cλ1k = k!. Notice that in the sum (11) the dominance ordering for partitions is used.
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One of the important properties of Jack polynomials is that several classical families of sym-
metric polynomials are obtained by choosing specific values of the parameter α. In particular,
when α = 2 the well known Zonal polynomials Zλ (with the appropriate normalization as in
James (1964)) are obtained.
Now we describe the construction of the matrix Bk that appears in formulas (9) and (10):
roughly speaking it is a matrix formed by the coefficients of the Jack polynomials with α = 2
expressed in terms of the power sum basis. First we consider the set of all partitions of k and
we use the lexicographic ordering to write them in ascending order from left to right

λ(1) = (1k) < λ(2) < · · · < λ(s) = (k),

where (1k) is the partition (1, 1, . . . , 1) of k. Next we consider the Jack polynomials J (2)
λ(i) for

i = s, s− 1, . . . , 1 and from (11) we can write

J
(2)
λ(s) = k!mλ(1) + c1,2mλ(2) + c1,3mλ(3) + · · ·+ c1,s−1mλ(s−1) + c1,smλ(s) ,

J
(2)
λ(s−1) = k!mλ(1) + c2,2mλ(2) + c2,3mλ(3) + · · ·+ c2,s−1mλ(s−1) ,

...

J
(2)
λ(1) = k!mλ(1) .

(12)

Then we change to the power sum basis and we get expressions of the form

J
(2)
λ(s) = b1,1pλ(1) + b1,2pλ(2) + b1,3pλ(3) + · · ·+ b1,spλ(s) ,

J
(2)
λ(s−1) = b2,1pλ(1) + b2,2pλ(2) + b2,3mλ(3) + · · ·+ b2,spλ(s) ,

...

J
(2)
λ(1) = bs,1pλ(1) + bs,2pλ(2) + bs,3pλ(3) + · · ·+ bs,spλ(s) .

(13)

The matrix Bk is the s × s matrix Bk = (bij). In our algorithms we compute all the Jack
polynomials in (12) using the Zonal polynomials expressed in terms of the monomial basis. In
SAGE the Zonal polynomials and the coefficients in the monomial basis can be obtained using
the SymmetricFunctions module. Once they are calculated, we normalize each Zonal polyno-
mial dividing it by the coefficient corresponding to the partition (1k), obtaining the polynomi-
als defined in (11). We then use an already implemented feature of the SymmetricFunctions
module to make the change to the power-sum basis and thus (13) is obtained.

4. SAGE package to compute all invariant Wishart moments
The main component of the WishartMoments package consists of the Expectations class.
This class is designed to keep all of the information needed to compute the Wishart moment
associated to an integer k.
To instantiate an object of the Expectations class, the user is required to give a positive
integer k (the order of the moments that the user wants to compute) as an argument to its
constructor.
This class internally computes and stores the expressions Lr(i)(h) for every portrait (i) ∈
Ik, as well as the matrices Bk, B−1

k , Dk(n/2) and Dk((n − r)/2), which are later used to
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symbolically compute the expressions for every invariant moment of order k of a symbolic
variable W ∼ Wr(n,Σ) or those of its inverse W−1. The dimension r and the parameters n
and Σ of the distribution will appear in the expression for the moment as symbolic variables
and they need not be given. Although the matrices Bk, B−1

k , Dk(n/2) and Dk((n − r)/2)
need to be computed when an instance is constructed, the expressions for the moments are
only computed when they are required by the user for the first time. This means that several
calls to the method that calculate them are only able to retrieve the stored result of the first
call.
The results of the class Expectations can be requested through the methods expressions,
moment, pretty_print_moment, evaluate_moment and pretty_print_eval_moment.
The expressions method returns a list of all the expressions Lr(i)(W ), to let the user know
which Wishart moments can be computed for a given k. The output is a list of 2-element
lists, where the first element is the index of a given portrait (i) with respect to the order
induced by the ascending lexicographic order of the associated partitions, and the second
element is the symbolic expression of Lr(i)(W ) itself for the portrait (i). There are as many
lists as elements of Ik.
The computation of the moments is carried by the moment method. This is needed because
it gives the index of the portrait (i) (the one appearing in the result of the expressions
method) for which the user wants to compute the expressions for the expectation of Lr(i)(W ).
This method also allows the user to compute the expectation of Lr(i)(W−1) by passing the
optional argument inverse set to True. The built-in methods in SAGE to deal with Zonal
polynomials are used to compute the matrix Bk that is needed for this step. The moment
method returns the symbolic expression corresponding to Lr(i)(W ) and E[Lr(i)(W )] as values
of a dictionary corresponding to the keys 'var' and 'moment', respectively. If the argument
inverse=True is passed to the method, then it will return Lr(i)(W−1) and E[Lr(i)(W−1)].
The results were validated by comparison with the moments available in the literature.
We can obtain the string with the LATEX code representing any of these expressions by using
the built-in function latex.
A nicer presentation of the moments can be displayed when the package is used inside a
Jupyter Notebook, using pretty_print_moment. This method takes an index of a portrait as
argument and displays the formula corresponding to the moment method as it would appear
in a document when copying its LATEX code.
It is also possible to get numerical results for the moment of a variable W ∼ Wr(n,Σ) when
concrete values for n and Σ are provided. This can be done by using the evaluate_moment
method after giving the index of the desired moment, as in the previously explained methods,
and concrete values of k, n and Σ. The value for Σ is given as a Numpy ndarray, and
the return value is a dictionary with the corresponding variable given as a value for the
'var' key, and a ndarray for the its expectation given as a value of the 'moment' key. A
nicer presentation of the results, when using a Jupyter Notebook, can be obtained by the
pretty_print_eval_moment method.

5. Installation of the package
This section assumes that the user has already installed a version of SAGE, which can be
downloaded from https://www.sagemath.org/. To install the WishartMoments package, the

https://www.sagemath.org/
https://www.sagemath.org/
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user must open a Sage shell and install the package via the pip utility:

(sage-sh) sage -pip install WishartMoments

To use the package, it is only necessary to import it as any other Python package

import WishartMoments as wm

6. Examples of computing the Wishart moments
We will now show how to compute the following Wishart moments of order 3:

E(W 3) =
(
n3 + 3n2 + 4n

)
Σ3 +

(
2
(
n2 + n

)
(tr Σ)

)
Σ2 +

(
n(tr Σ)2 +

(
n2 + n

)
(tr Σ2)

)
Σ

E(W (trW )2) = 8nΣ3 + 4n2(tr Σ)Σ2 +
(
n3(tr Σ)2 + 2n2(tr Σ2)

)
Σ

and

E(W−3) = (n− r − 1)Σ−3

(n− r + 1)(n− r)(n− r − 3)(n− r − 5)
2 Σ−2(tr Σ−1)

(n− r + 1)(n− r)(n− r − 3)(n− r − 5)

+

(
2 (tr Σ−1)2 + n(tr Σ−2)− r(tr Σ−2)− (tr Σ−2)

)
Σ−1

(n− r + 1)(n− r)(n− r − 1)(n− r − 3)(n− r − 5)

After importing the Wishart moments package (import WishartMoments as wm), we have
to create an instance of the class Expectations.

sage: k=3
sage: expec = wm.Expectations(k)

We need to know how to reference the expressions of which we want to compute their expec-
tations. We can get a list the expressions of order k by using the method expressions of
Expectations, which returns a list of 2-element lists with the index of the portrait and the
the expression for expectation of the moment corresponding to it.

sage: expec.expressions()

[0, W*tr(W, 1)^2]
[1, 2/3*W^2*tr(W, 1) + 1/3*W*tr(W, 2)]
[2, W^3]

Here tr(A,j) represents tr(Aj). Therefore, to get W (trW )2 we call the method moment with
the index 0

sage: expec.moment(0)
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{
'var': W*tr(W, 1)^2 ,
'moment': 8*n*S^3 + 4*n^2*tr(S, 1)*S^2 + (n^3*tr(S, 1)^2
+ 2*n^2*tr(S, 2))*S

}

Similarly we use the index 2 to get W 3.

sage: expec.moment(2)

{
'var': W^3 ,
'moment': (n^3 + 3*n^2 + 4*n)*S^3 + (2*(n^2 + n)*tr(S, 1))*S^2
+ (n*tr(S, 1)^2 + (n^2 + n)*tr(S, 2))*S

}

As for the moment of the inverse, we can call moment with the argument inverse set to True.

sage: expec.expressions(inverse = True)

[0, inv(W, 1)*tr(W, -1)^2]
[1, 2/3*inv(W, 2)*tr(W, -1) + 1/3*inv(W, 1)*tr(W, -2)]
[2, inv(W, 3)]

Here inv(A,j) represents A−j . We use the index 2 to get W−3.

sage: expec.moment(2, inverse = True)

{
'var': inv(W, 3) ,
'moment': (n - r - 1)*inv(S, 3)/((n - r + 1)*(n - r)

*(n - r - 3)*(n - r - 5))
+ 2*inv(S, 2)*tr(S, -1)/((n - r + 1)*(n - r)*(n - r - 3)*(n - r - 5))
+ (2*tr(S, -1)^2 + n*tr(S, -2) - r*tr(S, -2)
- tr(S, -2))*inv(S, 1)/((n - r + 1)*(n - r)*(n - r - 1)

*(n - r - 3)*(n - r - 5))
}

We can obtain the string with the LATEX code representing these expressions by using the
built-in function latex. For instance, if we want to get the code for the variable W (trW )2,
we should use the following commands

sage: latex(expec.moment(0)['var'])

W {(\mathrm{tr} \, W)}^{2}
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and for its expectation, Σn3(tr Σ)2 + 8 Σ3n+ 2
(
2 Σ2(tr Σ) + Σ(tr Σ2)

)
n2,

sage: latex(expec.moment(0)['moment'])

8 \, {n} \Sigma^{3} + 4 \, {n}^{2} {(\mathrm{tr} \, {\Sigma})} \Sigma^{2}
+ \left({n}^{3} {(\mathrm{tr} \, {\Sigma})}^{2}
+ 2 \, {n}^{2} {(\mathrm{tr} \, {\Sigma}^{2})}\right) \Sigma

Notice that an instance of the form wm.Expectations(3) only permits to compute moments
of order 3. To compute a moment of a different order, say k = 4, the user has to instantiate a
new object of the class wm.Expectations(4). We will continue with the examples using the
same parameter as we were doing so far, that is k=3, so that can keep using the same object
expec.

Now we show how to compute the numerical value of the moment E(W tr(W 2)) for a Wishart
distributions with parameters n = 10 and

Σ =
[
4 1
1 3

]

We want to remark that neither the package nor the website will check if the matrix Σ is
positive definite.

We first set the matrix Σ:

sage: Sigma = np.array([[4,1],[1,3]]);

To evaluate the moment we use the evaluate_moment where the parameters are t (the index
of the expression in the list expec.expressions() for which we require its expectation),
n_param (the numerical value for the parameter n), Sigma (the numerical value for the matrix
Σ) and the boolean parameter inverse (False will compute the moment of W and True the
moment for W−1). Here we need to compute E(W tr(W 2)) and therefore the parameters are
passed as follows.

sage: ev = expec.evaluate_moment(t=0, n_param=10, Sigma=Sigma, inverse=False);

As ev is a dictonary, we can retrieve the variable by using the key 'var'

sage: ev['var']

W*tr(W, 1)^2

To get the moment we use the key 'moment'

sage: ev['moment']
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array([[813600., 231120.],
[231120., 582480.]], dtype=object)

7. The web interface
The main page is devoted to the calculation of the symbolic expressions. To compute the
moment of order k of a random variable W ∼Wr(n,Σ), it is necessary to provide the input k
in the box. The interface provides a slider that allows the user to choose among the possible
portraits associated with k. After that, the user can decide whether to require the Wishart
moment associated to the selected partition for W , W−1 or both. The expression Lr(i)(W )
and its expectations in terms of n and Σ are then displayed. This result is the same as that
obtained by calling the pretty_print_moment method. By default, the options in both pages
are set to compute the moment of order k = 2 for the greatest portrait (0, 0, . . . , 1) and only
for the variable W .
A link to the page where these expressions can be evaluated is presented on the main page.
On that page, the user is required to specify the value of the matrix Σ as a Numpy ndarray.
Once this code is submitted with the compute button, a new interactive box is displayed, and
the user must provide the integers k and n, and then select whether to compute the moment
for W , W−1 or both. If the user wants to compute the moment for W−1, then the interface
will require the user that the value for n satisfies the condition n > 2k+(r−1) for the inverse
W−1 to exist.
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